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Abstract 

Covariance-based structural equation modeling (CB-SEM) is an increasingly popular technique 

for analyzing quantitative data in Information Systems research. As such, it is traditionally viewed 

as a method to test theory, rather than build it. However, many of the theoretical models tested 

with this technique show significant differences between the model and the data, which the IS 

community has been willing to overlook. This paper shows that as part of the pursuit of model fit, 

CB-SEM can provide deeper insights into a phenomenon, allowing us to build theories based on 

quantitative data.  

Keywords: Structural equation modeling, Theory building, Quantitative analysis, data analysis, 

research methods 
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Introduction 

Theories are sets of propositions that relate concepts or constructs, bounded by a specified context (Bacharach, 

1989). Theories may exist for different purposes, among them explanation and prediction (Dubin, 1969; Glaser and 

Strauss, 1967; Gregor, 2006). Theories that explain and predict provide causal explanations of a phenomenon and 

testable hypotheses (Bacharach, 1989; Dubin, 1969; Gregor, 2006; Popper, 1968). A representation relationship 

relates the theoretical level of constructs and propositions, to the more specific level of variables and hypotheses: 

Variables represent constructs and hypotheses that relate variables are derived from the propositions that relate 

constructs (Bacharach, 1989).  

Theory building has traditionally been based on qualitative data, using inductive case studies (Eisenhardt, 1989) or 

grounded theory approaches (Glaser and Strauss, 1967; Urquhart et al., 2009). An important aspect of both is the 

interplay between data and emerging theory. The researcher constantly compares data with theory, to refine theory 

based on data, to identify new themes in the data, and to ensure the emergent theory explains the data (Glaser and 

Strauss, 1967; Urquhart et al., 2009). However, Glaser and Strauss (1967) point out that “there is no fundamental 

clash between the purposes and capacities of qualitative and quantitative methods or data … each form of data is 

useful for both verification and generation of theory.” (pg. 17f) 

Covariance-based structural equation modeling (CB-SEM) is an increasingly popular technique for analyzing 

quantitative data. CB-SEM operates on Bacharach's (1989) specific level. In the statistical model, latent variables 

represent theoretical constructs, and hypothesized regression relationships between them represent hypothesized 

causal propositions between constructs. CB-SEM is typically used for theory testing as it allows simultaneous 

testing of multiple relationships and provides a test of how well the statistical model, which represents the theory, 

fits the observed data. 

The test of model fit is a χ2 test, which tests whether a model, with its estimated parameters, explains the observed 

covariances (Bollen, 1989). For model-implied covariances that are not significantly different from observed ones, 

the χ2 test should be insignificant. Researchers, also in the information systems (IS) discipline (Gefen et al. 2000), 

and even textbook authors (Hair et al., 2005) suggest ignoring the χ2 test. They argue that the test statistic depends 

on sample size, and it is therefore impossible to specify a well-fitting model with realistic sample sizes. This 

problem of ignoring substantial misfit is widespread in the IS literature. Of the 54 studies published in MISQ, ISR, 

JMIS and JAIS between 2004 and 2008 that use CB-SEM, only three achieve a non-significant χ2 test for their 

model, and only one of the remaining 51 studies acknowledges the misfit and makes an effort at identifying or 

discussing the substantive reasons for the misfit. Typically, researchers provide a set of approximate fit indices to 

claim that, despite evidence to the contrary, their models fit the data. 

Models that do not fit the observed covariances are still worthwhile publishing, because, given the extensive theory 

building and data collection effort that goes into a well-executed study, we can learn much from them. But rather 

than ignoring misfit, researchers need to identify the reasons for the misfit in order to improve the theory their 

models are based on: ”We need to understand what is problematic if we are to do better next time around” (Hayduk 

et al. 2007, p. 845).  

The goal of this paper is three-fold. First, we want to demonstrate that it is possible to construct well-fitting models 

even with realistic sample sizes. Second, we want to demonstrate that the process of fitting a model to data can lead 

to additional insights into the data, akin to theory building approaches in qualitative inquiry. Third, we wish to 

impress on the reader the importance of paying close attention to development of measurement indicators for 

constructs. The paper proceeds with a discussion of model fit and a description of the data used in this paper. This is 

followed by an extensive presentation of an example application. We then discuss the contributions and limitations, 

and revisit our three goals. 

Model Fit 

The only statistical test for CB-SEM models is the χ2 test (Barrett, 2007). Yet, as indicated, most published models 

in IS research fail this test (only 3 of 54 report non-significant χ2) and many ignore the test completely. Ignoring the 

χ2 test is tantamount to ignoring evidence that falsifies a theory, which is the basic method of scientific research 

(Popper, 1968). Hayduk et al. (2007, pg. 848) warn that “overlooking indications of potentially huge problems are 

the kinds of things lawyers will gladly describe as malfeasance, dereliction of responsibility, or absence of due 
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diligence.” Researchers instead resort to approximate fit indices and threshold values to argue for well fitting models 

despite evidence to the contrary: “Where it has all gone badly wrong in this type of SEM model testing is that many 

investigators have actively avoided the statistical test of fit of their models, in favor of a collection of ad hoc indices 

which are forced to act like ‘tests of fit’” (Barrett, 2007, pg. 819). This is also our impression of the IS literature, 

where 9 of 54 studies do not even present the χ2 statistic and 39 of 54 studies claim good model fit despite 

significant χ2 differences between model and data. Barrett (2007, pg. 819f) nicely summarizes our impression of the 

IS literature: “Indeed, one gets the feeling that social scientists cannot actually contemplate that most of their models 

do not fit their data, and so invent new ways of making sure that by referencing some kind of ad hoc index, that tired 

old phrase ‘acceptable approximate fit’ may be rolled out as the required rubber stamp of validity.”  

One of the main issues raised by critics of the χ2 test is sample size dependence. Critics argue that all models are 

misspecified, hence leading to a non-central χ2 statistic, which increases with sample size. For example, Bentler 

(2007, pg. 828) suggests that “a model is liable always to be misspecified, and hence to be rejected by any ‘exact’ 

test.” Similarly, Goffin (2007, pg. 835) argues that “the models we develop in psychology should virtually never be 

presumed to contain the whole truth and therefore be subjected to a test of perfect fit”. Steiger (2007, pg. 894) 

concludes with “Why test a hypothesis that is always false?” We are not this fatalistic and disagree with this 

sentiment, as do Hayduk et al. (2007), who state in a response to Barrett (2007) that “We cannot prevent Barrett 

from claiming that all his models are detectably wrong in general, but we can encourage everyone to strive for 

models that are properly specified, not wrong. Observing that at least some wrong models are more assuredly 

detected by larger samples (because of decreased sampling variability) is good methodological news to those 

seeking proper models!” (pg. 844) The sample size dependence of the χ2 test for misspecified models is a useful 

feature that provides the statistical power to detect these models. 

Even if it were not possible in principle to construct a true model, it should be incumbent upon researchers to at least 

strive for exact fit. Anything less might be construed as “simple intellectual laziness on the part of the investigator.” 

(Barrett, 2007, pg. 823). A non-significant χ2 test is a necessary (but not sufficient) condition for a true model and 

evidence to the contrary should not be dismissed. 

In contrast, approximate fit indices are known to be problematic. Barrett (2007, pg. 817) summarizes recent studies 

by Beauducel and Wittmann (2005), Fan and Sivo (2005), Marsh et al. (2004) and Yuan (2005) and concludes that 

“single-valued indicative thresholds for approximate fit indices were impossible to set without some models being 

incorrectly identified as fitting ‘acceptably’ when in fact they were misspecified to some degree.” In contrast to the 

χ2 test, which tests whether a model reproduces observed covariances, fit indices are developed to indicate goodness 

of approximation. However, as Barrett (2007, pg. 819) points out, “the problem is that no-one actually knows what 

‘approximation’ means in terms of ‘approximation to causality’ in the many areas in which SEM modelling is used.” 

Millsap (2007, pg. 877) echoes this: “In my view, the most cogent argument against setting particular thresholds for 

approximate fit is our lack of explicit knowledge about how values of various approximate fit indices can be 

translated into statements about particular types of model misspecifications.” In fact, even Hu and Bentler (1999) in 

their much-cited paper warned researchers that “it is difficult to designate a specific cutoff value for each fit index 

because it does not work equally well with various conditions.” (Pg. 27) Despite these warnings and mounting 

empirical evidence, researchers continue to treat fit indices and index thresholds as if they were statistical tests with 

known type I and II error rates. 

While we do believe that fit indices are useful, they should not be used to hide the fact that a model does not fit the 

observed data. Fit indices are useful when a model fits the data, i.e. satisfies the necessary condition of not failing 

the χ2 test. They can then be used to compare the parsimony of models because many incorporate the model degrees 

of freedom. Fit indices can also be used to compare non-nested model, using information-theoretic indices such as 

the AIC or BIC. As Hayduk et al. (2007, pg. 844f) state, “we do not object to multi-faceted model assessments … 

but none of these replace or displace model testing” (pg 844f). 

Thus while the χ2 test provides a necessary but not sufficient condition for identifying a true model, fit indices 

provide neither. It is for these reasons that we focus on the χ2 test in this paper and do not present or discuss fit 

indices. We believe the IS community should apply more rigorous standards in model testing, rather than mere 

model evaluation using indices with unknown properties, uncertain meaning, and problematic threshold values. As 

McIntosh (2007, pg. 861) points out, “Merely settling for close fit could hinder the advancement of knowledge in a 

given substantive field, since there is little impetus to seek out and resolve the reasons why exact fit was not 

attained.” Hence, one of our goals is to demonstrate that it is possible to construct models that satisfy the χ2 test. 
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As pointed out, many published models in the IS area do not fit. However, this does not mean they are not valuable. 

On the contrary, given the careful theory development and extensive data collection effort, we agree with Hayduk et 

al. (2007, pg. 845) who argue that “attentively constructed and theoretically meaningful models that fail ought to be 

carefully discussed and published… Any area that is unable to openly acknowledge and examine the deficiencies in 

its current theories is hampered from proceeding toward better theories… If a model fails, the authors should not 

proceed to discuss the model as if it were ‘OK anyway’. They should publish a discussion of ‘how the world looks 

from this theory/model perspective’, and their diagnostic investigations of ‘how and why this theory/model 

perspective on the world fails’. We need to understand what is problematic if we are to do better next time around.” 

Barrett (2007) makes sensible suggestions on how to deal with this further, suggesting that “if the [distributional] 

assumptions appear reasonable, … and an author is curious to explore further, then begin examining the residual 

matrix for clues as to where misfit is occurring, adjust the model accordingly, refit, and proceed in this way to 

explore minor-adjustment alternative models until either fit is achieved, or where it becomes obvious that something 

is very wrong with the a priori theory”.  

At this point we take up the literature on inductive theory development. As we highlighted in the introduction, a key 

characteristic is the interplay between the developing theory and the data, the constant comparison of the two. Thus, 

we view the process of diagnosing misspecification of CB-SEM models and of improving models by comparing 

them to the data as very much related to inductive theory building. However, we acknowledge some differences. 

First, most CB-SEM based research starts out as a theory testing endeavor, thus providing an initial model which 

may subsequently be modified. In contrast, inductive theory development in qualitative research typically begins 

without an a-priori model (Urquhart et al., 2009). This however, is only a difference in degrees: The quantitative 

CB-SEM research could begin with a null model, in which no observed variable is related to any other. Model 

diagnostics, i.e. theory to data comparison, could begin with such an a-theoretic (and maximally misspecified) 

model. Second, theory construction from qualitative data has few restrictions on the available data. For example, 

depending on whether one follows Glaser’s or Strauss & Corbin’s approach to grounded theory, the researcher need 

only select a general area of inquiry or perhaps a specific phenomenon, and can gather data ad-hoc, as necessary. In 

contrast, the CB-SEM researcher is restricted to an a-priori defined phenomenon and has a set of pre-defined 

observations. Depending on the population that is sampled, it may or may not be practical to collect additional data. 

However, we believe that these differences do not change the fact that a constant comparison of theory and data, and 

a building of theory, is possible in CB-SEM, as we demonstrate in the following sections.  

While Glaser and Strauss’ (1967) work on grounded theory preceded the advent of CB-SEM, they write: “The 

freedom and flexibility that we claim for generating theory from quantitative data will lead to new strategies and 

styles of quantitative analysis, with their own rules yet to be discovered” (pg. 186, emphasis in original). This paper 

may be seen as an illustration of such a new analysis strategy. 

Data 

For illustrating how quantitative data can be used to generate rich theory, we use data from a previous study by Chin 

et al. (2008) on the Technology Acceptance Model (TAM). We use this example for a number of reasons. First, 

TAM is one of the most frequently used theories in IS research, well accepted, and familiar to most researchers. The 

measurement items have been virtually unchanged over many studies. Second, Chin et al. (2008) present one of the 

few commendable studies in IS research that publish covariance or correlation matrices to allow readers to 

independently verify their conclusions and extend their research, as we do here. Third, Chin et al. (2008) claim that 

their model fits the data well, despite strong evidence to the contrary. The authors overlook the results of the χ2 test 

that shows significant discrepancies, while at the same time trusting in the χ2 test for multi-group invariance testing. 

If the researchers do not trust the χ2 test for model fit, what makes them trust the same test for model differences?  

Furthermore, when the models do not fit the data, the χ2 statistic has a non-central distribution (Bollen, 1989), and it 

is therefore inappropriate to use a central-distribution χ2 difference test: “The practice of ignoring the global chi-

square tests while at the same time conducting and interpreting chi-square difference tests between nested models 

should be prohibited as nonsensical.” (Millsap, 2007, pg. 878) 

While Chin et al. (2008) provide the covariance matrix, their reporting is incomplete in other aspects (Boomsma, 

2000; McDonald and Ho, 2002). One important omission is the fit function. While the maximum-likelihood (ML) fit 

function is the most commonly used fit function, it assumes multivariate normality of the data. Chin et al. (2008) do 

not appear to have verified multivariate normality. Second, non-normal data can be addressed using Satorra-Bentler 

(SB) corrections to the χ2 statistic (Satorra and Bentler, 1994), but Chin et al. (2008) provide no information on 
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whether theirs is a corrected statistic. Third, Chin et al. (2008) do not provide the complete statistical model that 

would show whether items are reflective or formative, and whether errors are correlated. Nor do they later provide 

the estimated error variances and covariances. Finally, the provided covariance matrix is incomplete. Because Chin 

et al. (2008) collected information on two different TAM instruments from the same participants, covariances 

between the items of the two instruments should be available, but are not published. 

To verify our assumptions about the estimation and fit methods, we first reproduce the results obtained by Chin et al. 

(2008). Using the reported sample size of 283, the ML method without SB corrections on a model with reflective 

indicators and uncorrelated errors reproduces exactly the reported results. We used multi-group comparisons to 

verify their claim in their footnote 6 that the factor structure is measurement invariant between the two instruments. 

We now turn to a more detailed analysis of the first TAM instrument, which employs the items from Davis (1989). 

The results presented by Chin et al. (2008) show a χ2=181 on df=101 for a highly significant p value, indicating that 

the model does not fit the observed covariance data. The complete model is shown in Figure 1 and the measurement 

items are shown in Table 2 (all items measured on 7-point Likert scales). The covariance matrix can be found in 

Appendix C of (Chin et al., 2008) and is therefore not reproduced here. 

Table 1:  Instrument items from (Chin et al., 2008), all measured on a 7-point Likert scale 

 

Item Wording 

Perceived Ease of Use 

eou1 Learning to operate the (task-related) platform portions of (system) is easy for me 

eou2 I find it easy to get the (task-related) portions of (system) to do what I want it to do 

eou3 My interaction with the (task-related) portions of (system) has been clear and understandable. 

eou4 I find the (task-related) portions of (system) to be flexible to interact with.  

eou5 It is easy for me to become skillful at using the (task-related) portions of (system) 

eou6 I find the (task-related) portions of (system) easy to use. 

Perceived Usefulness 

use1 Using (system) as a (technology type) enables me to (accomplish tasks) more quickly 

use2 Using (system) improves my (ability to accomplish task) 

use3 Using (system) as a (technology type) increases my productivity 

use4 Using (system) as a (technology type) increases my effectiveness in accomplishing (task) 

use5 Using (system) makes it easier to do my (task) 

use6 I find (system) useful in my (task completion)  

Predicted Usage 

lu1 If the choice of a (technology type) platform were up to me, it would likely be (system). 

lu2 If I need to (accomplish task) and the choice was up to me, I would expect to use (system) as a (task-

related) platform. 

lu3 If asked, I would likely recommend (system) as a (task-related) platform 

lu4 For future (task-oriented) tasks that are totally within my control, I would probably use (system) as a 

(task-oriented) platform 

Application 

We began by estimating the complete model shown in Figure 1, which produced significant misfit (χ2=182.25, 

df=101, p=0.0000), as reported by Chin et al. (2008). Examining the residuals, i.e. the difference between model-

implied and observed covariances, showed that the model explains the variances well but the covariances less so. 

However, there was no single variable that had unusually large residuals with other variables, nor were there any 

other patterns immediately identifiable in the residual matrix. Hence, we examined each construct individually, to 

assess whether Perceived Ease of Use, Perceived Usefulness, and Predicted Usage individually fit the factor models 

that were hypothesized for them. 
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Figure 1: TAM Model 

Perceived Ease of Use 

With free error variances, uncorrelated errors, and one path coefficient constrained for scaling purposes, a six-

indicator EOU factor model showed significant misfit (χ2=34.693, df=9, p=0.0001), showing that EOU is not a 

simple construct as hypothesized. 

We therefore began to critically analyze the EOU item wording in detail. Table 1 shows that, rather than being 

homogeneous in meaning, i.e. being questions about the same underlying phenomenon, they are in fact different. 

Item EOU4 deals with flexibility, item EOU3 deals with clarity and understandability, items EOU1 and EOU5 are 

concerned with the ease of learning and mastering of a system and only EOU2 and EOU6 deal directly with ease of 

use. We therefore began modeling EOU2 and EOU6 as two items of a single EOU factor (Figure 2). To achieve 

identification, we chose to constrain error variances to 20% of the item variances. While this is in line with the 

estimates in the full TAM model, there is also a theoretical motivation. The error variance “quantifies your 

assessment of how similar or dissimilar your concept is to the best indicator.” (Hayduk, 1996). We believe that such 

a small error variance is defensible because the item wording is strongly and directly related to the latent construct, 

Perceived Ease Of Use. This model showed good fit (χ2=0.1950, df=1, p=0.6588). Finally, we chose small error 

variances because, as Miles and Shevlin (2007) point out, the larger the error variances, the easier it is to fit the 

model. 

 

 

 

Figure 2:  EOU items (χ2=0.1951, df=1, p=0.6587) 
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In the remainder of this article, we provide complete model specification and estimation results for all models to 

allow future critique of this analysis. We used the sem package in the open-source R system for our analysis. 

Models are specified by one line for each path. Regression paths are specified with -> while covariance paths are 

specified by <->. The second entry on each line is the name of the parameter or NA if the parameter is fixed. The 

third entry is the value of a fixed parameter or the starting value for a free parameter. Covariance paths for observed 

variables represent error covariances; covariance paths for endogenous latents represent disturbance covariances. 

Comments begin with a #. For further details see (Fox, 2006). The model specification and estimation results for the 

model in Figure 2 follow. 

 
# The EOU concept 

eou -> eou2, NA, 1 

eou -> eou6, lambda1, 1 

eou <-> eou, phi1, NA 

eou2 <-> eou2, NA, 0.36 

eou6 <-> eou6, NA, 0.40 

 

 

Parameter Estimates 

        Estimate Std Error z value Pr(>|z|)               

lambda1 1.0479   0.046374  22.5972 0        eou6 <--- eou 

phi1    1.4793   0.154257   9.5896 0        eou <--> eou  

 

Based on the item wording, EOU4 expresses Perceived Flexibility of the system, rather than Perceived Ease of Use. 

While a system that is perceived flexible may be perceived to be easy to use, the two are not the same. Hence, we 

model Perceived Flexibility as one cause (among other possible ones) of Perceived Ease of Use. Similarly, EOU3 

expresses clarity and understandability, which may lead to a system that is perceived to be easy to use, but, again, 

the two concepts are not identical. The error variances of the indicator variables are again constrained at 20% of the 

item variances, for the reasons described above. 

The model is shown in Figure 3 and the estimation showed good fit (χ2=4.1967, df=3, p=0.241). Note that in the 

estimation results below, flexibility is not significantly related to ease of use. This is plausible, as a system that is 

flexible may offer more options to the user, making it more complex and hence harder to use, thus negating any 

inherent increase in ease of use by flexibility. A flexible system may also provide multiple ways of achieving the 

same result, possibly confusing the novice user and making it appear harder to use, further diminishing any positive 

effect that flexibility might have. 

 

 

Figure 3:  EOU, Flexibility, and Clarity (χ2=4.1967, df=3, p=0.2410) 

 

# The EOU part 

eou -> eou2, NA, 1 

eou -> eou6, lambda1, 1.05 

eou <-> eou, zeta1, NA 

eou2 <-> eou2, NA, 0.36 

eou6 <-> eou6, NA, 0.40 

# Perceived Clarity 

clear -> eou3, NA, 1 

eou3 <-> eou3, NA, 0.34 

clear <-> clear, phi2, NA 

clear -> eou, gamma1, NA 

# Perceived Flexibility 

flex -> eou4, NA, 1 

eou4 <-> eou4, NA, 0.32 

flex <-> flex, phi3, NA 

flex -> eou, gamma2, NA 

# Covariances 

flex <-> clear, phi1, NA 

 

Parameter Estimates 

        Estimate  Std Error z value Pr(>|z|)                    

lambda1  1.068587 0.046081  23.1892 0.0000e+00 eou6 <--- eou    

zeta1   -0.049852 0.048739  -1.0228 3.0638e-01 eou <--> eou     

phi2     1.420000 0.148683   9.5505 0.0000e+00 clear <--> clear 

gamma1   1.144443 0.205550   5.5677 2.5809e-08 eou <--- clear   

phi3     1.328000 0.138944   9.5578 0.0000e+00 flex <--> flex   

gamma2  -0.133897 0.207013  -0.6468 5.1776e-01 eou <--- flex    

phi1     1.251000 0.125622   9.9585 0.0000e+00 clear <--> flex  
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Having established the ease of use latent as above, we must take care to prevent interpretational confounding. This is 

a situation in which, due to free parameters, a latent takes on new meaning by virtue of significantly different path 

coefficients to other variables. The path coefficients from EOU to EOU2 and EOU6 differ in the two estimations 

above (1.0479 versus 1.068587) and we need to test whether the differences are significant. Restricting the 

coefficient in the latter model to its value in the former allows a χ2 difference test with one degree of freedom, 

which, in this case, is non-significant (∆χ2=0.1657). 

The item wording suggests that items EOU1 and EOU5 are related to the ease of learning a system, rather than the 

ease of using a system. Again, the concepts may be related, but they are not identical. In fact, the direction of 

causality is not even clear: If a system is easy to use, it may well be perceived to also be easy to learn. On the other 

hand, it is also plausible that if a person perceives a system to be easy to learn, she will also believe the system to be 

easy to use. Adding the Learnability concept with the indicators EOU1 and EOU5 into the model in Figure 3 proved 

to be unsuccessful. Modeling it as an independent cause of EOU showed misfit (χ2=47.657, df=10, p=0.0000), as 

did modeling it as consequence only of EOU (χ2=184.71, df=12, p=0.0000). Realizing that Perceived Flexibility and 

Perceived Clarity might influence Learnability in the same way as they impact Perceived Ease of Use, we modeled it 

as a consequence of both Perceived Flexibility and Perceived Clarity (Figure 4). While showing improvement, this 

model also did not fit our data (χ2=37.309, df=10, p=0.0001). 

 

 

Figure 4:  EOU, Learnability, Flexibility, and Clarity (χ2=37.309, df=10, p=0.0001) 

 

 

# The EOU concept 

eou -> eou2, NA, 1 

eou -> eou6, lambda1, 1.05 

eou <-> eou, zeta1, NA 

eou2 <-> eou2, NA, 0.36 

eou6 <-> eou6, NA, 0.40 

# Perceived clarity 

clear -> eou3, NA, 1 

eou3 <-> eou3, NA, 0.34 

clear <-> clear, phi2, NA 

clear -> eou, gamma1, NA 

# Perceived flexibility 

flex -> eou4, NA, 1 

eou4 <-> eou4, NA, 0.32 

flex <-> flex, phi3, NA 

flex -> eou, gamma2, NA 

# Covariances 

flex <-> clear, phi1, NA 

# Learnability 

learn <-> learn, zeta2, NA 

learn -> eou1, NA, 1 

learn -> eou5, lambda5, NA 

eou1 <-> eou1, NA, 0.42 

eou5 <-> eou5, NA, 0.4 

# Causal relationships 

flex -> learn, gamma3, NA 

clear -> learn, gamma4, NA 

 

 

Parameter Estimates 

        Estimate   Std Error z value  Pr(>|z|)                    

lambda1  1.0709785 0.045459  23.55942 0.0000e+00 eou6 <--- eou    

zeta1   -0.0354484 0.025560  -1.38687 1.6548e-01 eou <--> eou     

phi2     1.4283542 0.147325   9.69527 0.0000e+00 clear <--> clear 

gamma1   1.0916229 0.127883   8.53609 0.0000e+00 eou <--- clear   

phi3     1.3281374 0.138984   9.55601 0.0000e+00 flex <--> flex   

gamma2  -0.0838928 0.134661  -0.62299 5.3329e-01 eou <--- flex    

phi1     1.2497466 0.125631   9.94774 0.0000e+00 clear <--> flex  

zeta2    0.0097682 0.041329   0.23635 8.1316e-01 learn <--> learn 

lambda5  0.9485977 0.041987  22.59262 0.0000e+00 eou5 <--- learn  

gamma3  -0.3288684 0.185190  -1.77585 7.5758e-02 learn <--- flex  

gamma4   1.3584442 0.175915   7.72216 1.1546e-14 learn <--- clear 
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Closely examining the residuals for these three models yielded no clues as to what caused the model misfit, as large 

residuals occurred between differing and unrelated variables. We finally examined whether items EOU1 and EOU5 

(under the assumption of 20% error variance) are even caused by the same latent. The model showed significant 

misfit (χ2=7.742, df=1, p=0.0054). This leads us to question the validity of items EOU1 and EOU5 (or the reliability 

of the items, if larger error variance would yield a fitting model). While their wording suggests they are related, and 

are not direct indicators of Perceived Ease of Use, none of the plausible models fit the data. 

Perceived Usefulness 

We applied the same approach to the Perceived Usefulness construct as we did for Perceived Ease of Use. An initial 

factor model with six indicators, free error variances, uncorrelated errors, and one path coefficient constrained for 

scaling yielded significant misfit (χ2=32.607, df=9, p=0.0002). 

While the items for Perceived Usefulness appear more homogeneous than the items for EOU, we can still make out 

distinct groups. Items USE1, USE2, and USE3 deal with efficiency, performance, and productivity, i.e. with amount 

of work per time unit. On the other hand, USE4 deals with effectiveness, which is quite distinct from efficiency. 

USE6 is the most immediate and direct measure of usefulness. The only problematic item is USE5, which deals with 

making the task easier. While this is clearly related to usefulness, effectiveness, and efficiency, the causal 

relationships are not immediately clear. A system can be effective without making the task any easier, or it can make 

the task easier, but not be effective. Similarly, efficiency and easing of the task are not necessarily related. 

Separating efficiency, effectiveness, and usefulness leads to the model in Figure 5 (free error variances where 

possible, uncorrelated errors, one path coefficient constrained for scaling each latent), which fits the observed data 

(χ2=7.6693, df=4, p=0.1045). 

 

 

 

Figure 5:  Usefulness model (χ2=7.6693, df=4, p=0.1045) 

 

 

# Perceived efficiency 

efficient -> use1, NA, 1 

efficient -> use2, lambda2, 1 

efficient -> use3, lambda3, 1 

efficient <-> efficient, phi1, NA 

use1 <-> use1, delta1, NA 

use2 <-> use2, delta2, NA 

use3 <-> use3, delta3, NA 

# Perceived effectiveness 

effective -> use4, NA, 1 

use4 <-> use4, NA, 0.24 

effective <-> effective, phi2, NA 

effective <-> efficient, phi3, 1 

# Perceived usefulness 

useful -> use6, NA, 1 

useful <-> useful, zeta1, 1 

use6 <-> use6, NA, 0.30 

# Causal relationships 

efficient -> useful, gamma1, NA 

effective -> useful, gamma2, NA 

 

 

Parameter Estimates 

        Estimate Std Error z value Pr(>|z|)                            

lambda2 1.07423  0.071373  15.0511 0.0000e+00 use2 <--- efficient      

lambda3 1.20188  0.077912  15.4261 0.0000e+00 use3 <--- efficient      

phi1    0.63996  0.082885   7.7211 1.1546e-14 efficient <--> efficient 
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delta1  0.37504  0.039071   9.5988 0.0000e+00 use1 <--> use1           

delta2  0.36750  0.039643   9.2701 0.0000e+00 use2 <--> use2           

delta3  0.38656  0.043796   8.8264 0.0000e+00 use3 <--> use3           

phi2    0.97200  0.102150   9.5155 0.0000e+00 effective <--> effective 

phi3    0.72728  0.077438   9.3918 0.0000e+00 efficient <--> effective 

zeta1   0.13732  0.045717   3.0037 2.6670e-03 useful <--> useful       

gamma1  0.78095  0.273660   2.8537 4.3210e-03 useful <--- efficient    

gamma2  0.39921  0.220848   1.8076 7.0667e-02 useful <--- effective    

The Exogenous Latents 

At this stage we combine the two exogenous concepts, Perceived Ease of Use and Perceived Usefulness. While the 

initial TAM results suggest that Perceived Ease of Use influences Perceived Usefulness (Davis, 1989), Chin et al., 

(2008) model them as merely exogenously co-varying. As we have additional concepts available, i.e. Perceived 

Clarity and Perceived Flexibility, which are both exogenous, we hypothesize that increases in Perceived Flexibility 

might also cause increased Perceived Usefulness, irrespective of the Perceived Ease of Use. As we have seen above 

(Figure 4), a flexible system can plausibly be argued to be harder to use than an inflexible one. However, it is also 

plausible that a flexible system is more useful, as it is likely to be able to accomplish more tasks, or allow more 

efficient ways to perform the task. This could serve as an explanation for the effects of EOU on Usefulness 

suggested by Davis (1989). Hence, a first model to be tested is shown in Figure 6. Again, error variances are free 

where possible, errors are uncorrelated, and all four exogenous latents are allowed to co-vary. This model fits the 

data well (χ2=28.756, df=22, p=0.1520). 

 

 

 

Figure 6:  Exogenous latents (χ2=28.756, df=22, p=0.1520) 

 

 

# The EOU concept 

eou -> eou2, NA, 1 

eou -> eou6, lambda1, 1 

eou <-> eou, zeta1, NA 

eou2 <-> eou2, NA, 0.36 

eou6 <-> eou6, NA, 0.40 

# Perceived clarity 

clear -> eou3, NA, 1 

eou3 <-> eou3, NA, 0.34 

clear <-> clear, phi2, NA 

clear -> eou, gamma1, NA 

# Perceived flexibility 

flex -> eou4, NA, 1 

eou4 <-> eou4, NA, 0.32, NA 

flex <-> flex, phi3, NA 

flex -> eou, gamma2, NA 

flex <-> clear, phi1, NA 

# Perceived efficiency 

efficient -> use1, NA, 1 

efficient -> use2, lambda2, 1 

efficient -> use3, lambda3, 1 

efficient <-> efficient, phi4, NA 

use1 <-> use1, delta1, NA 

use2 <-> use2, delta2, NA 

use3 <-> use3, delta3, NA 

# Perceived effectiveness 

effective -> use4, NA, 1 

use4 <-> use4, NA, 0.24 

effective <-> effective, phi5, NA 

effective <-> efficient, phi6, 1 
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# Perceived usefulness 

useful -> use6, NA, 1 

useful <-> useful, zeta2, 1 

use6 <-> use6, NA, 0.30 

# Causal relationships 

efficient -> useful, gamma3, NA 

effective -> useful, gamma4, NA 

eou -> useful, gamma5, NA 

# Exogenous covariances 

flex <-> efficient, phi7, NA 

flex <-> effective, phi8, NA 

clear <-> efficient, phi9, NA 

clear <-> effective, phi10, NA 

 

 

 Parameter Estimates 

        Estimate  Std Error z value  Pr(>|z|)                            

lambda1  1.066844 0.045994  23.19538 0.0000e+00 eou6 <--- eou            

zeta1   -0.047657 0.049361  -0.96548 3.3431e-01 eou <--> eou             

phi2     1.420703 0.148752   9.55080 0.0000e+00 clear <--> clear         

gamma1   1.166287 0.206443   5.64943 1.6098e-08 eou <--- clear           

phi3     1.327058 0.138964   9.54962 0.0000e+00 flex <--> flex           

gamma2  -0.158570 0.207667  -0.76358 4.4512e-01 eou <--- flex            

phi1     1.254636 0.125566   9.99181 0.0000e+00 clear <--> flex          

lambda2  1.073017 0.071159  15.07922 0.0000e+00 use2 <--- efficient      

lambda3  1.198657 0.077625  15.44154 0.0000e+00 use3 <--- efficient      

phi4     0.640068 0.082960   7.71541 1.1990e-14 efficient <--> efficient 

delta1   0.374932 0.039052   9.60075 0.0000e+00 use1 <--> use1           

delta2   0.369047 0.039516   9.33912 0.0000e+00 use2 <--> use2           

delta3   0.391364 0.043708   8.95405 0.0000e+00 use3 <--> use3           

phi5     0.974642 0.102297   9.52758 0.0000e+00 effective <--> effective 

phi6     0.729410 0.077559   9.40463 0.0000e+00 efficient <--> effective 

zeta2    0.133213 0.045175   2.94881 3.1900e-03 useful <--> useful       

gamma3   0.834740 0.292963   2.84930 4.3816e-03 useful <--- efficient    

gamma4   0.309456 0.227977   1.35740 1.7465e-01 useful <--- effective    

gamma5   0.067931 0.045673   1.48735 1.3692e-01 useful <--- eou          

phi7     0.511513 0.075680   6.75889 1.3905e-11 efficient <--> flex      

phi8     0.637746 0.092410   6.90123 5.1552e-12 effective <--> flex      

phi9     0.495305 0.074123   6.68225 2.3531e-11 efficient <--> clear     

phi10    0.562385 0.089211   6.30402 2.9003e-10 effective <--> clear   

 

To assess interpretational confounding, we conduct χ2 difference tests by restricting each path coefficient in Figure 

6 to its value in Figure 4 or Figure 5. All χ2 difference tests are non-significant, showing that path coefficients, and 

hence the meaning of the latent concepts, remain unchanged. 

Predicted Usage 

The final concept, Predicted Usage, is represented by an endogenous latent variable with four hypothesized 

indicators. Examining the indicators closely shows that LU3 is slightly different as it deals with recommendations 

for others, rather than subject’s own future intended usage. However, a test of the hypothesized four indicator factor 

model, with free errors, uncorrelated errors, and one path coefficient fixed for scaling showed good fit (χ2=1.6517, 

df=2, p=0.4379), so that we used this sub-model for the next step.  

Full Model 

We are now ready to assemble the full model, based on the model in Figure 6. The TAM theory suggests that both 

Perceived Usefulness and Perceived Ease of Use cause future intentions to use a system (Chin et al., 2008; Davis, 

1989), so we introduce these two paths. We estimate the model again with errors free where possible, uncorrelated 

errors, and correlated exogenous latents. The model fits the data (χ2=67.338, df=55, p=0.1228). This model is 

shown in Figure 7. 
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Figure 7:  Full model (χ2=67.338, df=55, p=0.1228) 

 

 

# The EOU concept 

eou -> eou2, NA, 1 

eou -> eou6, lambda1, 1 

eou <-> eou, zeta1, NA 

eou2 <-> eou2, deltaeou2, 0.36 

eou6 <-> eou6, deltaeou6, 0.40 

# Perceived clarity 

clear -> eou3, NA, 1 

eou3 <-> eou3, NA, 0.34 

clear <-> clear, phi2, NA 

clear -> eou, gamma1, NA 

# Perceived flexibility 

flex -> eou4, NA, 1 

eou4 <-> eou4, NA, 0.32, NA 

flex <-> flex, phi3, NA 

flex -> eou, gamma2, NA 

flex <-> clear, phi1, NA 

# Perceived efficiency 

efficient -> use1, NA, 1 

efficient -> use2, lambda2, 1 

efficient -> use3, lambda3, 1 

efficient <-> efficient, phi4, NA 

use1 <-> use1, delta1, NA 

use2 <-> use2, delta2, NA 

use3 <-> use3, delta3, NA 

# Perceived effectiveness 

effective -> use4, NA, 1 

use4 <-> use4, NA, 0.24 

effective <-> effective, phi5, NA 

effective <-> efficient, phi6, 1 

# Perceived usefulness 

useful -> use6, NA, 1 

useful <-> useful, zeta2, 1 

use6 <-> use6, deltause6, 0.30 

# Casual relationships 

efficient -> useful, gamma3, NA 

effective -> useful, gamma4, NA 

eou -> useful, gamma5, NA 

# Exogenous covariances 

flex <-> efficient, phi7, NA 

flex <-> effective, phi8, NA 

clear <-> efficient, phi9, NA 

clear <-> effective, phi10, NA 

# Causal relationships 

eou -> lu, gamma6, NA 

useful -> lu, gamma7, NA 

# Intention to use concept 

lu -> lu1, NA, 1 

lu -> lu2, lambda7, 1 

lu -> lu4, lambda8, 1 

lu -> lu3, lambda9, 1 

lu <-> lu, phi50, NA 

lu1 <-> lu1, deltalu1, 0.40 

lu2 <-> lu2, deltalu2, 0.36 

lu4 <-> lu4, deltalu3, 0.42 

lu3 <-> lu3, deltalu4, 0.40 

 

 

 Parameter Estimates 

          Estimate  Std Error z value  Pr(>|z|)                            

lambda1    1.089881 0.049595  21.97582 0.0000e+00 eou6 <--- eou            

zeta1     -0.062519 0.050980  -1.22635 2.2007e-01 eou <--> eou             

deltaeou2  0.431831 0.047618   9.06867 0.0000e+00 eou2 <--> eou2           

deltaeou6  0.352191 0.046959   7.49999 6.3727e-14 eou6 <--> eou6           

phi2       1.419199 0.148732   9.54196 0.0000e+00 clear <--> clear         

gamma1     1.179635 0.212421   5.55329 2.8034e-08 eou <--- clear           

phi3       1.326353 0.138971   9.54409 0.0000e+00 flex <--> flex           

gamma2    -0.183003 0.213274  -0.85806 3.9086e-01 eou <--- flex            

phi1       1.256735 0.125539  10.01071 0.0000e+00 clear <--> flex          

lambda2    1.080303 0.071361  15.13857 0.0000e+00 use2 <--- efficient      

lambda3    1.204050 0.077735  15.48920 0.0000e+00 use3 <--- efficient      
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phi4       0.635372 0.082601   7.69210 1.4433e-14 efficient <--> efficient 

delta1     0.379627 0.038907   9.75736 0.0000e+00 use1 <--> use1           

delta2     0.364484 0.038589   9.44536 0.0000e+00 use2 <--> use2           

delta3     0.389874 0.042826   9.10378 0.0000e+00 use3 <--> use3           

phi5       0.973554 0.102237   9.52248 0.0000e+00 effective <--> effective 

phi6       0.726194 0.077345   9.38902 0.0000e+00 efficient <--> effective 

zeta2      0.016422 0.050580   0.32468 7.4543e-01 useful <--> useful       

deltause6  0.415821 0.060199   6.90744 4.9349e-12 use6 <--> use6           

gamma3     0.887276 0.259145   3.42386 6.1738e-04 useful <--- efficient    

gamma4     0.271192 0.199119   1.36196 1.7321e-01 useful <--- effective    

gamma5     0.065920 0.046114   1.42949 1.5286e-01 useful <--- eou          

phi7       0.512962 0.075466   6.79721 1.0666e-11 efficient <--> flex      

phi8       0.641682 0.092317   6.95086 3.6307e-12 effective <--> flex      

phi9       0.489540 0.073684   6.64374 3.0582e-11 efficient <--> clear     

phi10      0.557394 0.089074   6.25767 3.9076e-10 effective <--> clear     

gamma6     0.205960 0.065753   3.13231 1.7344e-03 lu <--- eou              

gamma7     0.795834 0.081594   9.75359 0.0000e+00 lu <--- useful           

lambda7    0.986071 0.041914  23.52587 0.0000e+00 lu2 <--- lu              

lambda8    1.064321 0.043661  24.37685 0.0000e+00 lu4 <--- lu              

lambda9    1.000093 0.042114  23.74735 0.0000e+00 lu3 <--- lu              

phi50      0.655979 0.078837   8.32066 0.0000e+00 lu <--> lu               

deltalu1   0.402543 0.042545   9.46161 0.0000e+00 lu1 <--> lu1             

deltalu2   0.336317 0.037043   9.07917 0.0000e+00 lu2 <--> lu2             

deltalu3   0.318425 0.037697   8.44689 0.0000e+00 lu4 <--> lu4             

deltalu4   0.320249 0.036215   8.84303 0.0000e+00 lu3 <--> lu3     

 

We are now in a position to try to add the uncooperative items USE5, EOU1, and EOU5 into the model. At this 

stage, there are more possibilities for these items to fit into a theoretically plausible model. Additionally, because of 

the larger model, adding these items adds more degrees of freedom, which might permit a better fit statistically. We 

begin by adding USE5 as another indicator of Perceived Usefulness (Figure 8). The χ2 statistic shows that the model 

does not fit the data (χ2=89.837, df=67, p=0.0328). This confirms the earlier problems with USE5 and supports the 

conclusion that USE5 is not an indicator of Perceived Usefulness. 

 

Figure 8:  Full model with USE5 (χ2=89.837, df=67, p=0.0328) 

Instead of trying to fit USE5, our attempt to add EOU5 as an indicator of Learnability, which in turn is caused by 

Perceived Ease of Use, shows more promise (χ2=80.204, df=67, p=0.1292) and is shown in Figure 9. Adding EOU1 

as another indicator of Learnability reduces model fit to unacceptable levels (χ2=123.05, df=79, p=0.0011). Adding 

both EOU1 and USE5 (because of the combined degrees of freedom they contribute) also does not lead to 

improvement (χ2=151.85, df=94, p=0.0001). Hence, the most complex plausible model that can be fitted to the data 

is that in Figure 9.  

Because we have been unable to fit all observed variables, our model has fewer degrees of freedoms than the one 

presented in Chin et al. (2008). Hence, it may be argued that the good fit is due to low power. While power 

estimates in structural equation modeling are problematic due to the lack of an alternative hypothesis (Saris and 
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Satorra, 1993) and ideally require a simulation study (Muthén and Muthén, 2002), indicative power calculations 

using the method of MacCallum et al. (1996) show that a model with 67 df and a sample size of 283 has a power of 

.943 to detect deviations from exact fit. 

 

Figure 9:  Full model with EOU5 (χ2=80.204, df=67, p=0.1292) 

Discussion and Conclusion 

We set out to achieve three goals in this paper. First, we wanted to demonstrate that it is possible to fit realistically 

sized CB-SEM models with realistic sample sizes. Our final model in Figure 9 has non-significant χ2 fit. We believe 

that the IS community needs to adopt stronger measures of model fit. As we have shown, it is unlikely that a, 

however well-conceived, a-priori model fits well. However, it is unhelpful when journal editors and reviewers insist 

on authors presenting “the” model and showing that it is correct. In the face of these inflexible requirements, it is 

perhaps not surprising that authors grasp at every straw to argue that their model fits well, despite significant χ2 fit. 

While we agree that an a-priori model should be tested without “peeking at the data”, this is only sensible if, as a 

community, we are prepared to deal fairly with the outcome. As Hayduk et al. (2007, pg. 845) note, “we argue that 

attentively constructed and theoretically meaningful models that fail ought to be carefully discussed and published.” 

Alternatively, if we are unwilling to acknowledge failures, we need at least be open to post-hoc model modifications 

of the type presented here. We believe that this process, in a briefer form, should be part of the discussion section of 

every paper. Our community is not well served if we have our collective heads in the sand and simply ignore the fact 

that most of our models fail to fit. 

Second, we set out to demonstrate that, in trying to fit a CB-SEM model, we can generate theory. We believe that 

our final model in Figure 9 has achieved this. Through the constant comparison of theory and data we have 

identified five new theoretical constructs, “perceived effectiveness”, “perceived efficiency”, “perceived clarity of 

interaction”, “perceived system flexibility”, and “perceived learnability”, that are linked in a nomological theory 

network to the existing TAM constructs. These constructs and their relationships deserve, and enable, further 

theoretical attention and empirical investigation. They can also provide links to related fields of research, such as 

learning and educational theories (“perceived learnability”) or human-computer interaction (“perceived clarity”, 

“perceived flexibility”). Additionally, in contrast to TAM, our model explains EOU and USE as endogenous 

variables. The additional constructs are not only theoretically interesting, they are also practically important, as they 

provide more specific guidance to interventions to improve the usage of information systems. In Dubin’s (1969) 

terms, we have built theory by seeking intervening variables, a process that starts with the “admission that the 

starting theoretical model is inadequate and must be supplemented” (pg. 81). Finally, even the “discarded” items 

EOU1 and USE5 are theoretically useful, because “the theory builder is often well advised to inquire about the data 

that researchers collect but subsequently exclude from their research analysis. These data may be mined for 

important insights about new units” (Dubin, 1969, pg. 84). 

As we introduced each new construct into the model, we have emphasized an at least plausible reason for the 

relationships in our models, because “any post-hoc model modification should be defensible on theoretical grounds, 
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as opposed to being purely data-driven.“ (McCallum, 2007, pg. 862). We do not propose or condone “fishing 

expeditions” in the data, e.g. by blindly chasing modification indices. Model changes should at least be plausible, if 

not supported by existing theories. The process demonstrated in this paper is clearly different from automatic model 

specification approaches based purely on modification indices (Marcoulides and Drezner, 2003; Schumacker, 2006). 

Markland (2007, pg. 856) notes that “such model modifications based on observed discrepancies might be 

capitalizing on chance sampling fluctuations in the data, improving fit at the expense of theoretical meaningfulness. 

… Researchers who engage in this exercise … must justify any modifications they make and, preferably, any 

resulting respecified models should be replicated with independent data.” His caution mirrors that in qualitative 

inductive theory building. For example, Eisenhardt (1989, pg. 547) cautions us that “the risks are that the theory 

describes a very idiosyncratic phenomenon or that the theorist is unable to raise the level of generality of the 

theory.” We do not believe that quantitative theory building as shown here is in way different from that of 

qualitative inductive theory building and that researchers need to be explicit about the limitations in either case. 

Another characteristic of the generated theory is that it lacks the parsimony of the original TAM model. The lack of 

parsimony is a potential issue that has long been recognized in the qualitative theory building literature. As 

Eisenhardt (1989, pg. 847) notes, “there is a temptation to build theory which tries to capture everything. The result 

can be theory which is very rich in detail, but lacks the simplicity of overall perspective.” However, a complex but 

well-fitting model, is preferable to a simple one that does not fit: “If the model χ2 test detects a causally mis-

specified model, the biased estimates … become impotent and unconvincing.” (Hayduk et al, 2007, pg. 845). In 

general, the parameter estimates from a mis-specified model should not be substantively interpreted. 

As a third goal, we set out to emphasize the importance of instrument construction and the lack of attention paid to 

it. Instrument construction is also related to the issue of parsimony due to the pervasive use of the factor model in IS 

research. The factor model offers great parsimony, but has limitations if the instrument is not very carefully 

constructed, as we have shown in this study where we examined a factor-analysis based instrument and highlighted 

the significant misfit to the data. We believe that careless construction of an instrument, an insistence on the factor 

model, and consequent neglect of interrelationships between subtle aspects of the items are a frequent cause of 

problems with model fit. One solution is to more carefully construct factor-based measures. However, researchers 

believed the measures in TAM are well specified reflectively, i.e. equivalent. Given our analysis here, we believe it 

is unlikely that, no matter how carefully constructed, as the TAM items have been, multiple items can be completely 

semantically identical, so that the factor model (and the notions of validity and reliability built on it) is no longer 

appropriate. Thus, we recommend IS researchers to embrace the additional flexibility that CB-SEM offers. CB-SEM 

is not just the combination of factor analysis with regressions between factors but can test models that may be more 

realistic than factor-analytic ones. 

Moving away from the factor model also means that the recent debate over formative versus reflective measurement 

(Hardin et al. 2008a;b; Marakas et al. 2007; 2008; Petter et al. 2007) becomes a non-issue, as it is only meaningful in 

the traditional factor model. The most important message to take away from Petter et al. (2007) is to pay increased 

attention to the causality between indicators and latent variables. We agree with this, and urge researchers not to get 

mired in the terminological debate of “formative” or “reflective”. 

We note two important limitations. First, as we indicated earlier, model fit is necessary, but not sufficient, for 

identifying the correct model: “Finding a model that fits the covariance data does not say the model is the correct 

model, but merely that the model is one of the several potentially very causally different models that are consistent 

with the data.” (Hayduk et al., 2007, pg. 843) Consequently, even well fitting models should be carefully and 

critically examined. We believe this caution applies also to qualitative theory building approaches, where ruling out 

alternative explanations has not been as widely addressed as generating plausible explanations. Second, we add the 

caution that our final model is unsupported by evidence other than what it is generated from. It has thus the status of 

untested theory and must be tested against an independently collected sample. In this, its status is no different to a 

theory that is developed from qualitative data, which must be testable and subsequently be tested (Eisenhardt, 1989). 

We close with some recommendations for researchers, reviewers, and editors. We believe that the IS research field 

needs to pay increased attention to model fit and not disregard important evidence. We also believe that there is 

value in publishing and discussing models that do not fit, if they are theoretically well motivated, with sensible 

indicators and data has been carefully collected. Clinging to misfitting factor models is not helpful in driving theory 

forward: The data has much more to offer, as we have shown in this example, and we believe it is incumbent upon 

us not to waste the enormous effort that typically goes into theorizing and data collection. 
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