
Bitcoin & Co
Blockchain Technology from First Principles to Business

Applications, Governance and Unsolved Issues.

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Blockwoche Seminar HS Osnabrück May 2019

These slides are licensed under the creative commons
attribution, non-commercial use and no-derivative works

license (version 4). The complete text of the license can be
found at http://creativecommons.org.

http://creativecommons.org

What is a blockchain?
A system in which a record of transactions made in bitcoin or
another cryptocurrency are maintained across several computers
that are linked in a peer-to-peer network.

(Oxford English Dictionary)

Monday
Preliminaries

Technology
Cryptography

The Very Basics
Hashing
Digital Signatures

Tuesday
Blockchain

Blocks and Transactions
Bitcoin

Simple Overview
Bitcoin Details
Bitcoin Hands-On

Wednesday
Ethereum Basics

Principles
Ethereum Hands On
Ethereum Web3.js Console
Java Access Using Web3j

Ethereum Smart Contracts
Smart Contracts Introduction
My First Smart Contract

Thursday
Byzantine Fault Tolerance

Friday
Project Presentations

Preliminaries

I Introductions
I Schedule
I Expectations

I ”Pre-requisites”
I Technology setup

I Presentation Groups and Topics

Presentation Groups and Topics

I Groups of 4–5 students
I please make sure there’s an even mix

I Topics either technical or business/application oriented
I Final topics due on Tuesday morning
I Presentations on Thursday and Friday

Presentations

I About 60 to 75 minutes
I Slides welcome but not required
I No more than 25 words on a slide: Use pictures, videos,

diagrams, etc.
I You’re welcome to include a demo of something

practical/applied!
I Strong preference: Include discussion questions for the group!
I Use and cite appropriate sources (tiny font at slide bottom is ok)
I Include a list of approx. 5 resources for further reading
I Make it funny, make it lively, make it controversial, do something

”out of the box”
I Bonus points: Dance your blockchain!!

Topic Examples

I Scalability, especially of proof-of-work consensus
I Security (attack vectors, vulnerabilities, known attacks)
I Regulation (is it money? securities? ICOs), perhaps with

international perspective
I Inside a blockchain ”ecosystem”: Coin inflation, governance,

mining power, controversies, developments
I Different public chains and their consensus mechanisms
I Highly publicized blockchain projects and their status/outcome

(in particular industries/applications)
I . . .

Technology Setup

I Computers with software provided for remote access
I blockwoche1.evermann.ca
I blockwoche2.evermann.ca
I ...

I Private network
I Remote access using RDP

I Pre-installed on Windows
I Free on the Apple AppStore

I User name: ubuntu Password: password
I Only one concurrent login to each computer :-(

blockwoche1.evermann.ca
blockwoche2.evermann.ca

Windows 10

Set resolution to fit your screen and color to 16 bits

MacOS

Set resolution to fit your screen and color to 16 bits

Basics

Bits and Bytes

I Computers represent information in the binary system
(base 2)

I Each digit (”bit”) represents a power of 2
I From the right: 20 = 1,21 = 2,22 = 4,23 = 8,24 = 16, etc.
I Example: 001001102 = 3810

I Base 16 is popular too, called ”hexadecimal” or just ”hex”
I Uses digits 0− 9,A− E , each represents a power of 16

I From right: 160 = 1,161 = 16,162 = 256,163 = 4096, etc.
I Ex: 2B4E16 =0x2B4E= 1108610 = 00101011 010011102

I A byte is made of 8 bits
I Two hex digit represent a byte
I Use a calculator to convert!

Basics

Integer Division and Modulo Arithmetic

I div or /: Integer quotient
I 7 div 2 = 3

I mod or %: Integer modulus (remainder)
I 7 mod 2 = 1

Basics

Bit operations

I XOR: ”Either or” (but not both)
I 0 XOR 0 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 1 XOR 1 = 0

I �: ”left shift” is multiplying by powers of two
I 001001102 � 2 = 100110002 = 15210 = 410 × 3810

I �: ”right shift” is integer division by powers of two
I 001001102 � 2 = 000010012 = 910 = 3810 div 410

I ≪: ”left shift” with rotate
I ≫: ”right shift” with rotate

Hashing

Hash Function

I Maps arbitrary sized data onto a fixed size.
I Returns hash values, hash codes, digests
I Used in

I Information lookup (hash tables)
I Duplicate detection (dedup)
I Protecting data integrity

Very Simple Hash Function Example

Mapping Numbers to {”A”, ”B”}

1. Random(”A”, ”B”)
2. If (n < 1000)→ ”A” else ”B”

Mapping Numbers to Numbers

1. n→ n × 2

What is wrong with these hash functions?

Hash Function Properties

Good Hash Functions
I Deterministic

I Same input leads to same output
I Uniform output distribution
I Low probability of collisions

I Different input leads to different output
I Non-invertible

I Cannot (easily) get input from output (”one-way”)

Let’s Go Play

Exploring Hash Functions in Java

I Connect to your remote desktop
I Launch the Eclipse Java Integrated Development

Environment (IDE)
I Select the HashTest project and open the Hashtest.java file
I The ”F3” key leads you the definition of methods/functions
I The ”F11” key lets you run/debug the application
I Define breakpoints and step into Java functions (”F5”, ”F6”,

”F7” keys)

Questions

I What is the hash function for different objects in Java?
I What is the hash function for multiple objects?
I What properties does the hash function have (distribution,

collision, one-way)?
I Can you engineer a hash collision?

Cryptographic Hash Functions
Properties

I Map byte arrays to byte arrays
I Fixed output size
I Deterministic
I Quick to compute
I Small changes in input should lead to large changes in

output (Why is this important?)
I Very low collision probability

Applications

I File verification (for downloads, etc.)
I Password storage
I Unique data identifiers
I Blockchains

Pearson Hash

I Simple 8-bit hash function
I Not cryptographically secure
I Message M is an array of bytes b
I Table T is arbitrary

1 int h = 0;
for (byte b : M) {

3 h = T[h xor c];
}

5 return h;

Popular Hash Functions

I MD5 (1992, R. Rivest) (No longer secure)
I SHA-1 (1995, NSA) (No longer secure)
I SHA-256, SHA-384, SHA-512 (2002, NSA)
I SHA-3 (Keccak) (2008, Bertoni et al.)

MD5

I Break message into chunks of 512 bits, pad as required:
I Add a single 1-bit
I Add 0-bits until length is 64 bits less than multiple of 512
I Fill remaining 64 bits with message length mod 264

I Initialize MD5 state (A, B, C, D, each 32 bits)
I For each chunk

I Divide into 16 sets of 32 bits
I Run 64 MD5 operations (16 in each of 4 rounds) (next slide)

I Concatenate final A, B, C, D for MD5 hash

One MD5 operation. MD5 consists of 64 of these operations, grouped
in four rounds of 16 operations. F is a nonlinear function; a different

function is used in each round. Mi denotes a 32-bit block of the
message input, and Ki denotes a 32-bit constant, different for each
operation. ≪s denotes a left bit rotation by s places; s varies for

each operation. Addition denotes addition modulo 232.
(c) Surachit:MD5 algorithm / Wikimedia Commons / CC-BY-SA-3.0

MD5 Functions

F(B,C,D)

I (B ∧ C) ∨ (¬B ∧ D) (for rounds 0–15)
I (B ∧ D) ∨ (C ∧ ¬D) (for rounds 16–31)
I B ⊕ C ⊕ D (for rounds 32–47)
I C ⊕ (B ∨ ¬D) (for rounds 48–63)

One iteration within the SHA-1 compression function: A, B, C, D and
E are 32-bit words of the state; F is a nonlinear function that varies;

≪n denotes a left bit rotation by n places; n varies for each
operation; Wt is the expanded message word of round t; Kt is the
round constant of round t; Addition denotes addition modulo 232.

(c) H2g2bob:SHA-1 / Wikimedia Commons / CC-BY-SA-2.5

SHA-1 Functions

F(B,C,D)

I (B ∧ C) ∨ (¬B ∧ D) (for rounds 0–19)
I B ⊕ C ⊕ D (for rounds 20–39)
I (B ∧ C) ∨ (B ∧ ¬D) ∨ (C ∧ D) (for rounds 40–59)
I C ⊕ C ⊕ D (for rounds 60–79)

Kt
I 0x5A827999
I 0x6ED9EBA1
I 0x8F1BBCDC
I 0xCA62C1D6

Let’s Go Play

Explore Cryptographic Hashes (Message Digests) in Java

I Select the CryptoHashes project and open the
CryptoHashTest.java file

I The ”F3” key leads you the definition of methods/functions
I The ”F11” key lets you run/debug the application

Questions

I Debug-step through the ”computeMD5” method of the
MD5 class

I How long does it take to calculate an MD5 hash?
I Can you engineer a hash collision for MD5?

BONUS
I Extend the example to calculate the MD5 hash of a file.

Digital Signatures

Digital Signatures

Purpose

I Authentication
I Integrity
I Non-repudiation

Publick-Key Cryptography

I Private Key
I Public Key

Source: Wikipedia, Public Domain

(c): FlippyFlink:Private key signing / Wikimedia Commons / CC-BY-SA-4.0

Source: Wikipedia, Public Domain

Example: DSA

Parameters
I Hash function H (e.g. SHA-2)
I Key lengths L and N (e.g. 512 bits)
I Choose an N-bit prime q
I Choose an L-bit prime p such that p − 1 is a multiple of q
I Choose a g such that q is the smallest positive integer for

which gq = 1(mod p)

Exercise

Select DSA parameters for a key of length 7 (27 = 128)

Exercise – Example Parameters

q = 3→ p = 7,p = 13,p = 19, . . .
q = 5→ p = 11,p = 31,p = 61, . . .
q = 7→ p = 29,p = 43,p = 71, . . .

q = 11→ p = 23,p = 67,p = 89, . . .

For q=11, p=67 (N=4, L=7)

g = 9→ 911 = 31381059609 mod 67 = 1

Public and Private Keys

I Choose a secret private key x such that 0 < x < q
I Calculate the public key y = gx(mod p)

(this is hard to invert)

Exercise
I Choose a public and private key for q = 11,p = 67,g = 9

Exercise – Public and Private Key

I x = 7 (private)
I y = 97 mod 67 = 4782969 mod 67 = 40 (public)

Signing a Message

I Choose a random per-message value k such that
1 < k < q

I Calculate r = (gk mod p) mod q
I If r = 0, use a different k
I Calculate s = k−1 × (H(m) + x × r) mod q

I (”modular multiplicative inverse”)
I k−1 mod q = x → x × k = 1(modq)

I If s = 0, use a different k
I The signature is (r , s)

Exercise – Signing a Message

I For x = 7, sign the message m =”blockweek”
I Hash function: Pearson hashing

Exercise – Signed Message
I Choose k = 8

r = (98 mod 67) mod 11
= (43046721 mod 67) mod 11
= 25 mod 11 = 3

I H(”blockweek”)= 117
I 8−1 mod 11 = 7 → 7× 8 = 56 = 1(mod11)

s = 7× (117 + 7× 3) mod 11
= 7× 138 mod 11
= 966 mod 11 = 9

I Signature is (3,9)

Verify Signature

I w = s−1 mod q (”modular multiplicative inverse”)
I u1 = H(m)× w mod q
I u2 = r × w mod q
I v = (gu1yu2 mod p) mod q
I Signature is valid iff v = r

Exercise – Verify Signature

w = 9−1 mod 11 = 5 (5× 9 = 45 mod 11 = 1)
u1 = H(′′blockweek ′′)× 5 mod 11

= 117× 5 mod 11 = 585 mod 11 = 2
u2 = 3× 5 mod 11 = 4

v = (92404 mod 67) mod 11
= (207360000 mod 67) mod 13
= 25 mod 11 = 3

I Signature is valid!

Elliptic Curves

Elliptic Curve Cryptograph

Traditionally

I Multiply two big prime numbers
I Factorization to primes was hard
I New techniques make this easier
I Requires longer key lengths

Elliptic Curves

I Based on discrete logarithm
I Considered harder than prime factorization
I Shorter keys possible

Elliptic Curves

y2 = (x3 + ax + b)

Source: Wikipedia, Public Domain

Elliptic Curves on Finite (Prime) Fields

y2 = (x3 + ax + b) mod p where p is prime

y2 = (x3 + 13x + 7) mod23

Source: https://www.maximintegrated.com/en/app-notes/index.mvp/id/5767

https://www.maximintegrated.com/en/app-notes/index.mvp/id/5767

Intuition

I Each x value has 2 y values (because of the square, note
the symmetry)

I Because of the modp, y ∈ 0 . . . p − 1
I Few of the y (N) will be a squares of integers
I Since each x yields two points, there are N/2 possible x

values

Groups on Elliptic Curves

I A group G is a set for which a binary operation ”addition” is
defined

I Elements of G are the points on an elliptic curve
I Addition has the properties:

I Closure
I Associativity
I Identity element
I Inverse
I Commutativity

Addition on Elliptic Curves

Geometric Interpretation

If P and Q are points on the curve, then P + Q is defined in the
following way: Draw the line that intersects P and Q. This
intersects the curve at a third point R. Then −R = P + Q

(c) Emmanuel.boutet:ECClines / Wikimedia Commons / CC-BY-SA-3.0

Addition on Elliptic Curves

Algebraic Definition

R = P + Q =

(
px

py

)
+

(
qx

qy

)
=

(
rx

ry

)
rx = s2 − px − qx

ry = s(px − rx)− py

s =
py − qy

px − qx

I Works the same in prime fields, everything is just modp

Scalar Multiplication on Elliptic Curves

Scalar Multiplication

Q = n × P = P + P + · · ·+ P

Discrete Logrithm

n =
P
Q

Believed to be a Hard problem

Elliptic Curve Digital Signature Algorithm (ECDSA)

Choose a Curve (Parameters)

I a, b
I p (prime modulus)
I G ”generating point”, ”point of origin” (a point on the curve)
I n (prime order, number of points on curve)

Example curve (secp256k1) (used by bitcoin)

I a = 0, b = 7
I p= 0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f
I n= 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141
I gx = 0x79be667e f9dcbbac 55a06295 ce870b07 029bfcdb 2dce28d9

59f2815b 16f81798
I gy = 0x483ada77 26a3c465 5da4fbfc 0e1108a8 fd17b448 a6855419

9c47d08f fb10d4b8

ECDSA

Keys

I Choose an integer dA ∈ [1, n − 1] (private key)
I Calculate public key QA = dA ×G (this is hard to invert)

Signing (same as DSA)

I Choose a random per-message value k ∈ [1, n − 1]
I Calculate r = (gk mod p) mod q
I Calculate the curve point

(x1
y1

)
= k ×G (this is hard to invert)

I r = x1 mod n
I If r = 0, use a different k
I Calculate s = k−1(H(m) + r dA) mod n

(”modular multiplicative inverse”)
I If s = 0, use a different k
I The signature is (r , s)

ECDSA

Preliminaries
I Check that QA 6= O
I Check that QA is on the curve
I Check that n ×QA = O

Signature Verification

I w = s−1 mod n (”modular multiplicative inverse”)
I u1 = H(m)× w mod n
I u2 = r × w mod n
I Calculate X =

(x1
y1

)
= u1 ×G + u2 ×QA

I If X = O then signature is invalid
I IIf r = x1 mod n then signature is valid

Some Curves
I NIST (https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf)

I RFC4492 (https://tools.ietf.org/html/rfc4492)

I RFC7748 (https://tools.ietf.org/html/rfc7748)

I RFC8422 (https://tools.ietf.org/html/rfc8422)

I IANA (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml)

Recommendations
I When it says ”random”, really use random numbers
I Don’t use your own curves
I Don’t build your own implementations

Security Issues

I Standard curves defined by NIST may be ”backdoored”
I Discrete logarithm not proven hard, only believed to be
I Side-channel attacks

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc8422
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Let’s Go Play

Digital Signatures in Java

Explore Digital Signatures in Java

I Select the DigitalSignatures project and open the
DigitalSignaturesDemo.java file

Questions

I Debug-step through the ”ellipticCurveDemo” method and
”primeFactorizationDemo” methods

I Make sure you understand how the theory is implemented
I How long does it take to sign the first message?
I How long does it take to sign subsequent messages?
I How long does it take to verify the first signature?
I How long does it take to verify subsequent messages?

Blocks and Transactions

Block

A very simple blockchain

I A block is a set of transactions (messages)
I A transaction is arbitrary information
I Transactions contain the public key of their creator
I Transactions are digitally signed by their creator
I Each block contains a hash of its content
I Each block’s content includes the hash of the previous

block

Block1 hash
Prev block0 hash
Tx11, Tx12, Tx13, ...

Block0 hash
== null ==
Tx1, Tx2, Tx3, ...

Block2 hash
Prev block1 hash
Tx21, Tx22, Tx23, ...

Block3 hash
Prev block2 hash
Tx31, Tx32, Tx33, ...

Questions

I What must you do to verify the integrity of a block? Of the
entire blockchain?

I Why is the blockchain record considered ”immutable”?
I Under what conditions is the blockchain ”immutable”?
I What would you have to do to change Tx12?

Let’s Go Play

Basic Blockchain in Java

Exercise

Blocks and Transactions
I Create a new project
I Create a ”Transaction” class with methods to create, sign,

and verify a transaction
I Use an array of bytes (byte[]) as transaction data

I Create a ”Block” class with methods to create and verify a
block

I Creation uses a collection of transactions and the hash of
the previous block

Exercise – Tips

I Copy code from earlier projects for hashing and signatures
I Bookmark this URL:
https://docs.oracle.com/javase/10/docs/api/
index.html?overview-summary.html

I You can catch and quietly ignore exceptions, or just throw
them up the stack

I Use the following code to put things into an array of bytes
(for signing, hashing, etc.)

1 byte[] a = ...;
byte[] b = ...;

3
ByteArrayOutputStream stream = new ByteArrayOutputStream

();
5 stream.write(a);

stream.write(b);
7 return stream.toByteArray();

https://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.html
https://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.html

Exercise

Blockchain
I Create a ”Blockchain” class with methods to add a block

and verify the chain
I Tip: Use appropriate Java Collections classes (in the
java.util package)

I Implement a sensible toString() method for your
classes

I Use Hex.encodeHex() to convert byte arrays to readable
character Strings

I Implement a main() method to test your blockchain

Congratulations!
You’ve built your first blockchain!

Exercise

Test Cases
I What happens when you create and add the first block?
I What happens when you add a block and you’re missing

the predecessor?
I What happens when you add another block with the same

predecessor?

How should we handle this?

Block Forest

Block1 hash
Prev block1 hash
Tx11, Tx12, Tx13, ...

Block0 hash
== null ==
Tx1, Tx2, Tx3, ...

Block2 hash
Prev block1 hash
Tx21, Tx22, Tx23, ...

Block3 hash
Prev block1 hash
Tx31, Tx32, Tx33, ...

Block4 hash
Prev block3 hash
Tx41, Tx42, Tx43, ...

Block2b hash
Prev block1 hash
Tx21b, Tx22, Tx23b, ...

Block3b hash
Prev block2b hash
Tx31b, Tx32, Tx33b, ...

Block6 hash
Prev block5 hash
Tx61, Tx62, Tx63, ...

Block Forest

I One genesis block (i.e. a block without a previous hash)
I Multiple ”orphans”
I Side-branches
I One current main branch head

Distributed Blockchain

Context
I Peer-to-peer network
I Not necessarily fully connected
I Peers leave and join network at any time
I No reliable timestamps, no synchronized clocks
I Possible malicious actors

Consensus on ”Current State”
I Which transactions and blocks are valid? (”Validation”)
I Order of transactions and blocks? (”Ordering”)

Consensus in Distributed Blockchains

Main Assumptions

I Every peer validates and participates in ordering
I No privileged/trusted peers
I There must be an incentive to keep peers honest

I Bitcoin
I Eth

Common Consensus Methods
I Proof-of-work (Bitcoin, Ethereum)
I Proof-of-stake (”voting”)
I Byzantine fault tolerance (BFT) (Hyperledger Fabric)

Bitcoin

A Simplified Intro

Bitcoin

I The first widely-used blockchain
I A specialized blockchain (financial transactions)
I Described and first implemented by Satoshi Nakamoto (?)

I https://bitcoin.org/bitcoin.pdf

I Proof-of-work consensus
I Based on the cryptocurrency bitcoin

https://bitcoin.org/bitcoin.pdf

Bitcoin

Bitcoins
I Peers/accounts are identified by their public key

I Actually, a hash of their public key
I Peers can ”hold” a number of ”bitcoins” (1 ”bitcoin” =

100,000,000 ”satoshis”)
I Transactions transfer bitcoins from one peer/account to

another
I Bitcoins are generated by ”mining”

Transactions

I Transactions are identified by their hash
I Transactions have numbered inputs and numbered outputs
I Inputs reference outputs from an earlier transaction sent to

this account
I Outputs from transactions not already spent (”UTXO”) is

”bitcoin credit”
I You can only fully use up a UTXO but you can give yourself

”change”

Triple-Entry Bookkeeping (Transaction-To-Transaction Payments) As Used By Bitcoin

Transaction 0
(TX 0)

TX 1

TX 2

TX 3

TX 4

TX 5

TX 6

input0

output0

input0

40k

output1
input0

50k

output0 input0
30k

output0 input0
20k

output1

input0

20k

output0

20k Unspent TX
Output (UTXO)

output0

input0
10k

output0

input1
10k

output0

10k
UTXO

100,000
(100k)

satoshis

Source: https://www.bitcoin.org

Transactions

I Each output specified a recipient, identified by hash of
public key

I To spend a UTXO, sender must verify it controls the private
key to the recipient public key

I Sender includes public key
I To verify it hashes to the specified recipient key and allow

verification of signature
I Sender signs transaction (with private key)

I If the included public key verifies the signature,
I and it equals the recipient’s public key,
I then sender rightfully owns the UTXO

Spending A P2PKH Output

TX 1 Output

Bob's ComputerSignature Script

Signature Private Key

Full Public Key Full Public Key

Pubkey Script

Public Key HashPublic Key Hash

Source: httsp://www.bitcoin.org

Coinbase Transaction
I Special transaction with no inputs and one output
I Added by miner of a block as first transaction
I ”Creates” new bitcoins
I Also includes ”transaction fees”

I Difference between sum of outputs and sum of inputs
Date reached Block BTC/block BTC Added BTC Increase % of Limit
2009-01-03 0 50.00 2625000 ∞ 12.500%
2010-04-22 52500 50.00 2625000 100.00% 25.000%
2011-01-28 105000 50.00 2625000 50.00% 37.500%
2011-12-14 157500 50.00 2625000 33.33% 50.000%
2012-11-28 210000 25.00 1312500 12.50% 56.250%
2013-10-09 262500 25.00 1312500 11.11% 62.500%
2014-08-11 315000 25.00 1312500 10.00% 68.750%
2015-07-29 367500 25.00 1312500 9.09% 75.000%
2016-07-09 420000 12.50 656250 4.17% 78.125%
2017-06-23 472500 12.50 656250 4.00% 81.250%
2018-05-29 525000 12.50 656250 3.85% 84.375%

577500 12.50 656250 3.70% 87.500%
630000 6.25 328125 1.79% 89.063%
682500 6.25 328125 1.75% 90.625%
735000 6.25 328125 1.72% 92.188%
787500 6.25 328125 1.69% 93.750%

Source: https://en.bitcoin.it

Block

I Identified by its hash
I Contains exactly one coinbase transaction and multiple

other transactions
I Contains hash of previous block
I Contains hash of its transactions (”Root of Merkle Tree”)
I Block size is limited
I Block includes a ”nonce”

Merkle Trees Allow Verification of Partial Data

(c) Azaghal:Hash Tree / Wikimedia Commons / CC-1.0

I R. Merkle, 1987
I Example: Can verify data block L2 if we have top hash (”root”), hash 0-0

and hash 1
I Calculate hash 0-1, hash 0, top hash and check against given root

I Bitcoin separates block headers from block body/data

Mining a Block

I Transactions are passed around on the peer-to-peer network
I Each peer maintains a transaction pool of new transactions

(”mempool”)
I Miners decides which transactions to include in a block (will

focus on those with large transaction fees)
I Miner must find a hash for the block below a certain value (target

difficulty)
I Example: Hash must begin with 8 zeros

I Repeatedly change nonce value until block hash satisfies
difficulty

I New blocks are passed around on the peer-to-peer network
I Difficulty is adjusted for a constant block rate (about 5 per hour

for bitcoin)

Let’s Go Play

Extending the Basic Blockchain in Java

Exercise
I Create a new class ”Miner” with methods to create new

block from a set of transactions and the hash of the
previous block

I Assume a certain difficulty (not too hard, or it’ll take forever)
I Include the root of the Merkle Tree of the transactions in

the block

Questions

I How many hashes do you have to try for different difficulty
levels, for example, 1, 2, or 3?

I How many hashes can you compute per second?

Bitcoin

Examining the Details of the Bitcoin Protocol

Bitcoin Protocol: Adding a Transaction (1)

1. Check syntactic correctness

2. Make sure neither input or output lists are empty

3. Size in bytes <= MAX_BLOCK_SIZE

4. Each output value, as well as the total, must be in legal money range

5. Make sure none of the inputs have hash=0, n=-1 (coinbase
transactions)

6. Reject if we already have matching tx in the pool, or in a block in the
main branch

7. For each input, if the referenced output exists in any other tx in the pool,
reject this transaction.

8. For each input, look in the main branch and the transaction pool to find
the referenced output transaction. If the output transaction is missing for
any input, this will be an orphan transaction. Add to the orphan
transactions, if a matching transaction is not in there already.

Bitcoin Protocol: Adding a Transaction (2)

10. For each input, if the referenced output transaction is coinbase, it must
have at least COINBASE_MATURITY (100) confirmations; else reject
this transaction

11. For each input, if the referenced output does not exist (e.g. never
existed or has already been spent), reject this transaction

12. Using the referenced output transactions to get input values, check that
each input value, as well as the sum, are in legal money range

13. Reject if the sum of input values < sum of output values

14. Reject if transaction fee would be too low to get into an empty block

15. Verify the public keys for each input; reject if any are bad

16. Add to transaction pool

17. Relay transaction to peers

18. For each orphan transaction that uses this one as one of its inputs, run
all these steps (including this one) recursively on that orphan

Bitcoin Protocol: Adding a Block

1. Check syntactic correctness

2. Reject if duplicate exists in main branch, side branch or orphan

3. Transaction list must not be empty

4. Block hash must satisfy claimed difficulty proof of work

5. Block timestamp must not be more than two hours in the future

6. First transaction must be coinbase, the rest must not be

7. Verify Merkle hash

8. Check if prev block is in main branch or side branches. If not, add this to
orphan blocks, then query peer we got this from for 1st missing orphan
block in prev chain; done with block

9. Check that difficulty value matches the difficulty rules

10. Reject if timestamp is earlier than median time of last 11 blocks

11. Add block into the tree. There are three cases
a. block further extends the main branch;
b. block extends a side branch but does not add enough difficulty to make it

become the new main branch;
c. block extends a side branch and makes it the new main branch.

Block Forest

Block1 hash
Prev block1 hash
Tx11, Tx12, Tx13, ...

Block0 hash
== null ==
Tx1, Tx2, Tx3, ...

Block2 hash
Prev block1 hash
Tx21, Tx22, Tx23, ...

Block3 hash
Prev block1 hash
Tx31, Tx32, Tx33, ...

Block4 hash
Prev block3 hash
Tx41, Tx42, Tx43, ...

Block2b hash
Prev block1 hash
Tx21b, Tx22, Tx23b, ...

Block3b hash
Prev block2b hash
Tx31b, Tx32, Tx33b, ...

Block6 hash
Prev block5 hash
Tx61, Tx62, Tx63, ...

Validating Block Transactions

1. For each input, look in the main branch to find the referenced output
transaction. Reject if the output transaction is missing for any input.

2. For each input, if we are using the nth output of the earlier transaction,
but it has fewer than n+1 outputs, reject.

3. For each input, if the referenced output transaction is coinbase, it must
have at least COINBASE_MATURITY (100) confirmations; else reject.

4. Verify crypto signatures for each input; reject if any are bad

5. For each input, if the referenced output has already been spent by a
transaction in the main branch, reject

6. Using the referenced output transactions to get input values, check that
each input value, as well as the sum, are in legal money range

7. Reject if the sum of input values < sum of output values

Adding to the Main Branch

1. For all but the coinbase transaction, validate block transactions
(previous slide)

2. Reject if coinbase value > sum of block creation fee and transaction fees

3. For each transaction in the block, delete any matching transaction from
the transaction pool

4. Relay block to our peers

Adding to a Side Branch

1. Nothing to do.

Adding to a Side Branch Becoming Main Branch
1. Find the fork block on the main branch which this side branch forks off of
2. Redefine the main branch to only go up to this fork block

3. For each block on the side branch, from the child of the fork block to the
leaf, add it to the main branch:
3.1 Do transaction checks 3–11
3.2 Add it to the main branch (previous slide)

4. For each block in the old main branch, from the leaf down to the child of
the fork block:
4.1 For each non-coinbase transaction in the block:

4.1.1 Apply transaction checks 2–9, except in step 8, only look in
the transaction pool for duplicates, not the main branch

4.1.2 Add to transaction pool if accepted, else go on to next
transaction

5. For each block in the new main branch, from the child of the fork node
to the leaf:
5.1 For each transaction in the block, delete any matching transaction

from the transaction pool
6. Relay block to peers

Note: If we reject at any point, leave the main branch as what it was, done

Adding a Block

Final step

13. For each orphan block for which this block is its prev, run all
these steps (including this one) recursively on that orphan

Transaction Stages

I Pending
I Mined
I Confirmed (at a certain height/depth)

Discussion Questions

I What problems can a transaction encounter at each stage?
I How can/should you deal with these problems?

Wallet

I A simplified bitcoin peer
I Does not participate in mining
I May not maintain a copy of the blockchain
I Capabilities:

I Maintain a set of private and public keys (”accounts”)
I Listens to bitcoin peer-to-peer network to identify relevant

transactions in blocks (i.e. UTXO designated for it)
I Keeps track of UTXO (transaction hashes and output

number)
I Signs transactions to spend UTXO
I Broadcasts new transactions to the network

I These capabilities may be in separate software
applications

P2P Network

Message Types (Simplified)

I Peers can ask other peers for peer addresses
(”getaddr” message)

I Peers send known peer addresses to other peers
(”addr” message)

I Peers can ask other peers for transaction pool
(”mempool” message)

I Peers send transactions in pool to other peers (”inv” message)
I Peers can ask other peers for known block headers

(”getheaders” message)
I Peers send headers to other peers (”headers” message)
I Peers can ask other peers for blocks (”getblocks” message)
I Peers can send blocks to other peers (”block” message)

P2P Network

Startup (Simplified)

I Connect to previously known peers (fall-back discovery
mechanisms exit)

I Ask for known block headers by sending currently known
headers to peer

I Receive a list of available block headers (batch mode)
I Ask for blocks for headers
I Receive blocks for headers (batch mode)

Discussion

Questions
I How do these rules ensure consensus?
I What makes bitcoin trustworthy?
I How are bitcoin generated?
I How does this make bitcoin a currency?
I What are possible attacks on the system?
I All transactions are public! Can you see any problems?

Bitcoin Statistics

Some randomly selected sites

I https://www.blockchain.com/explorer

I https://bitinfocharts.com/bitcoin/

I https://live.blockcypher.com/btc/

Discussion
I Anything in these sites you do not understand?
I Anything you find interesting?

https://www.blockchain.com/explorer
https://bitinfocharts.com/bitcoin/
https://live.blockcypher.com/btc/

Let’s Go Play

Bitcoin - Hands On

Bitcoin Software Architecture

Bitcoind
I Peer-to-Peer software that interacts with other peers
I Provides JSON RPC interface to clients

bitcoin-cli
I Command line client to interact with bitcoind
I Provides wallet services
I Uses JSON RPC interface to bitcoind

bitcoin-qt

I Graphical user interface client to interact with bitcoind
I Provides wallet services
I Uses JSON RPC interface to bitcoind

Bitcoin Configuration

Configuration in /etc/bitcoin/bitcoin.conf

Data directory in ∼/.bitcoin

Bitcoin Modes

Mainnet
I Connects to the main bitcoin network and processes actual

transactions

Testnet
I Connects to the bitcoin test network
I Behaves identical to the main network
I No actual bitcoins are used

Regtest

I Creates a private blockchain just for yourself
I Allows precise control over block creation
I No actual bitcoins are used

Exercise

bitcoind -regtest -daemon

Starts the bitcoin application with a private chain and initializes
a wallet (public/private key) for you

bitcoin-cli -regtest <command>

Uses the command line interface to connect to the local
bitcoind to issue <command>.

A summary of commands is here:

https://bitcoin.org/en/developer-reference#
rpc-quick-reference

https://bitcoin.org/en/developer-reference#rpc-quick-reference
https://bitcoin.org/en/developer-reference#rpc-quick-reference

Exercise

I GetNewAddress <account>, creates a new bitcoin address
I GenerateToAddress 101 <address>, ”mines” 101 blocks (Why?)
I GetWalletInfo, shows the new balance in our wallet
I GetNewAddress <account>, creates another bitcoin address
I ListUnspent, lists the UTXO
I Sendtoaddress <address> <amount>, sends bitcoin to address
I GenerateToAddress 1 <address>, ”mines” another block
I ListUnspent, lists the UTXS (Why are there three now?)

Useful Commands (Excerpt)

Blocks and Chain

I GetBlockChainInfo

I GetBlock <hash>

I GetMemPoolInfo

I VerifyChain <level>

Utility and Regtest

I Stop

I Generate <n>

I GenerateToAddress <n> <address>

I GetMiningInfo

More Useful Commands (Excerpt)
Networking

I AddNode <ip>:<port> [add|remove|onetry]

I GetConnectionCount

I GetNetworkInfo

I GetPeerInfo

Transactions and Wallets

I AbandonTransaction <txid>

I DumpPrivKey <address>

I GetAccount <address>

I GetBalance <account> <confirmations>

I GetNewAddress <account>

I GetTransaction <txid>

More Useful Commands (Excerpt)

Transactions and Wallets

I GetUnconfirmedBalance

I GetWalletInfo

I ListAddressGroupings

I ListTransactions <account> <n>

I ListUnspent <min_confirmations> <max_confirmations>

I SendToAddress <addr> <amount> <comment> <comment>
<subtractfee>

I WalletPassPhraseChange <oldpassword> <newpassword>

I WalletLock

I WalletPassphrase <password> <seconds>

Exercise – Peer-to-Peer Network

Connect
I (Start your ”bitcoind” software)
I bitcoin-cli -regtest AddNode <ipaddress> onetry

I bitcoin-cli -regtest GetConnectionCount

I bitcoin-cli -regtest GetPeerInfo

Transactions
I Create yourselves some addresses
I Mine some blocks with ”GenerateToAddress” to your address
I Once you have some coins, send them around
I Generate new blocks as needed
I Use ”getblockchaininfo”, ”getblock”, ”gettransaction” to examine the

blockchain
I Use ”getbalance”, ”listunspent”, ”listtransactions” to work with your

money

Bitcoin GUI

I Stop the bitcoind using the ”stop” command from bitcoin-cli
I Start the graphical user interface bitcoin-qt -regtest

I Bitcoin-Qt can be accessed from bitcoin-cli as well!

Ethereum

Ethereum

The Basics

Ethereum

Characteristics
I A generic ”universal” blockchain (not only for financial

transactions)
I Developed by Vitalik Buterin (2013)

I ”White paper”
I https://github.com/ethereum/wiki/wiki/White-Paper

I Formalized by Gavin Wood
I ”Yellow paper”
I https://ethereum.github.io/yellowpaper/paper.pdf

I Cryptocurrency driven
I Proof-of-work consensus (”mining”)

I Proof-of-stake is discussed/envisioned/planned (”Casper”)
I Describes ”world state” distributed across blocks in chain
I A transaction/messsage is a ”state transition operation”
I Smart contracts in Solidity

https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf

Ethereum

Differences to Bitcoin
I Messages in Transactions
I Ether and Wei, not Bitcoin and Satoshi
I Addresses, not UTXO
I Arbitrary smart contracts
I Different coin issuance model (pre-sale, steady supply)
I 12 seconds block time, not 10 minutes
I Different proof-of-work function (”Ethhash”)
I Built on ’Keccak” hashes (not quite the SHA-3 standard)

Ethereum Accounts
Externally Owned Accounts

I Controlled by a private key
I Ether balance
I Send transactions to other accounts (messages in signed

transaction)
I Nonce (number of transactions sent)

Contract Account
I Controlled by code
I Ether balance
I Internal storage
I Responds to transactions sent to it
I Can send message to other contracts as response
I Nonce (number of messages sent)

Ethereum Transactions

I Send Ether between accounts
I Create (”install”, ”deploy”) a new contract
I Call methods on a contract

Ethereum Computations

I Ethereum virtual machine (EVM) with VM language
I Turing complete (”can compute anything that is

computable”)
I Computations and storage cost ”gas”
I Transaction originator

I Specifies quantity of gas willing to spend (”startgas”)
I Specifies fee per unit of gas (”gasprice”)
I Pays stargas × gasprice as transaction fee

I Contracts written in Solidity (other language possible)

Mining — The GHOST protocol

I A block must specify a parent, and it must specify 0 or more
uncles

I An uncle included in block B must have the following properties:
I It must be a direct child of the k-th generation ancestor of B,

where 2 <= k <= 7.
I It cannot be an ancestor of B
I An uncle must be a valid block header, but does not need to

be a previously verified or even valid block
I An uncle must be different from all uncles included in

previous blocks and all other uncles included in the same
block (non-double-inclusion)

Block Validation

I Check if the previous block referenced exists and is valid.
I Check that the timestamp of the block is greater than that of the

referenced previous block and less than 15 minutes into the
future

I Check that the block number, difficulty, transaction root, uncle
root and gas limit are valid.

I Check that the proof of work on the block is valid.
I Let S[0] be the state at the end of the previous block.
I Let TX be the block’s transaction list, with n transactions. For all

i ∈ 0 . . . n − 1, set S[i + 1] = APPLY (S[i],TX [i]). If any
application returns an error, or if the total gas consumed in the
block up until this point exceeds the GASLIMIT, return an error.

I Let SFINAL be S[n], but adding the block reward paid to the miner.
I Check if the Merkle tree root of the state SFINAL is equal to the

final state root provided in the block header. If it is, the block is
valid; otherwise, it is not valid.

Ethereum — Coin Issuance

Initial
I 60102216 Eth pre-sale for Bitcoin
I 5950120 Eth development fund
I 5950120 Eth expense fund

Ongoing

I Aim is to create 15626576 Eth every year, 26% of pre-sale
I Miner of block receives block reward R (currently 3 Eth)
I Miner of block receives 1/32R = 0.09375Eth for each

included uncle (maxumum two uncles)
I Miner of included uncle receives R − 1/8(Bi − Ui)

(maximum two uncles).

Tries

I Retrieval trees

Source: Wikipedia, Public Domain

Radix Tree

I Space-saving over tries: Only children merged with parents
I Number of children limited to radix (base) of alphabet
I Lookup and deletion are straightforward
I Operations in O(k) time where k is key length

Radix Tree Exercise

Exercise
I Beginning with an empty tree, insert the following in order

(comparison to be done by letter)
I ”test”
I ”slow”
I ”water”
I ”slower”
I ”tester”
I ”team”
I ”toast”

Radix (”Patricia”) Tree

I ”Practical Algorithm To Retrieve Information Coded In
Alphanumeric” (Morrison, JACM, 1968)

(c) Rocchini:Patricia trie (radix tree) / Wikimedia Commons / CC-BY-SA-3.0

Patricia Tries and Radix Trees

I Instead of letters, we use bits
I How many bits are compared atomically?

I 1 bit: at most 2 descendants, ”binary radix tree”,
”Patricia trie”

I 2 bits: at most 4 descendants, radix (base) is 4, chunks of 2
bits are compared

I 3 bits: at most 8 descendants, radix (base) is 8, chunks of 3
bits are compared

I etc.

Merkle–Patricia Tries in Ethereum

Ethereum Adaptation

I Keys are hashes
I Hexadecimal alphabet (i.e., 4-bit chunks, ”nibbles”)
I ”Extension nodes” describe long shared paths (parts of keys)
I Each block header has roots of state, transaction, and receipts

trie

Tries in Ethereum
I State Trie: sha3(address)→ rlp(nonce, balance, storageRoot,

codeHash)
I Storage Trie: sha3(variable)→ value
I Transaction Trie: rlp(transactionIndex)→ transaction
I Receipts Trie: rlp(transactionIndex)→ transaction

Note: RLP is ”recursive length prefix”, a method to serialize objects to
arrays of bytes.

(c) Lee Thomas:Merkle-Patricia Trees as used in Ethereum, https://i.stack.imgur.com/YZGxe.png

https://i.stack.imgur.com/YZGxe.png

Bloom Filters

I Decide if an element is in a set
I Bit array of size m
I Set of k hash functions, which map input into one of the m

array positions
I Ideally, hash functions yield a uniform distribution for all

inputs
I When inserting element a into set, apply all k hash

functions and set corresponding bits to 1
I When querying for a set a

I Use all k hash functions to identify relevant bit positions
I If any of the k positions are 0, then element is not in set
I If all of the k positions are 1, then element may be in set

I The error rate diminishes with more hash functions and a
larger array

Bloom Filters

Example:

Source: Wikipedia, public domain

Bloom Filters
Probability that a bit is not set by a hash function is

1− 1
m

For k hash functions, the probability that a bit is not set is(
1− 1

m

)k

After n inserted elements: (
1− 1

m

)kn

The probability that the bit is set is therefore

1−
(

1− 1
m

)kn

When querying (i.e. testing k bits for being set) for an element not in the set,
the probability that all k bits will come up set, and the result of the element
being in the set is wrong is

p =

(
1−

(
1− 1

m

)kn
)m

≈
(

1− e−kn/m
)k

Bloom Filters

Minimizing the error rate p yields

kopt =
m
n

ln 2

Hence,

popt =
(

1− e−
(m

n
ln 2
) n

m

)m
n ln 2

ln popt = −
m
n
(ln 2)2

mopt = −
n ln popt

(ln 2)2

kopt = −
ln p
ln 2

= − log2 p

Transaction Receipts

Receipt Content

I Results of a transaction
I Not the return value of a contract method

I Tuple of (state, gas_used, logbloom, logs)
I Each log is a tuple of (address, (topic1, topic2, ...), data)
I Logbloom is a bloom filter of addresses and topics
I A bloom filter in the block header is the OR value of all

transaction receipt bloom filters

Example Use Case

I Client interested in topic X for address Y

1. Check block header bloom filter. If positive
2. Check each transaction receipt bloom filter. If positive
3. Check actual transaction log

Ethereum Hands-On

Configuration File
I In your user directory, ”ethereum.init.json”

1 {
"config": {

3 "chainId": 2019,
"homesteadBlock": 0,

5 "eip155Block": 0,
"eip158Block": 0

7 },
"alloc" : {},

9 "coinbase" : "0x00",
"difficulty" : "0x400",

11 "extraData" : "",
"gasLimit" : "0x2fefd8",

13 "nonce" : "0x0000000000000042",
"mixhash" : "0

x00
",

15 "parentHash" : "0
x00
",

"timestamp" : "0x00"
17 }

Initializing the Chain

geth init ethereum.init.json

Creating an Account

geth account new

Starting the Ethereum Node

geth --networkid 2019 --nodiscover --rpc --rpcapi \
eth,shh,web3,net,admin,miner,personal,txpool

Console Access via RPC

I In a new terminal window:

geth attach http://localhost:8545

Start Mining

miner.start()

eth.getBalance(eth.accounts[0]))

eth.blockNumber

My First Transaction

I Make another account

personal.newAccount()

I Unlock the sending account

personal.unlockAccount(eth.accounts[0], "password",
600)

I Send some Ether from your first account to your second

eth.sendTransaction({from:eth.accounts[0],
to:eth.accounts[1], value: web3.toWei("4",
"ether")})

Check the Results

I Check balances

eth.getBalance(eth.accounts[0])
eth.getBalance(eth.accounts[1])

I Check the transaction

eth.getTransaction("your_transaction_hash")

I Check the transaction receipt

eth.getTransactionReceipt("your_transaction_hash")

I Examine the block

eth.getBlock(your_block_number, true)

Connect Nodes

I Get Node Information

admin.NodeInfo.enode

I Add peer by ”enode” (change to correct the IP address)

admin.addPeer(”your_enode_info_here”)

I Check connections

admin.peers

Play Time

I Play around with basic Ethereum, mining, and transferring
Ether

Ethereum Web3.js Module Functions (Incomplete)

General Info
I admin.nodeInfo
I eth.syncing
I eth.coinbase
I eth.mining
I eth.hashrate
I eth.gasPrice
I eth.accounts
I eth.blockNumber
I eth.getBalance(address, [n|”earliest”|”latest”|”pending”])
I eth.getTransactionCount(address, [n|”earliest”|”latest”|”pending”])

Ethereum Web3.js Module Functions (Incomplete)

Block and Uncles Info
I eth.getBlock(block1|”earliest”|”latest”|”pending”, txObjects)
I eth.getBlockTransactionCount(block1|”earliest”|”latest”|”pending”)
I eth.getBlockUncleCount(block1|”earliest”|”latest”|”pending”)
I eth.getUncle(block1|”earliest”|”latest”|”pending”, uncleIndex)

1May be block number or block hash

Ethereum Web3.js Module Functions (Incomplete)

Transaction Info
I eth.getTransactionfromBlock(block2|”earliest”|”latest”|”pending”, txIndex)
I eth.getTransaction(transactionHash)
I eth.getTransactionReceipt(transactionHash)
I eth.pendingTransactions

2May be block number or block hash

Ethereum Web3.js Module Functions (Incomplete)

Transaction Functions
I eth.sign(address, message)
I eth.sendTransaction(from, to, [value], [gas], [gasPrice], data, [nonce])
I eth.sendRawTransaction(signedTxData)

Log Functions
I eth.newFilter(fromBlock, toBlock, address|ArrayOfAddress,

topic|ArrayOfTopics)
I eth.newBlockFilter()
I eth.newPendingTransactionFilter()
I eth.uninstallFilter(filterId)
I eth.getFilterChanges(filterId)
I eth.getFilterLogs(filterId)

Management Modules and Functions (Incomplete)

admin
I admin.addPeer(url)
I admin.datadir()
I admin.peers

miner
I miner.setExtra(string)
I miner.setGasPrice(hexNumber)
I miner.start()
I miner.stop()
I miner.getHashrate()
I miner.setEtherbase(address)

Management Modules and Functions (Incomplete)

personal
I personal.listAccounts
I personal.lockAccount(address)
I personal.newAccount()
I personal.unlockAccount(address, password, duration)
I personal.sendTransaction(tx, password)
I personal.sign(message, account, password)

txpool
I txpool.content
I txpool.inspect()
I txpool.status

Modules and Functions (Incomplete)

web3
I web3.sha3(string)
I web3.toWei(number, unit)
I web3.fromWei(number, unit)

net
I net.version
I net.peerCount
I net.listening

Access Ethereum from Java Using Web3j

I Performs same role as Ethereum Web3.js Library
I Uses same RPC interface
I Exposes similar API as Web3.js
I It is not an Ethereum node implemented in Java!

Web3j Example

Example

I Open the project ”EthereumWeb3j” in your Eclipse workspace
I Make sure your geth node is running and mining (connected or

disconnected)
I Open the ”EthereumWeb3jApplication.java” file
I Adjust the ”EthereumWeb3jApplication.java” file:

I The name of the keystore file for the address you would like
to send Ether from, and its password

I The address that you would like to send Ether to
I Run the ”EthereumWeb3jApplication” to test it

Web3j Asynchronous Example

Asynchronous Operations

I RPC calls introduce latency until results are returned
I Blockchain introduces latency while transactions are mined
I We’d like to not wait, but do something useful instead

Example

I Open the ”EthereumWeb3jApplicationAsynch.java” file
I Adjust the ”EthereumWeb3jApplicationAsynch.java” file:

I The name of the keystore file for the address you would like
to send Ether from, and its password

I The address that you would like to send Ether to
I Run the ”EthereumWeb3jApplicationAsynch” to test it

Web3j Exercise

I Extend the example(s) to wait until the transaction has n
confirmed blocks on top of it!

Monitoring the Blockchain with Filters

I Filters for new pending transactions, new mined transactions,
new blocks

I Filters for past blocks, past transactions, past and new blocks
(”replay filters”)

I Filters for topics and events in smart contracts

Example

I Open the ”EthereumWeb3jFilterApplication.java” file
I Run the ”EthereumWeb3jFilterApplication” to test it

Exercise
I Modify the filter to print transactions only if they involve the

addresses/accounts of your local node

Smart Contracts in Solidity

My First Contract

1 contract Myfirstcontract {
address creator;

3
constructor() public {

5 creator = msg.sender;
}

7
function kill() public {

9 if (msg.sender == creator) {
selfdestruct(creator);

11 }
}

13 }

Datatypes

I bool

I int, uint, int8...int256, uint8...uint256
I fixed, ufixed
I address/adddress payable

I balance, transfer, send, call members/methods
I byte, bytes1 ... bytes32
I bytes, string

Visibility

I Public, Internal

Location
I Storage, Memory, Calldata

Data Location and Assignment

1 contract C {
uint[] x; // the data location of x is storage

3

// the data location of memoryArray is memory
5 function f(uint[] memory memoryArray) public {

x = memoryArray;
7 // works, copies the whole array to storage

uint[] storage y = x;
9 // works, assigns a pointer, data location of y is storage

y[7];
11 // fine, returns the 8th element

y.length = 2;
13 // fine, modifies x through y

delete x;
15 // fine, clears the array, also modifies y

Data Location and Assignment

16 // The following does not work; it would need to create
// a new temporary unnamed array in storage, but storage

18 // is "statically" allocated:
y = memoryArray;

20 // This does not work either, since it would ’reset’ the
// pointer, but there is no sensible location it could

22 // point to.
delete y;

24 g(x);
// calls g, handing over a reference to x

26 h(x);
// calls h and creates an independent, temporary copy

28 // in memory
}

30 function g(uint[] storage) internal pure {}
function h(uint[] memory) public pure {}

32 }

Data Location Rules

I Assignment between storage and memory always creates
a copy

I Assignment from memory to memory creates only a
reference

I Assignment from storage to local storage variable creates
a reference

I All other assignments to storage create a copy

Arrays

1 contract Myfirstcontract {
uint[] public a; // location is storage

3

constructor() public {
5 a = new uint[](0);

a.push(1); // Push can be used for dynamic storage arrays
7 a.length = 5; // Or you can (re)set the length

9 uint[5] memory b; // fixed length array
b[0] = 1;

11

uint[3][5] memory c;
13 c[1][2] = 3;

c[2] = [uint256(1),2,3];
15 // Note: The indices are in reversed order!

// Array literals are by default uint8, but declared arrays
17 // are by default uint256

}
19 }

Structs

1 struct Funder {
2 address addr;

uint amount;
4 }

6 struct Campaign {
address payable beneficiary;

8 uint fundingGoal;
uint numFunders;

10 uint amount;
mapping (uint => Funder) funders;

12 }

Maps

1 contract MappingExample {
2 mapping(address => uint) public balances;

4 function update(uint newBalance) public {
balances[msg.sender] = newBalance;

6 }
}

8

contract MappingUser {
10 function f() public returns (uint) {

MappingExample m = new MappingExample();
12 m.update(100);

return m.balances(address(this));
14 }

}

Block and Transaction Properties
I blockhash(uint blockNumber) returns (bytes32): hash of

the given block
I block.coinbase (address payable): block miner address
I block.difficulty (uint): current block difficulty
I block.gaslimit (uint): current block gaslimit
I block.number (uint): current block number
I block.timestamp (uint): current block timestamp as seconds
I gasleft() returns (uint256): remaining gas
I msg.data (bytes calldata): complete calldata
I msg.sender (address payable): sender of the message (current

call)
I msg.sig (bytes4): first four bytes of the calldata (i.e. function

identifier)
I msg.value (uint): number of wei sent with the message
I now (uint): current block timestamp (alias for block.timestamp)
I tx.gasprice (uint): gas price of the transaction
I tx.origin (address payable): sender of the transaction (full call

chain)

Addresses
I <address>.balance (uint256)

I <address payable>.transfer(uint256 amount)

I <address payable>.send(uint256 amount) returns
(bool)

Error Handling

I assert(bool condition):
I require(bool condition):
I require(bool condition, string memory message):
I revert():
I revert(string memory reason):

Control Structures

I if ... else

I while ... do

I for ...

I break, continue, return

Functions
1 contract Simple {

function arithmetic(uint _a, uint _b)
3 public pure

returns (uint o_sum, uint o_product)
5 {

return (_a + _b, _a * _b);
7 }
}

Modifiers
I View: promises not to change state
I Pure: promises to not even look at state

Visibility
I External: can only be called from transactions
I Public: can be called internally or from transactions/messages
I Internal: can be called internally only, or from derived contracts
I Private: cannot be called from derived contracts

Contracts
1 contract C {
2 uint private data;

4 function f(uint a) private pure returns(uint b) {return a+1;}
function setData(uint a) public { data = a; }

6 function getData() public view returns(uint) { return data; }
function compute(uint a, uint b) internal pure returns (uint)

{ return a + b; }
8 }
contract D { // This will not compile

10 function readData() public {
C c = new C();

12 uint local = c.f(7); // error: ‘f‘ is not visible
c.setData(3);

14 local = c.getData();
local = c.compute(3, 5); // error: ‘compute‘ is not visible

16 }
}

18 contract E is C {
function g() public {

20 C c = new C();
uint val = compute(3, 5); // access to internal member

22 }
}

Getter and Setter Functions

1 contract C {
uint public data;

3 function x() public returns (uint) {
data = 3; // internal access

5 return this.data(); // external access
}

7 }

9 contract arrayExample {
uint[] public myArray;

11

/* Getter function generated by the compiler
13 function myArray(uint i) returns (uint) {

return myArray[i];
15 } */

// function that returns entire array
17 function getArray() returns (uint[] memory) {

return myArray;
19 }

}

Function Modifiers

1 contract owned {
2 constructor() public { owner = msg.sender; }

address payable owner;
4

// This contract only defines a modifier but does not use
6 // it: it will be used in derived contracts.

// The function body is inserted where the special symbol
8 // ‘_;‘ in the definition of a modifier appears.

// This means that if the owner calls this function, the
10 // function is executed and otherwise, an exception is

// thrown.
12 modifier onlyOwner {

require(
14 msg.sender == owner,

"Only owner can call this function."
16);

_;
18 }

}

Function Modifiers

20 contract mortal is owned {
// This contract inherits the ‘onlyOwner‘ modifier from

22 // ‘owned‘ and applies it to the ‘close‘ function, which
// causes that calls to ‘close‘ only have an effect if

24 // they are made by the stored owner.
function close() public onlyOwner {

26 selfdestruct(owner);
}

28 }

Function Modifiers with Arguments
29 contract priced {
30 // Modifiers can receive arguments:

modifier costs(uint price) {
32 if (msg.value >= price) {

_;
34 }

}
36 }

contract Register is priced, owned {
38 mapping (address => bool) registeredAddresses;

uint price;
40

constructor(uint initialPrice) public {price = initialPrice;}
42

// It is important to also provide the ‘payable‘ keyword here,
44 // otherwise the function will reject all Ether sent to it.

function register() public payable costs(price) {
46 registeredAddresses[msg.sender] = true;

}
48

function changePrice(uint _price) public onlyOwner {
50 price = _price;

}
52 }

More Function Modifiers

1 contract Mutex {
2 bool locked;

modifier noReentrancy() {
4 require(

!locked,
6 "Reentrant call."

);
8 locked = true;

_;
10 locked = false;

}
12

// This function is protected by a mutex, so that reentrant
14 // calls from within ‘msg.sender.call‘ cannot call ‘f‘ again.

// The ‘return 7‘ statement assigns 7 to the return value but
16 // still executes the statement ‘locked=false‘ in the modifier

function f() public noReentrancy returns (uint) {
18 (bool success,) = msg.sender.call("");

require(success);
20 return 7;

}
22 }

Events

1 contract ClientReceipt {
2 event Deposit(

address indexed _from,
4 bytes32 indexed _id,

uint _value
6);

8 function deposit(bytes32 _id) public payable {
// Events are emitted using ‘emit‘, followed by

10 // the name of the event and the arguments
// (if any) in parentheses. Any such invocation

12 // (even deeply nested) can be detected from
// the JavaScript API by filtering for ‘Deposit‘.

14 emit Deposit(msg.sender, _id, msg.value);
}

16 }

Logs

1 contract C {
2 function f() public payable {

uint256 _id = 0x420042;
4 log3(

bytes32(msg.value),
6 bytes32(0

x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20
),

bytes32(uint256(msg.sender)),
8 bytes32(_id)

);
10 }

}

I log0, log1, log2, log3, log4 available (for 1, 2, 3, 4, 5 parameters)

Abstract Contracts and Interfaces

Abstract Contracts
I A contract that does not implement all its functions is abstract

Interface
I A contract that does not implement any of its functions is an

interface
I No constructor,
I No state variables
I All functions must be ”external”
I Cannot inherit other contracts or interfaces

1 interface Token {
enum TokenType { Fungible, NonFungible }

3 struct Coin { string obverse; string reverse; }
function transfer(address recipient, uint amount) external;

5 }

Contracts Hands-On

Contracts in Web3.js

Compiling using Solc

I Your first Solidity contract in this folder

cd /eclipse-workspace/EthereumWeb3jSolidity/src

I Compile with the Solidity compiler, targeting the ”byzantium”
Ethereum virtual machine (EVM), and produce the bytecode
(binary) and an ABI description file:

solc --bin --abi --evm-version byzantium \
--overwrite -o . Contract1.sol

I This generates the EVM bytecode and the ABI description files
in the current directory.

Deployment
Deployment

I Copy/paste the ABI description into the following contract
definition:

def = eth.contract(...ABI Description...)

I Create a new contract instance by copy/pasting the EVM
bytecode into the contract creation:

inst = def.new({from: eth.accounts[0], data:
’0x...EVM Bytecode...’, gas: ’4700000’}, function
(e, contract) { console.log(’Err: ’+e+’ Tx:
’+contract.transactionHash+’ Addr:
’+contract.address)})

I It may take a short while for this to be mined into the blockchain.
You will get two notifications, the first one with just the
transaction hash, the second one with the contract address as
well.

inst

I If this does not get mined into the chain, try increasing your gas
value and resubmitting.

I If you get an error about authentication needed, you need to
unlock your account:

personal.unlockAccount(eth.accounts[0],
’supersecretpassword’, 10000)

Interacting with the Contract

I Use call() to call a view or a pure function.
I Doesn’t cost any gas
I Example:

inst.getCounter.call()

I Use sendTransaction() to call a state-changing function,

I Requires ”gas” to make it go.

I Example:

inst.inc.sendTransaction({from: eth.accounts[0], \
gas: ’50000’})

Solidity from Web3j

Eclipse Java Project

I Open project ”EthereumWeb3jSolidity” in your Eclipse
workspace

I Contains a basic application, and the solidity contract
”Contract1.sol”

Compiling with Solc

I Same as above, only required if you made changes

cd /eclipse-workspace/EthereumWeb3jSolidity/src

solc --bin --abi --evm-version byzantium \
--overwrite -o . Contract1.sol

Solidity in Web3J

Create Java Wrapper
web3j solidity generate -b Contract1.bin \

-a Contract1.abi -p Default -o .

I Creates a Java wrapper class for the contract in package
”Default”.

I Wrapper class provides methods deploy and interact with the
contract.

I Refresh your Eclipse project and open ”Contract1.java”

I Run the ”EthereumSolidityApplication” to see your contract in
action

Events in Web3J

Project

I Open project ”EthereumWebjSolidityFilter” in your Eclipse
workspace

I Contains a basic application, and the solidity contract
”Contract2.sol”

Compile with Solc
cd /eclipse-workspace/EthereumWeb3jSolidityFilter/src

solc --bin --abi --evm-version byzantium \
--overwrite -o . Contract2.sol

Create Java Wrapper
web3j solidity generate -b Contract1.bin \

-a Contract1.abi -p Default -o .

I Run the ”EthereumSolidityApplicationFilter” to see your contract
in action

Events in Web3J

Topics

I Process events raised from each transaction in transaction
receipt

I subscribe to a filter for certain contract address and topics
I Topics are created for signature and value of events:

I Example for the event ”ReceiveMessage” declared in
”Contract2”:

web3.sha3(’ReceiveMessage(address,string,uint256)’)
"0x3274ee9181d28c0968a16da3b8db237fb6f8e7c6e056ab3d0638e34bcbd43e4b"

Events in Web3J

Log Data

I Log data can be decoded based on the parameters of the event.
It is given in chunks of 32 bytes (64 hex digits):

000000000000000000000000a1ffbe52c67aa5a9b45a15af63501a9e690c06ad
0060
0001
000b
48656c6c6f20576f726c6400

I The first 32 bytes are the sender address (left padded with
zeros)

I The second 32 bytes are the string. For variable length
parameters, this is given as an offset into the data: 0x60 = 96.

web3.toAscii("0x48656c6c6f20576f726c64")

I The third 32 bytes are the uint256: 0x01 = 1

Decoding the data requires the ABI!

Solidity in Remix

Remix

I Point your browser to https://remix.ethereum.org

I Provides its own Ethereum node

I Offers different compiler versions

I Compile, run, and debug your contracts

I Creates Web3.js scripts for contract deployment

https://remix.ethereum.org

Solidity in Remix

Solidity Exercise

Create a contract for auctions
I Contract owner starts a new auction with item description,

minimum bid and reserve price
I External accounts can bid on an auction
I Bids require deposits
I Contract owner manually ends auctions
I Deposit of highest bidder is sent to contract owner
I Deposits of losing bidders are refunded

Tips

I Develop and test in Remix
I Search the internet for help, especially on funds

management

Byzantine Fault Tolerance

The Bigger Picture

I Blockchains perform:
I Validation of blocks
I Ordering of blocks

I Blockchains achieve consensus of validity and order

Ordering Consensus

Requirements

I All honest nodes agree on the same order
I All transactions/blocks must be ordered
I Nodes must be able to leave and join the network
I Resilient against dishonest nodes

Options

I Proof of work
I Proof of stake voting
I Byzantine fault tolerance

Byzantine Fault Tolerance

Problem
I Actors must agree on strategy
I Some actors may be unreliable or malicious
I Actors have unreliable communication
I Actors may be inconsistent
I Actors may present different states to different observers

Solution (Pease, Shostak, Lamport, 1980)

I Minimum of 3n + 1 nodes required to survive n failed/malicious
nodes

I Practical BFT algorithm (Castro, Liskov, 1999, 2002)
I Multi-stage protocols requiring fully-connected nodes
I Is blockchain proof-of-work a BFT method? If it is, is it an

efficient one?

Byzantine Fault Tolerance

Comparison

I More efficient than proof-of-work
I Higher communication overhead than proof-of-work
I Potentially faster than proof-of-work
I Not as resilient as proof-of-work
I Finality of order consensus

PBFT Algorithm

Clients
1. Client multicasts (REQUEST, o, t , c) messages to nodes

I c is the client,
I t is the timestamp,
I o is the operation to be executed

2. Nodes accept request, send (REPLY, v , t , c, i , r) to client
I v is the current view,
I i is the node number,
I r is the result of executing operation

3. Client waits for f + 1 replies with the same t and r before
accepting result r (”reply certificate”)

4. Clients may retransmit request when reply certificate not
received

I Nodes may re-send replies if request already processed
I If primary node does not assign valid sequence number, it will be

suspected faulty and lead to view change

PBFT Algorithm

Ordering Protocol

Source: Castro and Liskov (2002), ACM

PBFT Algorithm

3-phase protocol to multicasts requests and replies:
pre-prepare, prepare, commit

Pre-Prepare

1. When primary node receives request m from client, it assigns a
sequence number n

2. Primary node multicasts (PRE-PREPARE, v , n, hash(m))
I v is the view,
I n is the sequence number,
I m is the request

PBFT Algorithm

Prepare

1. Node i accepts PRE-PREPARE for view v and sequence n only
if it has not already done for a different hash(m), and that n is
between a low and high boundary (h, H)

2. If node i has received corresponding request m, and has
accepted PRE-PREPARE, it multicasts
(PREPARE, v , n, hash(m), i)

I ”Node accepts sequence # n”, ”request is pre-prepared at i”

3. Every node collects messages until it has a quorum certificate
with the PRE-PREPARE message and 2f matching PREPARE
messages for sequence n, view v and request m.

I ”prepare certificate”, ”request is prepared at node i”

PBFT Algorithm

Commit
1. Eeach node i multicasts (COMMIT, v , n, i) indicating is has

accepted the prepare certificate
2. Eeach node collects messages until it has a quorum certificate

with 2f + 1 matching COMMIT messages for sequence n, view v
and request m.

I ”commit certificate”, ”request is committed at node i”

3. Each node executes the requested operation when m is
committed and the node has execuated all previous requests.

4. After executing the request, nodes send REPLY to the client

PBFT Algorithm

Nodes periodically discard information about past requests

Checkpointing

1. When node i produces or fetches a checkpoint request number,
it multicasts a (CHECKPOINT, n, d , i) message

I n is the sequence number of the last request,
I d is the hash of the state

2. Each node collects messages until it has a quorum certificate
with 2f + 1 CHECKPOINT messages with the same n and d

I ”stable certificate”

3. Nodes discard log entries with sequence numbers less than n
and earlier checkpoints

PBFT Algorithm

View
I Set of nodes with a designated primary or leader node

View Change

1. When a node i suspects the primary to be faulty, it multicasts as
(VIEW-CHANGE, v + 1, h, C, P, Q, i) message

I h is the sequence number of the last stable checkpoint;
I C is a set of pairs with the sequence number and hash of each

checkpoint,
I P are requests that have been prepared in previous views,
I Q are requests that have been pre-prepared in previous views

2. Node i discards PRE-PREPARE, PREPARE, and COMMIT
messages

PBFT Algorithm

View Change Acknowledgment

1. Each nodes collects VIEW-CHANGE messages for v + 1 and
sends acknowledgements to v + 1’s leader p

2. Nodes accept VIEW-CHANGE messages only if all information
in P and Q is for view numbers less than or equal v

3. Nodes multicast (VIEW-CHANGE-ACK, v + 1, i , j , d) messages
I i is the sender node,
I d is the hash of the VIEW-CHANGE message being

acknowledged,
I j is the node that sent the VIEW-CHANGE message

PBFT Algorithm
New View

1. New primary collects VIEW-CHANGE and VIEW-CHANGE-ACK
messages

2. Add VIEW-CHANGE message from i to set S only after
receiving 2f − 1 VIEW-CHANGE-ACK messages for i ’s
VIEW-CHANGE message

I ”view change certificate”

3. New primary chooses a checkpoint and set of requests when a
message is added to S

4. Primary multicasts (NEW-VIEW, v + 1, V , X)
I V contains the sending node i and hash of VIEW-CHANGE

message for every VIEW-CHANGE message in S (”new view
certificate”),

I X identifies the checkpoint and request value selected

5. New primary gets all requests in X and checkpoint h
6. Each node in v + 1 collects messages until they have correct

NEW-VIEW message and matching VIEW-CHANGE messages
for each pair in V , then verifies X and h

PBFT Algorithm

View Change Protocol

Source: Castro and Liskov (2002), ACM

BFTSmart

I Java library
I Ensures all nodes receive messages in same order
I Ensures nodes can survive crashes, leave and re-join

node set

BFTSmart
Server

I Connects to other servers and clients via network sockets
I Accepts ordered and unordered requests

I appExecuteOrdered()
I appExecuteUnordered()

I Exchange state with new or recovering servers
I getSnapshot()
I installSnapshot()

I Serialization using Java serialization into byte arrays

Client (Proxy)

I Connects to servers via network sockets
I Exposes functionality that is backed by the ordering servers
I Invokes/requests functions on server

I invokeOrdered()
I invokeUnordered()

BFTSmart

Configuration

I Directory ”config”
I Network addresses for servers in ”hosts.conf”
I Network configuration in ”system.conf”
I Current view in ”currentView (should delete before new start)

Example

I Demo from BFTSmart in Eclipse project
”BFTSmartExample”

I Implements a distributed map to store objects

BFTSmart

Exercise

Use BFTSmart to Implement a Simple Blockchain
Ordering Service

	Monday
	Preliminaries
	Cryptography

	Tuesday
	Blockchain
	Bitcoin

	Wednesday
	Ethereum Basics
	Ethereum Smart Contracts

	Thursday
	Byzantine Fault Tolerance

	Friday
	Project Presentations

