
Adapting Workflow Management Systems to BFT
Blockchains – The YAWL Example

Joerg Evermann
Faculty of Business Administration

Memorial University of Newfoundland
St. John’s, NL, Canada

Email: jevermann@mun.ca

Abstract—Blockchain technology provides an auditable and
tamper-proof distributed infrastructure that can support dis-
tributed workflow management. Blockchains based on a Byzan-
tine Fault Tolerance (BFT) ordering consensus protocol address
many of the shortcomings of proof-of-work chains, such as
latency and non-finality of consensus. They are a suitable
technology to support workflow execution, in large part because
applications do not need to be adapted to deal with eventual
consistency and delayed consensus of proof-of-work blockchains.
Moreover, in contrast to earlier work that has typically developed
custom workflow engines using smart contracts, we port an
existing, full-featured workflow engine, the YAWL workflow
engine, to a blockchain-based workflow management system
(WfMS) without smart contracts.

Index Terms—Workflow management, distributed workflow,
inter-organizational workflow, YAWL, Blockchain, Byzantine
Fault Tolerance

I. INTRODUCTION

Inter-organizational business processes may include partic-
ipants in adversarial relationships that have to jointly execute
business processes. Trust in the state of a process instance and
in the correct execution of activities by other stakeholders may
be lacking. Blockchain technology can provide a trusted, dis-
tributed workflow execution infrastructure for such situations.

A blockchain cryptographically signs a series of blocks,
containing transactions, so that it is difficult or impossible to
alter earlier blocks in the chain without this being detectable.
In a distributed blockchain, actors independently order and
validate transactions, add them to the blockchain, and replicate
the chain across nodes. Actors must reach agreement regarding
the order and validity of transactions and blocks. In workflow
execution, it is important that actors agree on the ”state of
work” as this determines the set of next valid activities in the
process. Hence, it is natural to use blockchain transactions to
describe the state of work.

Blockchain technology admits different system designs, and
workflow management systems (WfMS) can be implemented
in different ways on different types of blockchains. In this
paper we present a novel architecture for blockchain-based
workflow management. Our contributions are twofold:

First, in contrast to prior work, which has focused on proof-
of-work blockchains, we show that a blockchain based on a
Byzantine Fault Tolerance (BFT) ordering consensus protocol
can be used as workflow execution infrastructure.

Second, in contrast to earlier work, we port an existing,
full-featured workflow engine to a blockchain without smart
contracts. The particular workflow system we focus on here is
the YAWL system [1], chosen because of its open source im-
plementation and its complete coverage of workflow patterns.

Our approach is independent of any particular workflow
language and workflow language semantics as we do not
implement a BPMN or workflow net model processor but
instead focus on events in work item lifecycles. This language
independence allows an easy extension to other workflow
engines, as long they support similar work item lifecycles.

The remainder of the paper is structured as follows. Sec-
tion II reviews related work on blockchain-based WfMS. We
then describe the principles of distributed blockchains with a
focus on BFT-based consensus (Sec. III). Section IV describes
the architecture of our system. Section V presents our adap-
tation of the YAWL system1. Sec. VI discusses correctness
guarantees and limitations of our architecture and future work.

II. RELATED WORK

This review is focused on workflow execution using block-
chain infrastructure, although other applications such as work-
flow monitoring [2] or verification [3] are possible. A recent
overview is provided in [4].

Most blockchain-based workflow execution systems use
smart contracts [4], software code that is stored on the block-
chain and executed as part of blockchain transaction process-
ing. This ensures code integrity and consensus on execution
results. Many blockchains provide a language and virtual
machine for smart contract execution, such as the Solidity
language originally developed for the Ethereum blockchain.

In a project driven by a financial institution, a domain-
specific workflow implementation using Ethereum and smart
contracts supports the digital document flow in the im-
port/export trading domain [5], [6]. The project demonstrates
lowered execution cost, and claims increased transparency
and trust among trading partners. Another domain-specific
blockchain-based workflow project in the real-estate domain
also uses Ethereum and smart contracts [7]. The authors claim
the lack of a central agency will make it difficult for regulators
to enforce obligations and responsibilities of trading partners.

1Source code is available from https://joerg.evermann.ca/software.html



A domain-agnostic blockchain-based workflow execution
system [8], [9] uses Ethereum smart contracts as choreography
monitors of the execution status and validity of workflow
messages, or as active mediators that control the process
by sending and receiving messages according to a process
model. BPMN models are translated into smart contracts.
Nodes monitor the blockchain for messages from the smart
contract and create transactions for the smart contract. The
cost for executing smart contracts and the execution latency
are recognized as limitations. A comparison between the pub-
lic Ethereum blockchain and the Amazon Simple Workflow
Service shows blockchain-based execution costs to be two
orders of magnitude higher [10], [11]. Hence, optimizing the
space and computational requirements for smart contracts is
important [12]. BPMN models are first translated to Petri Nets
[13], to which existing minimizing algorithms are applied. The
minimized Petri nets are then compiled into smart contracts,
achieving up to 25% reduction in execution costs [8], [9],
while also improving throughput time. Building on lessons
learned from [8], [9], Caterpillar is an open-source blockchain-
based WfMS [14]. Developed using the Node.js JavaScript
runtime it uses the Solidity compiler solc and the Ethereum
client geth to provide a distributed execution environment for
BPMN-based process models. The Caterpillar system has been
extended to directly interpret BPMN models, i.e. it provides
a workflow engine as a set of smart contracts. Lorikeet [15]
is similar to the original Caterpillar system, also based on
BPMN models that are translated to smart contracts. When
workflow execution spans multiple blockchains, the workflow
engine must be moved off-chain [16], similar to our proposal.
While most implementations use a flow-based workflow spec-
ification, declarative workflows can also be deployed on a
blockchain infrastructure [17].

In summary, while existing blockchain-based workflow ex-
ecution systems vary in terms of features and capabilities, the
majority of them are based on proof-of-work blockchains and
all use smart contracts [4]. Moreover, all (re-)implement a
workflow engine, for example for BPMN, in smart contracts.
In contrast, our work is based neither on proof-of-work chains,
nor on smart contracts, nor do we need to implement or re-
implement a workflow engine.

III. BLOCKCHAINS

A blockchain records transactions in consecutive blocks.
Integrity is maintained by hashing the content of each block,
which also contains the hash of the previous block. In a
typical distributed blockchain, blocks are replicated across
nodes. New transactions may originate on any node and must
be recorded in new blocks. The key challenge is to achieve
consensus on the validity and order of transactions and blocks,
despite nodes that are characterized by ”byzantine faults”: they
may not respond correctly, may respond unpredictably, or may
become altogether unresponsive.

A. Proof-of-Work Consensus

Bitcoin popularized proof-of-work for consensus finding
and securing the blockchain. New transactions are distributed
to all nodes, independently validated, and added to a node’s
transaction pool. A node can independently propose new
blocks from transactions in its pool, based on its latest block
and its hash, and distribute the new blocks to other nodes.
Depending on network speeds and topology, nodes may have
different sets of blocks and transactions, and hence may pro-
pose different blocks, leading to side branches. Nodes consider
the longest branch as their current main branch and propose
new blocks based on it. Transactions in side branches are not
considered valid. When a side branch becomes longer than the
main branch, the chain undergoes a reorganization: What was
the side branch is validated and becomes the main branch.
What was the main branch is considered invalid and becomes
a side branch. Transactions no longer in the main branch are
added back to the transaction pool to be included in future
blocks. Hence, different nodes may consider different blocks
and transactions as valid. As proposed blocks are distributed
across the network, nodes will eventually reach a consensus
regarding valid blocks and transactions, and their order in the
main branch of the chain.

To limit the rate of new block proposals and secure the
blockchain against attacks, block proposers must solve a hard
problem (”proof-of-work”, ”mining”). Typically, this is to
require the block hash to be less than a certain value. A limited
block rate allows nodes to achieve eventual consensus, and a
hard problem prevents attackers from ”overtaking” the creation
of legitimate blocks with fraudulent one. Hence, a successful
attack requires control of > 50% of the total hashing power
of all nodes.

The probability for a transaction in the main branch to
become invalid due to a chain reorganization decreases with
each block that is mined on top of it, but in principle it
is always possible for a transaction to become invalid. In
addition to this lack of finality of consensus, this approach
induces significant latency as applications must wait not only
for one block but many to be created. Applications that use the
blockchain infrastructure must actively monitor the status of
all transactions of interest, must react to chain reorganizations,
and communicate this information to the user.

B. BFT-Based Consensus and State Machine Replication

In response to the drawbacks of the proof-of-work consen-
sus provably correct ordering algorithms based on distributed
systems research have seen a resurgence in interest. Most of
the ongoing research can be traced back to a practical method
for achieving byzantine fault tolerance (PBFT) [18] where
tolerating up to f faulty nodes requires 3f + 1 total nodes.
PBFT achieves consensus on the order of requests using a set
of fully-connected ordering nodes.

Protocol: Every ordering consensus is established by a
specific set of nodes (”view”), with a leader or primary node.
A client sends a request to all nodes. The leader proposes
a sequence number for the request and broadcasts this in a



pre-prepare message. Upon receipt of a pre-prepare message,
a node broadcasts a corresponding prepare message if it
has itself received the request, and has not already received
another pre-prepare message for the same sequence number.
This indicates the node is prepared to accept the proposed
sequence number. Nodes wait to receive 2f matching prepare
messages, indicating that 2f +1 nodes are prepared to accept
the proposed sequence number for the request. When a node
has received 2f identical prepare messages, it broadcasts a
commit message to all nodes. Nodes then waits to receive 2f
identical commit messages, indicating that 2f +1 nodes have
accepted the proposed sequence number for the request. Upon
committing, the node executes the request and sends a reply
message to the client. The client waits for 2f + 1 identical
replies, which indicates that a consensus has been reached on
the sequence number of the request.

The leader is not a fixed, central, or privileged node and
is changed by consensus when nodes detect an unresponsive
or malfunctioning leader. Leader change uses a three-stage
protocol similar to the normal ordering protocol.

Consensus request sequencing is closely related to state
machine replication (SMR): Every node maintains a state that
can be changed by client requests. When every node begins
with the same state and executes requests in the same order,
the state machine is replicated.

Implementation: BFT-SMART [19] is a software library
built around a BFT protocol and adds dynamic view reconfig-
uration (nodes can join and leave views) and state exchange.
BFT-SMART provides a simple programming interface. The
client-side interface allows submission of requests. Appli-
cations implement a server-side interface, encapsulating the
state machine, that receives ordered requests in consensus
sequence from the library for execution. Requests are simple
byte arrays and opaque to the library, the client- and server-
side applications must serialize and deserialize these in a
meaningful way. View reconfigurations (adding or removing
a node, or changing the level of fault tolerance) are special
types of requests but are treated as any other request for
ordering and consensus purposes. For state exchange, the
server-side application implements methods to fetch and set
state snapshots, also serialized as byte arrays. When a node
joins a view, it is sent the latest checkpointed state using
collaborative state transfer, and requests after the checkpoint
are then replayed, allowing the server state to catch up to the
consensus state.

BFT-SMART has been proven to be correct and live, i.e.
it will provide the same sequence of operations to all nodes
and will not deadlock [19]. In terms of throughput, a system
with four nodes (f = 1) has been shown to support more than
15,000 requests (1kB size) per second with latencies around 10
milliseconds on a local network. The performance decreases
linearly as fault tolerance (and hence the number of nodes)
increases: A system with 10 nodes (f = 3) has been shown
to support more than 10,000 requests per second [19].

Summary: BFT-based ordering avoids the latency, lack of
finality and computational demands of proof-of-work consen-

sus. On the other hand, its three-stage protocol imposes sig-
nificant communication overhead and requires fully-connected
nodes. Fault tolerance in BFT increases linearly with the
number of nodes, but performance decreases due to additional
communication. The different strengths and weaknesses of the
two consensus mechanisms suggest that BFT-based ordering
is a good fit with small, permissioned blockchains as they
are used in the inter-organizational collaborative workflow
management context. This is echoed by [20], who recommend
BFT-based consensus for workflow execution because ”it guar-
antees safety, liveness, and some degree of fault tolerance” and
proof-of-work is ”impractical since the confirmation settlement
is too long and unreliable”.

IV. GENERAL ARCHITECTURE

The main component of a WfMS is the workflow engine,
which interprets the workflow specification and enables work
items for execution by external services [21]. Prior work has
deployed the workflow engine on the blockchain itself, by
compiling BPMN workflow specifications to smart contracts
or by implementing a BPMN interpreter as a smart contract.
Here, we treat the distributed blockchain as an infrastructure
layer for existing off-chain workflow engines. We use the
blockchain only for storing and sharing the state of work and
achieving consensus on that state. To our knowledge, there has
been no such implementation using BFT-based or any other
ordering mechanism.

Ordering service, block service, and the workflow engine
are the three main components in our system architecture. In
contrast to proof-of-work based blockchains, our architecture
requires no mining service, no transaction service to manage
pending transactions, and no virtual machine to execute or
validate smart contract operations.

Ordering Service: The ordering service uses the BFT-
SMART library [19]. It consists of a client and a server. The
client receives requests from clients and submits them to the
ordering layer. Once ordered, the ordering layer submits the
requests in consensus sequence to the server. The ordering
layer maintains a fully connected network between all ordering
nodes. Messages on this network are encrypted and signed
using pre-distributed public/private keys.

Block Service: The block service stores the blockchain,
can exchange blocks with other nodes, and verifies the in-
tegrity of the blockchain. The block service uses a peer-to-peer
network for block exchange with new and recovering nodes.
This network is distinct from the ordering layer network and is
not fully connected, but is encrypted and authenticated using
the same public/private keys. Verification of the blockchain
proceeds backwards from the block with the latest hash and
any missing blocks are requested from other peers and verified
prior to adding them to the local blockchain.

Workflow Engine: The workflow engine maintains in-
formation about work items, workflow instances (cases), and
workflow specifications. Together, this information forms the
”state of work” or ”workflow state”. We call any operation
that changes the workflow state a ”workflow operation”. The



workflow engine interacts with services that provide resource
management and worklists for user tasks, and with external
services for service tasks.

The ordering service uses the term ”request” to denote
the objects it is ordering, the block services uses the term
”transaction” to denote the objects it stores in blocks, and
the workflow engine uses the term ”workflow operation” to
denote the objects that change the workflow state. In our
architecture, these terms denote the same object: A workflow
operation is ordered as a request, stored as a transaction
on the blockchain, and executed by the workflow engine.
We define workflow operations using lifecycle models for
workflow specifications at runtime, workflow cases, and work
items. Any transition in such a lifecycle model, such as the
creation of a new specification or the completion of a work
item, is a workflow operation. The XES standard [22] defines
a work item lifecycle, as does the YAWL system [1].

In principle, a system architecture can encompass different
numbers of ordering services, block services, and workflow
engines, distributed in different combinations on different
network nodes. However, as the absence of trust among partic-
ipating actors is a key motivation for the use of blockchains,
we assume that every process participant requires and provides
its own workflow engine, block service, and ordering service.
We call this combination of workflow engine, block service,
and ordering service a ”node” in our architecture.

This assumption significantly simplifies the architecture and
implementation. Most importantly, new blocks can be created
and stored locally on each node from ordered requests. In
proof-of-work blockchains, new blocks are created by a single
node, the successful mining node, and then distributed to other
nodes. A more efficient alternative that is possible in our
architecture is for every ordering service server to create new
blocks from ordered requests and pass the new blocks directly
to the local block service for inclusion in the blockchain. As
the order of requests is identical for all nodes, the created
blocks will be identical. This removes the need for block
distribution, avoiding latencies and differences in block order.

In proof-of-work blockchains, blocks contain multiple trans-
actions and mining nodes maintain a pool of pending transac-
tion. The number of transactions in a block is a trade-off be-
tween desired transaction throughput, available hashing power,
desired block creation rate, available network bandwidth, and
tolerance for latency. In contrast, in BFT-based systems, there
is no expensive mining. Hence, there is no reason to delay
block creation and for blocks to contain multiple transactions:
The blockchain becomes a chain of transactions. Chaining of
blocks using hashes is still required to ensure integrity of block
content and allow validation from the latest consensus block
hash backwards.

V. ADAPTING YAWL

The YAWL (”Yet Another Workflow Language”) WfMS [1]
is an open source workflow system for the YAWL language.
The YAWL language is based on workflow nets, with sig-
nificant extensions, and was designed to allow specification

of workflow patterns [23]. The main components of the
YAWL system are the workflow engine, the resource service,
and the workflow specification editor (modeling component).
The YAWL engine maintains workflow specifications, case
information and work item information. The resource service
maintains the organizational model, work item allocations and
provides worklist management. It also provides the graphical
user interfaces for user tasks. The engine and resource service
are implemented as web applications for a Java application
server (typically Apache Tomcat). They communicate via a
number of Java servlet APIs. Communication is done with
XML documents; persistence is managed through a Hibernate
layer in a relational database (typically PostgreSQL).

YAWL separates resource management of work items from
the work item lifecycle that is relevant to the case progress.
For example, after the workflow engine creates (enables) a
work item, the resource service manages the work item in
the worklists of the resources it has been offered or allocated
to. Offering, allocation, de-allocation, re-offering, etc. is not
relevant to the workflow engine and consequently the engine
is not involved or notified. Hence, we do not consider these
operations as workflow operations. When a resource starts
work on a work item, the resource service notifies the engine
of this operation (”check-out”), as this operation is relevant to
the case progression, e.g. for a deferred choice pattern, because
it fires the associated workflow net transition. Hence, we
consider this a workflow operation. Any subsequent resource
changes such as delegation or re-assignment are managed
internally by the resource service without involvement of the
engine. These operations are not workflow operations. Only
when the work item is completed, is the engine notified
(”check-in”). This is another workflow operation.

Our adaptation of YAWL is guided by these principles:

1) Every organization collaborating in the inter-
organizational workflow provides its own block
service, ordering service, YAWL workflow engine and
associated YAWL services. Together, these form a
”node” (cf. Sec IV).

2) Each task in a workflow specification is assigned to a
single node.

3) Organizational resources and their unique identifiers are
local to each node.

4) Resource management of work items is performed lo-
cally for each organization/node and is only locally
relevant. This reflects the strict separation between
workflow-relevant work item changes and the resource-
relevant work item changes in YAWL.

Because resource management is local to each node, the
resource service requires no adaptations. The following sub-
sections focus on the adaptations to YAWL workflow engine.

A. Workflow Specifications

The only adaptation required for workflow specifications is
the addition of a node identifier for each task. We use the BFT-
SMART node identifier for this purpose, which is a simple



Engine

D
B

Hibernate

Engine Gateway

Web Application Servlet API

Resource Service

Fig. 1. YAWL architecture (as-is)

integer value that is mapped to IP addresses through the BFT-
SMART configuration. We updated the XML schema and the
schema processors, and extended the YAWL editor to allow
designers to specify this property for each atomic task.

B. Engine Adaptations

The YAWL workflow engine is a singleton Java class
(YEngine). Outside services do not interact with the engine
directly but through an encapsulating singleton class called the
engine gateway (YEngineGateway). This in turn is accessed
from a number of HTTP servlets that expose various interfaces
of the engine. Interface A is an administrative interface to
manage external services and their authentication mechanisms.
Interface B is the main interface for workflow aspects, such
as launching and cancelling cases, starting and completing
work items, etc. Interface E provides information for logging
purposes. Interface X allows exception handlers to interact
with the engine. Figure 1 shows this architecture where all
four interfaces are jointly represented by the ”Web Application
Servlet API”. The workflow engine announces changes to the
workflow state, such as new work items or work items skipped
or cancelled due to expired timers, to registered external
services through outgoing HTTP requests.

To adapt the YAWL engine to a blockchain infrastructure,
we intercept inbound calls to the engine gateway to order
them, distribute them to all nodes, and include them in the
blockchain. They are then passed back to the engine gateway
and the workflow engine for execution. We use the BFT-
SMART library for ordering. We essentially split the engine
gateway into a client-side and a server-side part and sandwich
the ordering and block services in between. Our adapted
architecture is shown in Fig. 2. Also shown in the figure are
the steps to process a workflow request, detailed below.

Calls to the engine gateway can be categorized on two di-
mensions. First, some calls are read-only, while others change
the state of the engine. Second, some calls are local to each

TABLE I
INTERCEPTED AND ORDERED WRITE/UPDATE WORKFLOW OPERATIONS

Workflow Specifications
loadSpecification
unloadSpecification
Workflow Cases
launchCase
cancelCase
Work Items
suspendWorkItem
unsuspendWorkItem
rollbackWorkItem
completeWorkItem
startWorkItem
skipWorkItem
createNewInstance
restartWorkItem
cancelWorkItem
rejectAnnouncedEnabledTask

TABLE II
INTERCEPTED AND ORDERED READ WORKFLOW OPERATIONS

Workflow Specifications
getProcessDefinition
getSpecificationDataSchema
getStartingDataSnapshot
getSpecificationList
getSpecificationData
getLatestSpecVersion
Workflow Cases
getCasesForSpecification
getSpecificationIDForCase
getSpecificationForCase
getAllRunningCases
getCaseState
getCaseData
getCaseInstanceSummary
exportCaseState
exportAllCaseStates
Work Items
getAvailableWorkItemIDs
getWorkItem
describeAllWorkItems
getWorkItemsWithIdentifier
getWorkItemsForService
getTaskInformation
checkEligibilityToAddInstance
getChildrenOfWorkItem
getWorkItemOptions
getMITaskAttributes
getResourcingSpecs
getWorkItemInstanceSummary
getParameterInstanceSummary

engine (e.g. retrieve or register local services) while others are
globally relevant (e.g. retrieving case data or launching new
cases). Only the globally relevant ones need to be intercepted;
the local ones are passed on directly to the local engine.

While the majority of workflow operations that need order-
ing and must be captured on the blockchains are concerned
with the work item lifecycle, some apply to workflow speci-
fications and cases. Table I provides a list of the intercepted
write/update workflow engine calls. Table II shows a list of
the intercepted read workflow engine calls.



Engine

D
BHibernate

Engine Gateway

Web Application Servlet API

Resource Service

Ordering Service Client

Ordering Service Server

Engine Gateway

Web Application Servlet API

Resource Service

Ordering Service Client

Ordering Service Server

Total Ordering Layer (BFT-SMART)

Block Service

2

1

3

4

5

6 7

8

9

10

11

12

4
9

Engine Gateway

Engine

D
B Hibernate

2a

5a 8a

Engine Gateway

Block Service

5

67

8

5a8a

Fig. 2. YAWL on blockchain architecture and workflow event processing

Write Requests: We intercept the globally relevant write
or update calls for ordering, distribution, and inclusion in the
blockchain. They are submitted as requests to the ordering
service client, ordered, and handled by each ordering service
server. The ordering service server creates new blocks for
the block services, which in turn provides transactions in
new blocks to the engine gateway for execution by the
workflow engine. Any result from the workflow engine is
returned by each ordering service server, in addition to the
latest block hash, to the ordering layer. The ordering layer
returns the consensus result to the ordering service client or
signals request failure when no consensus is achieved.The path
of write/update workflow engine calls that require ordering
through the various components is as follows:

1) Call received as HTTP POST method by servlet, sub-
mitted to engine gateway

2) Engine gateway identifies call that requires ordering,
submits call as request to ordering service client

3) Ordering service client submits request to ordering layer
4) Ordering layer passes ordering requests to all ordering

service servers
5) Every ordering service server passes request to local

block service for inclusion as a transaction in blockchain
6) Every block service passes the new transaction to local

engine for processing, using original engine API
7) Engine returns result to blockservice
8) Block service returns engine result with latest block hash

to ordering service server
9) Each ordering service server returns local result to

ordering layer
10) Ordering layer returns consensus result to ordering ser-

vice client or indicates lack of consensus.
11) Ordering service client returns result to engine gateway
12) Engine gateway returns result to HTTP servlet to be

returned as HTTP response

The intercepted write requests in Tab. I carry all relevant
information, e.g. work item data, case data, etc. so that
this information is stored on the blockchain and included in
the hashes that ensure the integrity of this information and
consensus on this information.

Read Requests: There are three options for handling
inbound read requests for globally relevant data. Read requests
do not need to be recorded on the blockchain. The first option
is to submit a read request straight to the local workflow
engine, bypassing the ordering layer (arrow ’2a’ in Fig. 2).
This is the fastest option but assumes a non-faulty local node.
The second option is to submit a read request to the ordering
layer as an unordered request, but for which a consensus result
must be provided from all ordering service servers. The third
option is to submit a read request for ordering through the
ordering service and obtaining the consensus result. The third
option has the additional benefit of preventing inconsistent
reads. Consider a situation where a read request is submitted
to the ordering layer after a write request, but executed prior
to the write request. From the perspective of the requestor, the
result would be inconsistent. This inconsistency is avoided by
the third option. However, this option is also the slowest. The
second and third options provide the consensus workflow state
to the caller even if the local node is faulty. They are depicted
by arrows ’5a’ and ’8a’ in Fig. 2. For these options, the path
of read requests is the same as for write requests, except that
they bypass the block service as no new block is created. As
each option has advantages and disadvantages our system can
be configured to provide any of them.

C. Fault Detection and Recovery

When both write requests and read requests are intercepted
and ordered for consensus, the external services that access
a node receive consensus information even if the local block
service or workflow engine are faulty or unresponsive. This is,
after all, the goal of byzantine fault tolerance. In effect, these
services access a redundant, distributed, fault-tolerant WFMS
through the ordering service client.

Because the client-side engine gateway has direct access to
the local workflow server (arrow ’2a’ in Fig. 2), it is possible
for a node to identify when its local result for a read request
differs from the consensus result. For this, our system submits
the same read request directly to the local engine (arrow ’2a’
in Fig. 2) as well as through the ordering service (arrow ’2’
in Fig. 2) and compares the results. This cannot be done for
write requests so as not to doubly execute them. However,
many write operations in YAWL return the description of the
changed entity, such as the work item or the case identifier.
Our system can retrieve the local copy of the entity (arrow ’2a’
in Fig. 2) and compare that against the result of the consensus
write operation (arrow ’2a’ in Fig. 2).



Differences between local and consensus state may indicate
a faulty local block service or workflow engine. However,
in fast-moving processes, differences might also arise due to
timing. Because the consensus mechanism introduces a delay
(even though it is very brief, on the order of milliseconds),
the local state is read at a different time than the state for
the consensus finding (arrows ’2a’ and ’5a’ in Fig. 2). In that
case, differences do not indicate a local fault. Because of this
ambiguity, our system can be configured not to perform local
to consensus comparisons.

While external services accessing a node can continue to
function because they receive consensus information, differ-
ences between local and consensus information can indicate
when to reset and recover a node. Whether and when nodes
should be recovered depends the desired fault tolerance, to
what extent the local node owner is willing to accept faulty
information in the local blockchain or workflow engine, and
on whether the differences are due to real workflow evolution
in fast-moving processes. Our system can be configured to
fail early. When differences between local and consensus
information are detected, the node is reset and recovered. Our
system can also be configured to keep operating; in this case
there is no comparison between local and consensus state but
the node operator can manually issue a command to reset and
recover. Node recovery deletes the local blockchain replica,
the local ordering service server state, all information in the
local workflow engine database, and then re-initializing the
node as if it was a new node entering the system (Sec. V-G).

D. Time

Because nodes do not generally have synchronized clocks,
time-dependent requests may be problematic. Even synchro-
nized clocks do not guarantee that requests are executed by
the workflow engines on different nodes at precisely the same
time. Due to network latencies, computational load and other
factors, requests reach the different nodes’ workflow engines
at slightly different times and are executed at different times.

In YAWL, time-dependency arises in three contexts. First,
work items contain enablement, firing , and start times set
by the local server on enablement, firing and start. Second,
YAWL provides timer tasks. Third, YAWL provides the option
of delayed (scheduled) case launches, where users specify a
point in time for the case launch or a duration for the delay.

As noted above, many workflow operations, such as start-
ing, skipping, cancelling or describing (retrieving) a work
item, return the work item serialized as XML. The timing
information in this serialization is necessarily local to each
workflow engine. Hence, when such requests are run through
the ordering service, no consensus can be established. Our
system addresses this issue by omitting time information from
the XML serialization for ordering consensus (arrows ’3’ to
’10’ in Fig. 2). After the ordering service returns a consensus
result, the local node compare its local work item information
(arrow ’2a’ in Fig. 2) with the consensus result, and, if they
match, substitutes the complete information from the local
engine. This prevents loss of any information that may be

TABLE III
ANNOUNCED EVENTS (LOCAL EVENTS ARE ANNOUNCED ONLY IF THEY

CONCERN THE LOCAL NODE)

Global
Case start
Case completion
Case cancellation
Case deadlock
Case suspension
Case resumption
Local
Work item firing
Work item status change
Work item cancellation
Timer expiry

required by external services, such as the resource service. If
the local and consensus information do not match, depending
on system configuration, an error is signaled to trigger node
recovery or the consensus information is returned without the
timing information (cf. Sec. V-C).

Timer tasks in YAWL are managed through timers in
the workflow engine. When a work item timer expires, the
controlling YWorkItemTimer object skips the work item if it
has been started but not yet completed (timer begins at work
item start), or cancels the work item, if it has not been started
yet (timer begins at work item enablement). When a work
item is completed normally prior to timer expiry, the timer
is simply cancelled by the workflow engine. To allow this
mechanism to function, and the skipping or cancellation be
captured by the ordering service and blockchain, we changed
the YWorkItemTimer object to call the engine gateway, instead
of the engine, even though it is controlled by the engine.

YAWL manages delayed (scheduled) case launches simi-
larly to timer tasks. A YLaunchDelayer object is created that
calls the engine to launch the new case upon expiry. Similar
to the work item timer, we adapted the YLaunchDelayer to
call the engine gateway, instead of the engine.

E. Work Item Visibility

Enabled work items are announced to external services by
the engine through an announcer object, to which external
services register themselves as observers. To limit work item
visibility to the node they are associated with, we modified the
announcer to check each announcement whether it is relevant
to the local node: Announcements referring to cases are rele-
vant to all nodes and are always announced; announcements
referring to work items are relevant to specific nodes only and
are announced only if they refer to the local node. Table III
shows a list of announcements, categorized by whether they
are locally or globally relevant.

Additionally, write requests relevant to work items (Table I)
are only accepted if they refer to a work item that is assigned to
the local node. This ensures only the local services can act on
local work items and is necessary as a node’s external service
may have information also about non-local work items through
the read requests in Table II. This is checked by the engine
gateway before requests are submitted to the ordering service



(arrow ’2’ in Fig. 2). This is also checked before workflow
operations received from the block service are passed on to
the engine for execution (arrow ’6’ in Fig. 2). The latter check
uses the originating node identifier in every transaction and
is necessary because faulty or malicious nodes may submit a
workflow operation that is not assigned to their node. Correctly
operating nodes must identify and reject such an operation.

F. Blockchain Monitor Service

To allow for monitoring the ordering and block services, we
implemented an additional web service. Through this service,
it is possible to examine the blockchain with its blocks and
transactions, to see the current state of the ordering service, i.e.
the level of fault tolerance and the set of nodes that participate
in the current ordering view, and it is possible to manually
trigger reset and recovery of the node.

G. Node Startup

The YAWL workflow engine database has been extended to
store the hash of the last block that has been passed to it from
the block service after executing each workflow operation. The
last block hash is required during node startup, which proceeds
as follows. The servlet container starts the interface B servlet,
which in turn creates the singleton instance of the engine
gateway. The engine gateway creates the singleton instance
of the engine. During initialization, the engine reads the latest
block hash from its database. Next, the ordering service server
is started. The peer-to-peer network for block exchange is
then started and contacts other peers. The first contacted peer
initiates an ordering service view change to join the new node
into the BFT-SMART ordering view. As part of the BFT-
SMART state exchange protocol, the new node receives the
consensus last block hash. Then, the local ordering service
client is started. The block service starts and, through the
ordering service client, requests the latest block hash from the
ordering service server. Comparing the local blockchain, the
last block hash of the engine and the consensus block hash, it
identifies and requests any missing blocks. Once all requested
blocks are received, the block service validates the blockchain.
The engine gateway then requests blocks from the engine’s
last block hash from the block service and replays these on
the engine until the engine is caught up with the consensus
blockchain.

VI. DISCUSSION

From the user’s perspective, the set of nodes that form the
distributed, fault-tolerant workflow system, look little different
from a singular YAWL system. In proof-of-work systems,
users and workflow engines must be aware of and react to
possible transaction invalidation, blockchain reorganization,
eventual/delayed consensus and transactions pending their
required ”assumed safe” mining depth [24], [25]. In contrast,
because of immediate and final consensus in the BFT proto-
cols, our system behaves similar to non-blockchain systems,
with no pending transactions or latency for block mining. The
status of workflow operations cannot change and need not be

monitored or reported to the user. Response times to the user
are not noticeably longer than for a traditional YAWL system.

Our proposed architecture can be viewed from one per-
spective as a fault-tolerant distributed workflow system. This
perspective aligns closely with that of the distributed state-
machine in the BFT SMART library. A single client can
access multiple, distributed and redundant copies of a work-
flow engine. The blockchain infrastructure ensures informa-
tion integrity against faults. A second perspective is that of
independent collaborative workflow engines joined together
through the blockchain infrastructure. Here, multiple clients
interact with their local workflow engines and the blockchain
ensures information integrity against malicious actors. Both
are equally valid perspectives on our system.

A. Correctness

Systems that deploy the workflow engine on the blockchain
as a smart contract enforce workflow consensus for every node
as the workflow state is represented by the smart contract
state. Submitting an illegal workflow operation, e.g. starting
an already checked-out work item, by a faulty or malicious
workflow engine will cause the smart contract to retain the
legal state and dismiss the submitted workflow operation. If
instead the faulty or malicious node attempts to submit a
transaction with an invalid smart contract state, the miners
will independently detect this during validation and ignore the
transaction. Invalid transactions will also be detected by each
node when blocks are received and validated.

In contrast, our approach guarantees that the majority of
nodes will arrive at a consensus about the current workflow
state (BFT approaches can tolerate up to 1/3 malicious
nodes). When a workflow engine submits an illegal workflow
operation, e.g. to start an already checked out work item, the
workflow engines of the non-faulty majority nodes will each,
individually and separately, reject this operation and return a
suitable error response. Hence, the consensus response signals
that the work item state has not changed. This indicates to the
requester that it is faulty. The requester can then be reset and
recovered. Note that illegal requests are still ordered and are
also stored in the blockchain. A limitation of our approach is
that faulty nodes can only detect their own failure once they
submit a transaction or request workflow information and the
consensus result differs from their local result. They cannot
detect their own faults while only receiving transactions in
new blocks because the ordering service servers do not receive
consensus results.

When a node needs to catch up with the blockchain, the
BFT-SMART state replication ensures that it receives the con-
sensus last hash as new state from the set of running ordering
nodes. With this, it is able to detect and reject incoming bad
blocks as they are transferred. In general, assuming that there
is a valid consensus on the ordering state (i.e. the last block
hash), a node can always verify its blockchain and, if required,
rebuild it by requesting blocks from other nodes.

They key difference between proof-of-work approaches and
ours is that blocks are not created on a single node, but on



every node separately and concurrently. That is, the challenge
is not to identify and reject bad (malicious) blocks as they
are transferred, but only to ensure consensus ordering. The
assumption of a majority of non-faulty nodes then ensures a
majority of nodes with the correct workflow state.

B. Limitations

Workflow Engine Recovery: Because the YAWL work-
flow engine was not designed for use on blockchain infrastruc-
ture, or any other kind of distributed infrastructure, it lacks a
number of useful features. It does not have a checkpointing
feature that would allow the engine to revert to a particular
state, e.g. states designated by particular block hashes. It also
lacks a rollback feature for workflow operations. Together
this means that, when a node encounters an illegal, or non-
consensus, state after submitting a workflow transaction, it
can neither undo transactions nor can it revert to a named
checkpoint state. Instead, it must rebuild the workflow engine
state by re-playing all transactions in the blockchain, which
can be a very expensive operation.

Resource Assignments: There may be situations where
it is desirable to specify that a work item may be performed
by some resource role irrespective of the participating orga-
nization. However, as work items are assigned to a single
node in our system, it is not possible to offer work items for
execution to a set of resources across a set of collaborating
organizations. This limits the extent of collaboration in the
workflow. Similarly, delegation or re-assignment of work items
are also not possible across organizational boundaries. At the
organizational level, this limitation can only be overcome by
a global organizational model, which requires participating
organizations to agree on role or skill definitions that are rel-
evant to resource management. This is a non-trivial challenge
especially in the absence of trust. At the technical level, this
requires moving not only the workflow engine but also the
resource service to a distributed model using the blockchain.
This too is a non-trivial challenge.

Resource Specifications: A YAWL workflow specifica-
tion contains resource identifiers for assigning each task’s
resourcing. One of the limitations of the YAWL specification
editor is that it connects to a single YAWL resource service
to access organizational data for use in workflow specifica-
tions. Because nodes maintain their own resource information,
constructing a global workflow specification must be done by
manually adding the necessary local resource identifiers to the
workflow specification.

Throughput and Scalability: While our approach has
lower latency and higher throughput than proof-of-work block-
chains, it does not scale to a very large number of nodes.
Given these characteristics, our architecture is suitable for
permissioned blockchain applications using a small group of
participants (on the order of a few tens). The low latency
and high throughput also make it suitable for fast-moving
processes, where activities are of short duration or must follow
each other quickly. For example, our transaction throughput

time is well below one second, whereas many proof-of-work
blockchains operate at latencies on the order of minutes.

Resilience: An often discussed attack on proof-of-work
based blockchains requires a malicious actor to control the
majority (> 50%) of the total hashing power of all nodes.
In contrast, attacking a BFT-based system requires control of
more than 1/3 of all nodes. Assuming equal hashing power for
all nodes, the proof-of-work based blockchain appears more
resilient to attacks. However, in many use cases, this assump-
tion is unlikely to hold. Small networks and networks where a
few actors control significant resources are particularly prone
to an imbalance in hashing power. In contrast, attacking a BFT-
based system cannot be done by concentrating computational
power but requires control of more than 1/3 of all nodes,
which is difficult to achieve in the absence of trust among
actors. As a result, resilience to attacks and faults cannot
be easily compared between proof-of-work and BFT-based
blockchains; it is context and application dependent.

Workflow, Trust, and Fault Tolerance Requirements: In
our approach, the number of nodes must strike a balance
between the requirements of the workflow, the level of fault
tolerance, and the performance of the system. The number of
ordering nodes is determined by the desired level of fault tol-
erance, whereas the number of workflow nodes is determined
based on the use case and the number of participating actors.
A use case requiring more ordering than workflow nodes (e.g.
because some actors share a workflow engine but do not wish
to relinquish control over the blockchain infrastructure) can be
accommodated by nodes that are not assigned any workflow
activities. On the other hand, when a use case requires more
workflow nodes than ordering nodes (e.g. because groups of
actors trust each other), the excess ordering nodes decrease
performance due to the BFT protocol communication over-
head. This drawback can only be addressed by relaxing the
trust requirements, i.e. groups of actors must partially trust
each other, so that the 1 : 1 correspondence between ordering
service, block service, and workflow engine can be relaxed.

C. Future Extensions
As our system works at the level of work items and their

lifecycle transitions, rather than the semantics of a workflow
specification language such as BPMN, an extension to hetero-
geneous workflow engines is readily possible. This requires a
mapping of work item lifecycles of the different workflow en-
gines, possibly with a canonical intermediate lifecycle model
to be used on the ordering service layers. When workflow
requests are intercepted, they are translated to the canonical
lifecycle interchange model, ordered, and back-translated to
particular engine lifecycle models and workflow operations
by each ordering service server prior to execution by the local
workflow engine. For our own future work, we are particularly
interested in other open-source workflow systems, such as the
Bonita system, due to their easy adaptability.

D. Summary
Previous work on blockchain-based WfMS has focused on

smart contracts and proof-of-work based blockchains. How-



ever, proof-of-work-based systems have significant drawbacks
in terms of processing power requirements, latency, and the
lack of final consensus. In this work, we have shown that
a BFT-derived ordering and consensus method is a suitable
WfMS infrastructure. Even without the use of smart contracts,
the use of a blockchain remains essential, as it provides
independent validation of workflow actions, distribution, repli-
cation, and tamper-proofing to WfMS.

While there are limitations to the BFT-based approach (cf.
Sec. VI-B), our approach also has significant advantages over
proof-of-work based approaches:

• Our system is cheaper to operate than public proof-of-
work blockchains that incentivize block mining through
cryptocurrencies. While proof-of-work based blockchains
may be deployed privately, they are then open to in-
creased risk of attack (cf. Sec. VI-B).

• Our system provides immediate and final consensus. This
means that from both the workflow modeler’s perspective
and the user’s perspective, the system looks and behaves
like a traditional workflow engine. Neither the workflow
designer nor the user need to deal with issues of trans-
action status or eventual transaction invalidation.

• Our system provides a greater throughput than proof-of-
work based approaches.

• Not relying on smart contracts enables porting of ex-
isting feature-complete workflow engines to blockchain
infrastructure. This allows rich workflow languages and
leverages existing implementations.

To conclude, this paper has presented a prototype im-
plementation for an architecture that has not yet seen any
attention in the blockchain-based workflow literature. We have
implemented a BFT-based system as recommended by [20]
and shown that this infrastructure is suitable as the infrastruc-
ture foundation for adapting existing WfMS to support inter-
organizational workflows.

REFERENCES

[1] A. H. M. ter Hofstede, W. M. P. van der Aalst, M. Adams, and
N. Russell, Eds., Modern Business Process Automation - YAWL
and its Support Environment. Springer, 2010. [Online]. Available:
http://www.yawlbook.com/home/

[2] C. Di Ciccio, G. Meroni, and P. Plebani, “Business process monitoring
on blockchains: Potentials and challenges,” in Enterprise, Business-
Process and Information Systems Modeling. Springer, 2020, pp. 36–51.

[3] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber, “Runtime verifi-
cation for business processes utilizing the bitcoin blockchain,” Future
Generation Computer Systems, vol. 107, pp. 816–831, 2020.

[4] J. A. Garcia-Garcia, N. Sánchez-Gómez, D. Lizcano, M. Escalona,
and T. Wojdyński, “Using blockchain to improve collaborative business
process management: Systematic literature review,” IEEE Access, vol. 8,
pp. 142 312–142 336, 2020.

[5] G. Fridgen, B. Sablowsky, and N. Urbach, “Imple-
mentation of a blockchain workflow management pro-
totype,” ERCIM News, vol. 2017, no. 110, 2017.
[Online]. Available: https://ercim-news.ercim.eu/en110/special/
implementation-of-a-blockchain-workflow-management-prototype

[6] G. Fridgen, S. Radszuwill, N. Urbach, and L. Utz, “Cross-organizational
workflow management using blockchain technology - towards appli-
cability, auditability, and automation,” in 51st Hawaii International
Conference on System Sciences HICSS, 2018.

[7] T. Hukkinen, J. Mattila, T. Seppälä et al., “Distributed workflow man-
agement with smart contracts,” The Research Institute of the Finnish
Economy, Tech. Rep., 2017.

[8] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling, “Using blockchain to enable untrusted business process
monitoring and execution,” Technical Report UNSW-CSE-TR-201609,
University of New South Wales, Tech. Rep., 2016.

[9] ——, “Untrusted business process monitoring and execution using
blockchain,” in Business Process Management - 14th International
Conference, BPM, Proceedings, M. L. Rosa, P. Loos, and O. Pastor,
Eds., 2016, pp. 329–347.

[10] P. Rimba, A. B. Tran, I. Weber, M. Staples, A. Ponomarev, and X. Xu,
“Comparing blockchain and cloud services for business process execu-
tion,” in 2017 IEEE International Conference on Software Architecture,
ICSA. IEEE Computer Society, 2017, pp. 257–260.

[11] ——, “Quantifying the cost of distrust: Comparing blockchain and cloud
services for business process execution,” Information Systems Frontiers,
pp. 1–19, 2018.

[12] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Opti-
mized execution of business processes on blockchain,” in Business Pro-
cess Management - 15th International Conference, BPM, Proceedings,
J. Carmona, G. Engels, and A. Kumar, Eds., 2017, pp. 130–146.

[13] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in BPMN,” Information & Software Technology,
vol. 50, no. 12, pp. 1281–1294, 2008.

[14] O. López-Pintado, L. Garcı́a-Bañuelos, M. Dumas, and I. Weber, “Cater-
pillar: A blockchain-based business process management system,” in
Proceedings of the BPM Demo Track co-located with 15th International
Conference on Business Process Modeling, ser. CEUR Workshop Pro-
ceedings, R. Clarisó, H. Leopold, J. Mendling, W. M. P. van der Aalst,
A. Kumar, B. T. Pentland, and M. Weske, Eds., vol. 1920, 2017.

[15] C. D. Ciccio, A. Cecconi, M. Dumas, L. Garcia-Banuelos, O. Lopez-
Pintado, Q. Lu, J. Mendling, A. Ponomarev, A. B. Tran, and I. Weber,
“Blockchain support for collaborative business processes,” Informatik
Spektrum, vol. 42, no. 3, pp. 182–190, 2019.

[16] J. Ladleif, C. Friedow, and M. Weske, “An architecture for multi-
chain business process choreographies,” in International Conference on
Business Information Systems. Springer, 2020, pp. 184–196.

[17] M. F. Madsen, M. Gaub, T. Høgnason, M. E. Kirkbro, T. Slaats,
and S. Debois, “Collaboration among adversaries: distributed workflow
execution on a blockchain,” in 2018 Symposium on Foundations and
Applications of Blockchain, 2018.

[18] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[19] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State machine repli-
cation for the masses with BFT-SMART,” in 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2014, Atlanta, GA, USA, June 23-26, 2014. IEEE Computer Society,
2014, pp. 355–362.

[20] W. Viriyasitavat and D. Hoonsopon, “Blockchain characteristics and
consensus in modern business processes,” Journal of Industrial Infor-
mation Integration, 2018, preprint.

[21] D. Hollingsworth, “The workflow reference model,” Workflow Manage-
ment Coalition, Tech. Rep., 1995.

[22] G. Acampora, A. Vitiello, B. Di Stefano, W. Van Der Aalst, C. Günther,
and E. Verbeek, “Ieee 1849tm: The xes standard,” IEEE Computational
Intelligence Magazine, 2017.

[23] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[24] G. Falazi, M. Hahn, U. Breitenbücher, and F. Leymann, “Modeling
and execution of blockchain-aware business processes,” SICS Software-
Intensive Cyber-Physical Systems, vol. 34, no. 2-3, pp. 105–116, 2019.

[25] G. Falazi, M. Hahn, U. Breitenbücher, F. Leymann, and V. Yussupov,
“Process-based composition of permissioned and permissionless block-
chain smart contracts,” in 2019 IEEE 23rd International Enterprise
Distributed Object Computing Conference (EDOC). IEEE, 2019, pp.
77–87.


