SMaRt Blockchain Distributed Workflow
Management

Joerg Evermann® and Henry Kim?

! Memorial University of Newfoundland, St. John’s, Canada
jevermann@mun.ca
2 York University, Toronto, Canada
hkim@york.ca

Abstract. Interorganizational business processes are rapidly becoming
the norm in many industries. At the same time, business partners are
often in a state of ”coopetition”, or competitive cooperation. To sup-
port execution of business processes in this context requires distributed
workflow management systems that can provide security, integrity, and
verifiability of workflow states.

Blockchain technology provides a suitable infrastructure. Existing block-
chain based workflow management systems are built on expensive, in-
efficient, public proof-of-work blockchains. In contrast, we believe that
small-scale, efficient, private blockchains deployed for a particular work-
flow application are more appropriate in stable coopetition contexts with
up to a few dozen well defined partners. In this paper, we present a
prototype workflow management system that is built on state machine
replication for Byzantine fault tolerant systems.

Keywords: Byzantine fault tolerance - blockchain - workflow manage-
ment - interorganizational workflow - distributed workflow

1 Introduction

Inter-enterprise business processes may involve actors in adversarial relationships
that nonetheless have to jointly complete process instances. In such a state of
”coopetition” (cooperative competition), trust in the current state of a process
instance and correct execution of activities by others may be lacking. Actors may
be reluctant to accept infrastructure provided by central authority. Blockchain
technology can provide a secure infrastructure that does not require a central
authority and allows independent verification of the state of a workflow.

A blockchain cryptographically signs a series of blocks containing transac-
tions, so that it is difficult or impossible to alter earlier blocks in the chain. In a
distributed blockchain, actors independently validate transactions and add them
to the blockchain. The independence of actors requires a protocol for achieving
consensus regarding the validity and order of transactions and blocks. Actors
must agree on the state of work as that determines the set of next valid activi-
ties in a process. Hence, it is natural to use blockchain transactions to describe
workflow workflow instance states.

2 J. Evermann and H. Kim

Workflow management systems (WfMS) can be implemented in different
ways on blockchains. Prior work has focused on transaction ordering through
proof-of-work consensus. In contrast, we use a consensus protocol based on
Byzantine fault tolerant (BFT) state machine replication (SMR). We present
a prototype WIMS as a proof-of-concept implementation for this architecture.

2 Innovation, Contribution, Novelty

Public proof-of-work based systems offer greater security at high cost, high la-
tency, and high resource use, and are scalable to millions of actors. Private SMR,
BFT based systems do not scale as well, provide a lower level of resilience, re-
quire better networking connections among nodes, but offer low latency, finality
of consensus, and are resource efficient. As such, they are suitable for a small
set of pre-selected and fixed actors that may distrust each other but are not ex-
pressly malicious, and need to execute quick workflows. Our system is innovative
in the following ways:

— It is one of only a few blockchain-based workflow management systems. As
such, it provides information replication, verifiability, and cryptographically
assured information integrity for distributed workflow management.

— It uses a novel method of SMR for BFT systems for implementation on a
blockchain. We are not aware of any other distributed workflow management
system using this method.

— It avoids the drawbacks of proof-of-work blockchains, offering lower latencies,
finality of consensus, and higher efficiency than proof-of-work systems.

— It does not rely on smart contracts or specific virtual machines.

— A simple architecture enables future extensions and use of different workflow
specification languages.

3 Short Introduction to Blockchains

A blockchain consists of blocks of transactions, which can be any kind of content.
Information integrity is achieved by applying a hash function to the content of
each block, which also contains the hash of the previous block in the chain.
Hence, altering a block requires changes to all following blocks. In a distributed
blockchain blocks are distributed to each node for independent validation and
replicated storage and new transactions may originate on any node. The key
challenge is to achieve a consensus on the validity and order of transactions
and blocks, despite nodes that are characterized by ”byzantine faults”: they
may not respond correctly, may respond unpredictably, may become altogether
unresponsive, or may attempt to undermine the integrity of the chain.

Blockchain-based workflow management has only recently received attention
[6]. A number of prototypes have been presented [3-5, 8], using smart contracts
on the public, proof-of-work-based Ethereum blockchain. However, after examin-
ing different blockchain consensus mechanisms, [7] recommend BFT-based con-
sensus for business process executions.

SMaRt Blockchain Distributed Workflow Management 3

Proof-of-Work Consensus In proof-of-work consensus, new transactions are
distributed to all nodes, are validated and added to each node’s transaction pool.
Each node can independently propose and distribute new blocks. Depending
on network topology and speed, nodes may have different set of blocks and
transactions, and hence may propose different blocks, leading to side branches.
Each node considers the longest branch as its current main branch and proposes
new blocks based on it. When a side branch becomes longer than the current
main branch, the chain undergoes a reorganization: What was the side branch is
validated and becomes the main branch. What was the main branch is considered
invalid and becomes a side branch. Transactions no longer in the main branch are
added back to the transaction pool to be included in other blocks. Consequently,
different nodes can at times consider different blocks and transactions as valid.

Artificially limiting the rate of new blocks allows nodes to achieve eventual
consensus on what constitutes the main branch, and prevents attackers from
”overtaking” the creation of legitimate blocks with fraudulent one. For this, block
proposers must solve a hard problem (”proof-of-work”, ”"mining”). Assuming
equal processing power for each node, the network needs 2f + 1 total nodes to
tolerate f faulty or malicious nodes.

Proof-of-work consensus is inefficient due do the mining, lacks final consensus
due to chain reorganizations and induces significant latency for a new block to
be accepted as valid.

State Machine Replication and BFT Consensus In response to the draw-
backs of proof-of-work consensus, ordering algorithms for distributed systems
have seen a resurgence in interest, mostly traceable to a seminal paper on prac-
tical byzantine fault tolerance (PBFT) [2]. PBFT orders requests for operations
using a set of nodes that are fully connected by reliable messaging. Every or-
dering consensus is established by a specific set of nodes ("view”) with a leader
node. Tolerating up to f faulty nodes requires 3f + 1 total nodes.

Clients send requests for operations to all nodes. The leader proposes a se-
quence number for the request and broadcasts a pre-prepare message. Upon
receipt of a pre-prepare message, a node broadcasts a corresponding prepare
message if it has itself received the request and has not already received an-
other pre-prepare message for the same sequence number. Nodes then wait to
receive 2f matching prepare messages from other nodes, indicating a majority
is prepared to accept the proposed sequence number. When this occurs, a node
broadcasts a commit message to all nodes. Each node then waits to receive 2f
commit messages, indicating that a majority has accepted the proposed sequence
number. Upon acceptance, the node executes the requested operation in order
and sends the result to the client. The client in turn waits for 2f + 1 replies,
which indicates that an ordering consensus has been reached.

Consensus about operation sequencing is one aspect of state machine replica-
tion (SMR). Each node maintains a state that can be changed by the requested
operations. When every node begins with the same state and executes operations
in the same order, the state machine is replicated.

4 J. Evermann and H. Kim
4 System Architecture and Implementation

We developed our prototype system in Java. It can be downloaded at joerg.
evermann.ca/software.html and an introductory video can be found at the same
URL. We use the BFT-SMART [1] library for state machine replication for
byzantine fault tolerant systems. It can be configured to provide crash tolerance
only, rather than byzantine fault tolerance, increasing its performance. Digital
signatures for messages allow it to also tolerate malicious nodes.

Our system comprises three main services, ordering service, block service,
and the workflow engine.

Ordering Service The ordering service receives transactions from the workflow
engine, which is a request for an ordered operation. Each transaction represents
a workflow instance state. The ordering service maintains as its state the latest
block hash and block number, and a queue of transactions waiting to be collected
into a block. When a sufficient number of transactions is available, it creates a
new block, passes it to the block service, and clears the transaction queue.

Block Service The block service stores the blockchain, exchanges blocks with
other nodes, and verifies the integrity of the blockchain. It uses a peer-to-peer
network distinct from the network layer of BFT-SMART. Block exchange is re-
quired when a node begins operation or recovers after a restart. At that point,
the ordering service state is first updated through the BFT-SMART state repli-
cation mechanism. The block service then compares its latest block to the latest
hash from the ordering service. Verification of the blockchain then proceeds back-
wards from the head of the chain, i.e. the block with the latest hash. Missing
blocks are requested from peers and verified prior to adding them.

Workflow Engine The workflow engine is notified by the block service when
a new block is added to the chain. It reads all transactions in the block, updat-
ing its information about the state of each process instance and creating work
items accordingly. It manages user interactions with work items and execution
of external functions by work items. Upon work item completion, the engine
generates a new transaction and passes it to the ordering service.

Every node in our system contains all three components. This allows the
ordering service to quickly validate transactions using the local workflow engine,
the blockservice to easily notify the workflow engine of new transactions and the
workflow engine to easily submit new transactions to the ordering service.

Our workflow models are based on plain Petri nets. Each transition specifies
a workflow activity. The workflow engine keeps track of the net markings and
case data, and detects deadlocked and finished cases to remove them from the
worklist. Each activity is associated with a single node. Each node can provide
its own resource management by defining mechanisms for further work item
allocation. External method calls are possible to static Java methods. The data
perspective is implemented as a key—value store. We currently admit only simple
Java types as we implement a GUI for these.

SMaRt Blockchain Distributed Workflow Management 5

5 Maturity and Future Work

The current status of our system is that of a research and teaching prototype. We
have used it to explore interfaces between blockchain infrastructure and workflow
engines and to develop suitable software architectures. We are also using this
system as a demonstration system for distributed, inter-organizational workflow
management in one class of a process management course. Further work planned:

— Resource management needs further development using organizational units
such as roles, departments, positions, and work item routing within each
node must be based on this.

— Data management needs to be extended to complex types. This can remain
on a Java basis, the challenge is to automatically generate user interfaces

— Additional operations need to be supported: case abortion, specification in-
validation, specification versioning

— A richer control flow language,m such as BPMN or YAWL nets, is required.

One way to achieve all these objectives is to port an existing workflow system
to our blockchain infrastructure. The simple interfaces between blockchain and
workflow engine makes this a relatively easy task. Open-source systems such as
YAWL are good candidates for this. Additionally, further work in evaluating the
system in real use cases is needed. For this, we are currently identifying business
partners and public organizations for case studies.

References

1. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, Atlanta, GA, USA. pp. 355-362. (2014)

2. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398-461 (2002)

3. Fridgen, G., Radszuwill, S., Urbach, N.; Utz, L.: Cross-organizational workflow
management using blockchain technology - towards applicability, auditability, and
automation. In: 51st Hawaii International Conference on System Sciences. (2018)

4. Hérer, F.: Decentralized business process modeling and instance tracking secured
by a blockchain. In: Bednar, P.M., Frank, U., Kautz, K. (eds.) 26th European
Conference on Information Systems ECIS. p. 55. AIS Electronic Library (2018)

5. Lépez-Pintado, O., Garcia-Banuelos, L., Dumas, M., Weber, I.: Caterpillar: A
blockchain-based business process management system. In: Proceedings of the
BPM Demo Track co-located with 15th International Conference on Business Pro-
cess Modeling. CEUR vol. 1920 (2017)

6. Mendling, J., Weber, 1., van der Aalst, W.M.P., vom Brocke, J., Cabanillas, C.,
et al.: Blockchains for business process management - challenges and opportunities.
ACM Trans. Management Inf. Syst. 9(1), 4:1-4:16 (2018).

7. Viriyasitavat, W., Hoonsopon, D.: Blockchain characteristics and consensus in
modern business processes. Journal of Industrial Information Integration (2018)

8. Weber, 1., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Un-
trusted business process monitoring and execution using blockchain. In: Business
Process Management - 14th International Conference, BPM, Proceedings. LNCS,
vol. 9850, pp. 329-347. Springer (2016).

6 J. Evermann and H. Kim

A Tutorial

A virtual machine appliance for use with VirtualBox® can be downloaded from
https://joerg.evermann.ca/BlockchainDemo.html. The virtual machine image
contains a ready to run setup as well as the Eclipse* integrated development
environment with the source code project. The default user name is ubuntu
and the login password is password.

A.1 Configuration

The application is installed in the folder ~/BlockchainWFMSBFTSmart. Within
this, is a config folder. This folder contains three configuration files, hosts.config,
system.config, and blockchain.config. These configuration files must be iden-
tical for all nodes of the system and must be manually distributed.

Hosts The hosts configuration file defines all possible nodes for the system with
their node number, their IP address and port used by the ordering service. Add
as required or comment out lines with #.

#server id, address and port
#(the ids from 0 to n—1 are the service replicas)
0 127.0.0.1 11000

1 127.0.0.1 11010
2 127.0.0.1 11020
3 127.0.0.1 11030
4 127.0.0.1 11040
5 127.0.0.1 11050
6 127.0.0.1 11060
7 127.0.0.1 11070
8 127.0.0.1 11080
9 127.0.0.1 11090

System The system configuration file defines the general behaviour of the sys-
tem. Only a few options should be adjusted for each use case.

— system.communication.signatureAlgorithm = SHA512withECDSA
The default digital signature algorithm uses elliptic curves with a 512-bit
SHA hash function. Alternatively, this can be changed to use an RSA prime
factorization algorithm. When generating public and private keys for each
node, the system config file is read and keys are generated based on this
setting.

— system.communication.signatureAlgorithmProvider = SunEC
This is the security provider installed in Java that provides the signature
algorithm. The configured provider must offer the configured signature al-
gorithm.

3 https://www.virtualbox.org
4 https://www.eclipse.org

SMaRt Blockchain Distributed Workflow Management 7

— system.servers.num = 1
This is the total number of nodes in the original (startup) view. The system
will not be able to process operations until this number of nodes have started
and joined the view. Note that in BFT (byzantine fault tolerant, see below)
mode, at least three nodes are required, while in CT (crash tolerant) mode,
a single node may be used.

— system.servers.f = 0
This is the maximum number of faulty servers that the system will be able to
tolerate. In BFT mode, at least 3f 4+ 1 total nodes (system.servers.num).
Example: To tolerate 1 faulty node, at least 4 nodes are required. In CT
mode, at least f 4 1 total nodes are required.

— system.initial.view = 0,1,2,3
This specifies the set of nodes in the initial view in comma-separated form.
The system will not process operations until all specified nodes have started
and joined the view. The number of nodes specified here must match the
number in system.servers.num.

— system.ttp.id = 9
This parameter specifies the node ID of the "trusted third party” (TTP).
This node is allowed to issue requests for view changes, to add or remove
a node from the current view or to change the f of the current view. In
our system, each node can assume this special node ID and issue recon-
figuration requests. Ensure that this ID is defined in hosts.config and a
private/public key pair is generated.

— system.bft = false
This parameter specifies whether the system should run in BFT (byzantine
fault tolerant) mode. If this is set to false, the system will operate in CT
(crash tolerant) mode only.

Blockchain The blockchain configuration file defines the behaviour of the block-
chain and the workflow management components of the system.

— maxConnections = 2
This parameter specifies the number of connections that each node maintains
on the peer-to-peer network that is used for block exchange. This is distinct
from the fully connected network maintained by the ordering service.

— numTransactionsPerBlock = 2
This parameter specifies the number of transactions for each block. As there
is no mining expense with our system, this parameter can be kept quite
small (even a value of 1 is possible). There is little to no overhead for block
creation and creating blocks sooner reduces the latencies in the workflow
applications.

— textFieldWidth = 20
This parameter determines the width of text entry fields for the automati-
cally generated GUI when interacting with work items.

— portDiff = 2
This parameter specifies the offset for port numbers for the p2p network from

8 J. Evermann and H. Kim

those specified in hosts.config. This must be chosen so as not to conflict with
other applications. Note also that the ordering service uses the immediately
adjacent port to the one specified in hosts.config for client communica-
tions. For example, when hosts.config specifies a port number N, this is
the port used for server-server communication by the ordering service, and
port N+1 is used for client-server communication by the ordering service.

A.2 Key Generation

Nodes communicate with each other using messages signed with digital signa-
tures. These signatures are based on public and private keys, which must be
generated for the chosen signature algorithm and signature provider. To gener-
ate keys for a particular node, run the following command from the application
directory (where <n> is the node number):

java —jar CertificateAuthority.jar <n>

This command will read the hosts.config and system.config configura-
tion files and generate keys based on that configuration. Elliptic curve based
keys are generated in the folder ./config/ecdsakeys while prime factorization
(RSA) keys are generated in the folder ./config/keys. Important:

— You must generate a key-pair for every node defined in hosts.config, even
if this node is not joining the ordering view.

— You must manually distribute the public keys to all nodes in the system and
you must manually distribute the private keys to each respective node

A.3 Launching the Application

Important The ordering service maintains a record of the last view. If you
want to start the system with a fresh configuration, you must delete the file
currentView in the config folder.

After configuration and key distribution, the configuration can be launched
with the following command from the application directory (where <n> is the
node number):

java —jar BlockchainWFMSBFTSmart. jar <n>

After a few seconds, the application will show two windows. The console win-
dow in the following screenshot is currently used for testing and experimentation
and will be removed in future stable versions.

SMaRt Blockchain Distributed Workflow Management 9

BlockchainWFMS (Replica [0] 127.0.0.1:11002)

| Exit || Test Message || Test Transaction || Print Status

Restart BFT |NewF: [|
Starting P2P network

|0 Exception while loading ordering state
P2P network is up

Waiting to join ordering view

oined ordering view

Error while loading blockchain
Blockchain verified ok!

[»

[4]

4 Il [¥

The example above shows a new node being started in a view of one in CT
mode. The first line indicates that the P2P network is being started. This is
followed by a message indicating that the state of the ordering service could not
be loaded from an existing file, which can be ignored for now. Line 3 indicates
that the P2P network is running, followed in line 4 by a message that the or-
dering service is waiting to join the current view. In this case, the initial view is
configured with just this node, so that the system immediately joined the order-
ing view (line 5). Next, the application attempts to load existing blocks of the
blockchain, in this case unsuccessfully (line 6) and verifies the blockchain. The
empty blockchain verifies as "ok” (line 7).

The ”Test Message” sends a ping message over the peer-to-peer network
to connected nodes, the ”Test transaction” message generates a non-workflow
transaction and adds it to the ordering service transaction pool. The ”Print
Status” button prints the current blockchain and ordering service state to the
console. The "Restart BE'T” button will simulate a node crash and restart the
ordering service. The ordering service will fetch state from other nodes in the
current view and re-join the ordering system. A new level of fault tolerance can
be set by entering a value for f and pushing the ”Set F” button. The system will
issue an error when the new value is too high for the current view (the current
number of nodes).

Cannot set new F

I
'd) Maximum F for N=1 nodes is 0 when BFT=false

10 J. Evermann and H. Kim

The second window shows the worklist. This includes information about the
workflow specifications on the blockchain, about running cases, about tasks in
the local nodes’ worklist and about pending transactions (transactions created
by the local node that are waiting to be included in a block).

WorklistUl for Replica [0] 127.0.0.1:11002

Load & Define Workflow Model Save Workflow Model

Mame Transitions Places

Launch New Case
Petrilet CaselD Deadlocked Ended Enabled Transiti...

Start & Finish Work ltem

Fetritet CaselD Activity Resource

Local Pending Workflow Actions
View Pending Transaction

Ty UUID Tx Type Description

Important Depending on how the initial view is configured in system.config
and how many other nodes are running and connected, the application may
wait at the ”Waiting to join ordering view” message until all required nodes are
running and have joined the view. The worklist window is only available once
the ordering view is ready to process requests.

SMaRt Blockchain Distributed Workflow Management 11
A.4 Loading Workflow Specifications

Using the button ”Load & Define Workflow Model”, a workflow specification
can be loaded from a file and stored on the blockchain. The system comes with a
few short pre-defined workflow specifications. Workflow specifications are XML
files with the ending ”.bws”.

.+ Open - B x
Look In: ‘ﬁ BlockchainWFMSBFT... ‘V| E
I bin
] config
[src

[} example.bws

[y example.deferred. choice.bws

[y example.deferred. choice.distributed.bws
[y example.execute. constraints.bws

File Name: |example.deferred.choice. bws |

Files of Type: |Blockchain WFMS specification (.bws) |v|

| Open || Cancel |

Defining a new workflow specification on the blockchain is a model creation
transaction. This transaction may be pending until a new block is created. Until
then, the workflow specification will not be available in the list of workflow
specifications at the top of the worklist window. Instead, the pending transaction
in the list at the bottom of the window may be selected and inspected using the
”View Pending Transaction” button.

Tip If you need other transactions to fill a block, use the ”Test Transaction”
button in the console window.

- viewTransaction - oOx

® Transaction Info
Transaction TypeModelDefinitionTransaction

Originator [0]127.0.0.1:11002
uuiD 8452ccfe-04dc-4357-Baac-bd76c402bf42
Summary Petri net Deferred Choice Example with 4 transitions and 4 places

Once a workflow specification is stored on the blockchain, it can be saved to
a file or used to launch a new case against the specification.

12 J. Evermann and H. Kim

A.5 Workflow Specifications

Workflow specifications are XML files. They define the basic structure of the
Petri net

— Places

Transitions

Presets of transitions
Postsets of transitions
— Source place

Sink place

Additionally, they specify workflow-relevant information:

— Variables (name and datatype)
— Data constraints
— For each transition
e Node (host and port)
e Organizational role (not currently used)
Input variables
Output variables
External methods (Java class and static method)

The following are excerpts from a workflow definition file to illustrate the dif-
ferent aspects. The first fragment shows the XML declaration. The outer element
”WorkflowSpecification” defines the name of the specification as an attribute.
This name will be unique on the blockchain. Next, four places are defined with
unique identifiers. The identifiers must be valid Java UUIDs

<?xml version="1.0" encoding="UTF-8"7>
<WorkflowSpecification name="Deferred Choice Example”>
<Places>
<Place id="9185ac9c—69c8—4c44—b5db—c9f234d6475b” />
<Place id="d6eaceb8—-8a0d—4bc4—blde—86e4bcfb8b72” />
<Place id="{3e70{8f—-f39d —49da—addc—5bfc805b8137”7 />
<Place id="7851738e—ce00—-4b66—9e75—-5f9cffcOdbcb”/>
</Places>
<Source id="9185ac9c —69¢8—4c44—b5db—c9f234d6475b” />
<Sink id="d6eaceb8—-8a0d—4bc4—blde—86e4bcfb8b727 />

The next fragment shows how transitions are defined. Transition with name
7 A” is scheduled for the node running at IP address 127.0.0.1 on port 11002. It
has the variable with name ”varl” as an output variable. Transition with name
”B” is also scheduled for 127.0.0.1:11002 and has the variable with ”input” as an
input and the variable named "result” as an output. Rather than being scheduled
for manual execution by the workflow system user, it automatically executes an
external method call to class ”java.lang.Math” and method ”log”.

SMaRt Blockchain Distributed Workflow Management 13

<Transitions>
<Transition name="A">
<Host >127.0.0.1 </Host>
<Port>11002</Port>
<Role>any</Role>
<Outputs>
<Output>varl </Output>
</Outputs>
</Transition>
<Transition name="B">
<Host >127.0.0.1</Host>
<Port>11002</Port>
<Role>any</Role>
<Inputs>
<Input>input</Input>
</Inputs>
<Outputs>
<Output>result </Output>
</Outputs>
<Execute>
<ExecClass>java.lang.Math</ExecClass>
<ExecMethod>log </ExecMethod>
</Execute>
</Transition>
<l—— more transitions here ... —>
</Transitions>

The flow relation of the Petri net is defined by specifying pre-sets and post-
sets for transitions, as shown in the following fragment.

<Preset transition="A">

<Place id="9185ac9c—69¢c8—4c44—b5db—c9f234d6475b” />
</Preset>
<Postset transition="A">

<Place id="{3e70{8f—f39d —49da—addc—5bfc805b81377 />
</Postset>
<Preset transition="B’">

<Place id="{3e70f{8f—-f39d —49da—addc—5bfc805b81377 />
</Preset>
<Postset transition="B">

<Place id="7851738e—ce00—4b66—9e75—-5f9cffcOdbcb”/>
</Postset>

<l—— more presets and postsets here ... —>

Finally, variables for the entire Petri net are defined by specifying type, ini-
tial value and name. Constraints can be specified in the form of Java boolean
expressions. These will be evaluated when the transaction is being validated.

<Variables>
<Variable type="java.lang.String” init="1 am a String”>
varl</Variable>

14 J. Evermann and H. Kim
<Variable type="java.lang.Double” init="1.0">
input</Variable>
<Variable type="java.lang.Double” init="0.0">
result </Variable>
</Variables>
<Constraints>
<Constraint >
java.lang.Math.abs(result) != java.lang.Math.abs(input)
</Constraint>
</Constraints>

</WorkflowSpecification>

Important The system does no sanity checking on the XML specifications.

You are responsible to make sure that:

A.6 Working with Cases and Work Items

To launch a case, select a specification and push the ”Launch New Case” button.
Launching a case will create an instance state transaction that is submitted to
the ordering service. The transaction will remain pending until included in a
new block. Once it is included in a block, the list of cases in the worklist window
will be updated. If any enabled activities are scheduled for this node, they will

show in the work item list.

WorklistUI for Replica [0] 127.0.0.1:11002

Load & Define Workflow Model

All required elements are present and the XML has the correct structure
Source, sink, pre-sets and post-sets refer to defined places
Place identifiers are valid UUIDs
Variable types are simple Java types
Initial values are of the appropriate type
Inputs and outputs of transitions refer to defined variables
Executed methods are available on the Java classpath, take the appropriate
input type(s) and produce the appropriate output type
Constraints can be compiled at runtime and executed

Save Workflow Model

MName | Transitions | Places
Deferred Choice Example |2 |4
Launch New Case
PetriNet CaselD Deadlocked Ended Enabled Transiti...

Deferred Choice... |c7ch5703-784e-.. [N I 1

Deferred Choice... [6a563284-f015-... |N I 1

Start & Finish Work Item
Fetrifet CaselD Activity Resource

Deferred Choice Exa... [c7cb5703-784e-474... any

Deferred Choice Exa...

6a563284-f015-491f-..,

A
A

any

SMaRt Blockchain Distributed Workflow Management 15

To execute an activity, select the activity from the list and push the ”Start
& Finish Work Item” button. The workflow system will generate an appropriate
user interface that displays any input values for this work item, and on which
you can enter any output values.

»* doWorkltem: A for case c7... Deferred Choice Example - o x

@ varl{class java.lang.String)|

Important The system does not provide any sanity checking on user input. If
the entered value cannot be parsed to the appropriate type the output variable
will be assigned a default (0 for numeric types).

Limitations For demonstration purposes, the system does not remove com-
pleted or deadlocked cases from the worklist UI. Also, workflow specifications
cannot be made invalid and be removed from the list of available specifications.
Both are simple future extensions.

