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Abstract. Predicting the final state of a running process, the remain-
ing time to completion or the next activity of a running process are im-
portant aspects of runtime process management. Runtime management
requires the ability to identify processes that are at risk of not meeting
certain criteria in order to offer case managers decision information for
timely intervention. This in turn requires accurate prediction models for
process outcomes and for the next process event, based on runtime in-
formation available at the prediction and decision point. In this paper,
we describe an initial application of deep learning with recurrent neural
networks to the problem of predicting the next process event. This is
both a novel method in process prediction, which has previously relied
on explicit process models in the form of Hidden Markov Models (HMM)
or annotated transition systems, and also a novel application for deep
learning methods.
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1 Introduction

Managing processes at runtime has important business applications [1]. It allows
customer service agents to respond to enquiries about the remaining time until
a case is resolved or completed. It allows case managers to identify cases that
are likely to be late or to terminate abnormally and to intervene early in order
to mitigate business risk. Process prediction is an important aspect of runtime
process management. In general, prediction concerns either the process outcome
or the subsequent event(s) in a process. Examples of business relevant process
outcomes include the final state (e.g. whether the final state is ”accept client
claim” or ”reject client claim”), case data (e.g. whether the attribute ”cost” is
less than a certain amount) or LTL compliance formulas (e.g. whether ”approve
claim” has occurred prior to ”issue cheque” and the activities have been per-
formed by different resources). Predictions can be made from the sequence of
the activities that have occurred in the running process, the case data that has
been collected, the participating resources in the case activities, the execution
times of those activities and any other available case or workflow data that is
available at runtime.
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Previous work on process prediction at runtime has focused on predicting pro-
cess outcomes and primarily the remaining time to completion, whereas there
exists limited work on predicting the next process event. Most prior work is
based on an explicit representation of the process, e.g. mined from event logs,
and augmented with probability tables and execution time information. In con-
trast, our approach does not rely on an explicit representation of the underlying
process model, but is based on recent work in ”deep learning”. While ”deep
learning” has only recently become a popular research topic, it is essentially an
application of neural networks and thus looks back on a long history of research
[2]. Recent innovations both in algorithms, allowing novel architectures of neural
networks, and computing hardware, especially access to GPU processing, have
led to a resurgence in interest for neural networks and popularized the term
”deep learning” [3].

This work is motivated by the application of deep learning to natural lan-
guage process (NLP). Our idea is to treat an event trace as analogous to a
natural language sentence, with the events analogous to words. In recent years,
NLP research has moved from explicit representations of language models to
statistical methods, specifically to recurrent neural networks (RNN) [4, 5, 6]. In
this work, we apply a recurrent neural network to the problem of predicting the
next event in a process from a sequence of observed events.

The aim of this paper is to explore the potential for applications of deep
learning in business process management at runtime and to describe an initial
application. Specifically, we are interested in whether methods that are not based
on an explicit process model, such as neural networks where the process struc-
ture is only implicitly reflected in the model parameters, are as predictive as
methods that are based on an explicit model, such as HMM. We emphasize that
this is an initial exploration of the feasibility of this approach, and is intended
more to open this line of inquiry than to provide final answers. The contribution
therefore lies not in the performance of this particular implementation but in the
demonstration of the applicability of our approach and the potential for future
work using deep learning in process management.

The remainder of the paper is structured as follows. Sec. 2 presents related
work on process prediction, especially prediction of next event in a process. Sec. 3
presents a brief introduction to deep learning. Sec. 4 describes our implemen-
tation of process prediction with RNNs, followed in Sec. 5 by an experimental
evaluation. The paper closes with a discussion and outlook to future work in
Sec. 6.

2 Related Work

Table 1 shows prior work in the area of process prediction for running cases. Most
of the prediction methods address process outcomes rather than prediction of the
next event in a process, as we do here. The most frequently examined outcome is
the time remaining to completion of a case. Only five approaches are concerned
with predicting the next event [7, 8, 9, 10, 11], many of which use an explicit



Deep Learning for Process Prediction 3

process model representation such as HMM (Hidden Markov Models) and PFA
(Probabilistic Finite Automatons).

The MSA approach in [7] considers each trace prefix as a state in a state-
transition matrix. From the observed prefixes and their next tasks, a state tran-
sition matrix is built. When a running case has reached a state not contained in
the state-transition matrix, its similarity to observed traces is computed using
string edit distance. The prediction is made from the most similar observed case.

The approach described by [8, 9] consists of five steps. A process model is
mined from existing logs. For each XOR split in the model, a decision tree is
mined from case data. These trees are then used to compute the state transi-
tion probabilities for a Markov chain specific to the running case that is to be
predicted, from the case data available at that point. This HMM is then used to
predict the probabilities of the following events.

The approach described in [10] uses sequence mining to identify frequent trace
prefixes. For each prefix, a regression model is trained to predict remaining time
to completion and a classification model (decision trees) is trained to predict
the next event. The algorithm identifies the appropriate prefix of the running
case to chose the regression and classification model and uses these to predict
remaining completion time and next event.

RegPFA [11] is also based on explicit process models but uses a probabilistic
finite automaton (PFA) instead of an HMM because it allows the future hidden
state to be a function of both the previous hidden state and the previous observed
event (which itself is a probabilistic consequence of the previous hidden state).
RegPFA uses an EM algorithm to estimate the model parameters of the PFA,
similar to the Baum-Welch algorithm used for HMM.

3 Deep Learning

A neural network consists of a layer of input cells, multiple layers of ”hidden”
cells, and a layer of output cells. Cells in each layer are connected by weighted
connections to cells in previous and following layers in various forms, allowing
for different architectures (e.g. each cell connected to all others on the following
layers, or other topologies). Each cell’s output is a function of the weighted sum
of its input. A typical network architecture is a fully connected network of cells
using sigmoid activation functions:

alj = σ

(∑
i

wl−1,j
i al−1i + blj

)
where σ(x) =

1

1 + exp(x)

Here, alj is the output (”activation”) of cell j in layer l, wl,i
j is the weight of the

connection from cell i on layer l− 1 to cell j on layer l, al−1i is the output of cell
i on layer l − 1 and blj is the ”bias” of cell j on layer l.
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Year Predictand(s) Predictor(s) Method Evaluation Method Ref

2001 Binary outcome Time, resource, Case
data

Decision trees (1) [12, 13,
14]

2008 Remaining time to com-
pletion

Event frequencies, event
times, case data

Boosted regression MSE [15]

2011 Remaining time to com-
pletion

Event sequence and
event execution times

Annotated transition
system, HMM

(1) [16]

2011 Binary outcome (process
failure)

Case data SVM Sensitivity, specificity [17]

2011 Remaining time to com-
pletion

Event sequence, execu-
tion times, case data

Annotated transition
systems

RMSE [18]

2012 Remaining time to com-
pletion

Event sequence and case
data

Clustering tree and FSM Accuracy, RMSE, MAE,
MAPE

[19, 20]

2012 Binary outcome (process
failure)

Case data Clustering and local out-
lier detection

Precision, Recall [21]

2012 Next event Event sequence HMM with sequence
alignment

Accuracy [7]

2013 Binary outcome (process
failure)

Event sequence, re-
sources, case data

Decision trees (1) [22]

2013 Remaining time to com-
pletion

Event sequence ? MSE, Accuracy [23]

2013 Remaining time to com-
pletion

Event sequence and exe-
cution times

Stochastic petri nets sim-
ulation

RMSE [24, 25]

2013 Remaining time to com-
pletion

Case data Clustering, regression RMSE, MAE, MAPE [26]

2013 Remaining time to com-
pletion

Event sequence and exe-
cution times

Trace similarity cluster-
ing

MAE, MAPE, RMSE [27]

continued on next page
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Year Predictand(s) Predictor(s) Method Evaluation Method Ref

2014 Remaining time to com-
pletion

Event sequence and case
data

Annotated transition
system, support vector
regression, naive Bayes
classifier

MAPE, RMSE, RMSPE [28, 29]

2014 Binary outcome (LTL vi-
olation)

Case data Decision trees Sensitivity, specificity [30, 31]

2014 Next event, remaining
time to completion

Event sequence and case
data

Regression, decision
trees

Accuracy, MAPE,
RMSE

[10]

2014 Binary outcome (LTL vi-
olation)

Event sequence and case
data

Random forests Sensitivity, specificity,
Area-Under-ROC Curve

[32]

2015 Binary outcome (com-
pletion past promise)

Execution times at
checkpoints in process

NN, CSP, QoS Sensitivity, specificity [33]

2015 Binary outcome (com-
pletion past promise)

Case data Clustering, regression Sensitivity, specificity [34]

2015 Next event Event sequence and case
data

HMM and Decision trees (1) [8, 9]

2016 Binary outcome (LTL vi-
olation)

Event sequence Decision trees, random
forests

Sensitivity, specificity [35]

2016 Next event Event sequence Probabilistic Finite Au-
tomaton (PFA)

Cross entropy, Accuracy [11]

Table 1: Prior work in business process prediction. Note 1: Not
compared against ground truth values. MSE=Mean squared error,
MAE=Mean absolute error, MAPE=Mean absolute percentage er-
ror, RMSE=Root mean square error, RMSPE=Root mean square
percentage error
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A neural network is a supervised learning technique where the output of
the neural net is compared to a target by means of a loss function. Gradients of
network parameters (wl,i

j , b
l
i) with respect to the loss function are computed using

backpropagation and parameters are then adjusted using variants of gradient
descent algorithms to minimize the loss function.

Recurrent Neural Networks (RNN) In a recurrent neural network, each
cell also feeds back information into itself, allowing it to maintain ”state” over
time. In order to make this tractable within an acyclic computational graph and
backpropagation, the recurrent network cells are ”unrolled”, that is, copies of it
are produced for time t, t−1, t−2, . . .. The state output of the RNN cell of time
t − 1 is state input to the cell for time t. In general, t can index any sequence,
not only time. Depending on how long one wishes to maintain state, fewer or
more cells are unrolled. Figure 1 shows an RNN architecture with an input layer,
an output layer and two hidden layers that are unrolled five steps. Each layer
(each box in Fig. 1) in turn consists of multiple input, output or hidden cells
(not shown).

Inputs:

Input
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Input
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Input
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Input
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Initial
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state
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Targets: quick brown fox jumps over

Fig. 1. RNN architecture with single hidden layer of LSTM cells, unrolled five steps

Long Short Term Memory (LSTM) RNN using sigmoid cells have been
found to be unsatisfactory, leading to the development of long short term memory
(LSTM) cells [36]. A basic LSTM cell is defined as follows, accepting Ct−1 and
ht−1 as state information from the prior unrolled cell on the same level, and
accepting xt as input from cells on the previous layers. In turn, it passes Ct and
ht as sate information to the subsequent unrolled cell and provides ht as output
to the next layer; the various W and b are ”trainable” parameters.
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ft = σ (Wf · [ht−1, xt] + bf ) it = σ (Wi · [ht−1, xt] + bi)

C̄t = tanh (WC · [ht−1, xt] + bC) Ct = ft × Ct−1 + it × C̄t

ot = σ (Wo · [ht−1, xt] + bo) ht = ot × tanh(Ct)

Output Layers and Loss Functions The type of output layer cell and the
loss function are often chosen jointly for their computational properties with
respect to backpropagation. A typical combination is a softmax layer with a
cross-entropy loss function:

yi = softmax(x)i =
exp(xi)∑
j exp(xj)

Hy′(y) = −
∑
i

yi′log(yi)

Here, y′ are the target values and y are the network outputs, computed in turn
from the outputs xi of the next to last network layer.

NLP Applications of RNN A typical NLP application trains the RNN on
sequences of input words to predict the next word, e.g. to provide word sugges-
tions for user input. As shown in Fig 1, the target words are simply the input
words shifted by one position, so that for each input word the following word is
the target to be predicted. Words are mapped into an n-dimensional ”embed-
ding” space using an ”embedding matrix”, which is essentially a look-up matrix
of dimensions v×m where v is the size of the ”vocabulary” and m is the chosen
dimensionality of the embedding space and the size of each LSTM hidden layer.
While the dimensionality of the space can be chosen freely, larger dimensions
allow better separation of words in that space, at the cost of computational
performance. The input layer in Fig. 1 is an embedding lookup function that
performs the embedding lookup of each input word. The output layer in Fig. 1
is typically a softmax layer that produces a probability over the vocabulary.
Training performance is usually defined in terms of the per-word perplexity, de-
fined as P = exp(H/n). Perplexity measures the ”surprisedness” the network
exhibits when encountering the next term. Thus, a network that predicts well,
will show low perplexity.

4 Process Prediction using RNN

A number of software frameworks for deep-learning, such as Caffe, Torch, Singa,
and Tensorflow, have become available recently1. We implemented our approach
using Tensorflow as it provides a suitable level of abstraction, provides RNN
specific functionality, and can be used on high-performance parallel, cluster, and
GPU computing platform.

The network architecture features two hidden RNN layers, unrolled to 20
steps, using basic LSTM cells. We chose m = 500 for the dimensionality of the

1 http://caffe.berkelyvision.org, http://torch.ch, https://singa.incubator.
apache.org, https://www.tensorflow.org
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embedding space and the size of the hidden layers. Thus, our network contained
a total of 500× 20× 2 = 20000 LSTM cells.

Trainable parameters are initialized using a uniform random distribution over
[−0.1, 0.1]. Training proceeds in batches of size 20. For each batch, the backprop-
agation algorithm computes the mean gradients for all parameters. Training of
the net proceeds is done in ”epochs”. Each epoch trains the net on the entire
event log. Subsequent epochs maintain the weights W and biases b learned from
the previous epoch but reinitialize the states for each layer and then train the
net again on the entire event log. The learning rate is exponentially reduced from
1 by a factor of 0.75 after the 25th epoch. The net was trained for a maximum
of 50 epochs or until maximum accuracy was reached. Because of the random
initialization of parameters, we performed three runs for each dataset and report
the mean results of the three runs (omitting clear outliers).

We ran our initial experiments on a single NVidia K1100M GPU. Training
performance was approximately 1000 words per second. Code, data and results
are available from the first author2.

5 Experimental Results

Because only one of the related works discussed in Sec. 2 uses publicly available
data, and to aid comparison of our approach to related work, we chose the same
BPI Challenge 2012 and 2013 datasets that [11] used for their study. In addi-
tion to separating the BPI 2012 data set by sub-process as done in [11], we also
used the combined dataset. While [11] use only activity completion events, we
also tested our approach on all events (including the lifecycle transitions ”start”,
”scheduled” and ”completed”). Furthermore, we included an experimental con-
dition where we not only extracted the event name, but combined this with
the resource name (or ”none” if not available). This creates a larger vocabulary
which increases the prediction difficulty, but also provides more information to
the training algorithm and allow prediction of next event and resource in a pro-
cess. Because the number of distinct resources in the BPI 2013 Challenge dataset
is very large, we combined the organizational group associated with each event,
instead of the resource, with the event name.

Table 2 shows our results and a comparison to the best result presented by
[11], where available. While [11] report a cross-entropy H in addition to accuracy,
their definition of H in their Figure 8 appears to be the entropy, not the cross-
entropy, and is therefore not comparable to the cross-entropy typically used in
deep learning applications. Finally, we report the perplexity as a standard way
of evaluating RNNs in the NLP context. High accuracy values close to 1 are
preferable; low perplexity values close to 1 are preferable.

Comparing our initial results to those of [11] shows that they are close to
the state-of-the-art on many datasets, significantly lagging only on the BPIC
2013 Problems dataset. Given that this is an initial application and evaluation,

2 http://joerg.evermann.ca/software.html
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Dataset Precision in [11] Precision Perplexity

BPI2012.W (complete events) .719 .623 3.128
BPI2012.A (complete events ) .801 .778 1.649
BPI2012.O (complete events) .811 .789 1.624

BPI2012.W (complete events, resource) .836 1.733
BPI2012.A (complete events, resource) .941 1.226
BPI2012.O (complete events, resource) .992 1.040

BPI2012.W (all events) .840 1.531
BPI2012.A (all events) .775 1.673
BPI2012.O (all events) .793 1.591

BPI2012.W (all events, resource) .820 1.745
BPI2012.A (all events, resource) .941 1.225
BPI2012.O (all events, resource) .992 1.040

BPI2012 (all events) .852 1.462
BPI2012 (complete events) .768 1.822
BPI2012 (all events, resource) .724 2.368
BPI2012 (complete events, resource) .802 1.966

BPI2013.Incidents .714 .699 2.346
BPI2013.Problems .690 .451 6.151

BPI2013.Incidents (with group) .939 1.236
BPI2013.Problems (with group) .954 1.174

Table 2. Results and comparison to [11]. Results are means of three runs.

these results are encouraging. Table 2 also show many results with accuracies
in excess of 90%. While we have no comparison to the state-of-the-art on these
datasets available in [11], this level of precision is encouraging for practical ap-
plications. Comparing the performance of including resource or organizational
groups, which dramatically increases the size of the vocabulary, shows that the
predictive accuracy improves in all cases. More importantly, the improved ac-
curacy is higher than the best results reported by [11] for the corresponding
datasets without resource or group information.

6 Discussion and Conclusion

This paper presents a novel approach to predicting the behaviour of running pro-
cesses. Using analogies to natural language processing, we applied deep learning,
specifically recurrent networks with LSTM cells, to the problem of predicting the
next event in a running process. Our results, close to the state-of-the-art on two
real datasets and with accuracies in excess of 90% on many problems, demon-
strate the feasibility of this approach and should encourage further work in this
direction.

As this research is early work with the deep learning approach, we recog-
nize the limitations of this study and the need for further work. Our immediate
plans are to explore different network architectures and the parameter space.
For example, more advanced LSTM cells are available [37], one can introduce
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additional RNN layers (currently 2), one can adjust the sequence of ”unrolled”
RNN cells (currently 20, which is shorter than the mean trace length for some
datasets), one can adjust the dimension of the space into which terms are em-
bedded (currently 500, which is larger than the vocabulary of all datasets), one
can adjust the learning rate to be more or less ”aggressive”, one can adjust the
clipping of gradients to allow faster, but possibly sub-optimal, convergence, and
one can adjust the random initialization of network parameters. While we be-
lieve that the results we have presented were achieved using typical parameters,
more work is clearly required to identify optimal architectures and sets of pa-
rameter values for the datasets considered in this work. Furthermore, additional
replications and cross-validation is required.

Another area of inquiry is to add additional information into the predictors
and/or the predictands. In our experiments, we have added resource informa-
tion to both the predictors as well as the predictands, allowing us to predict also
the next resource (as well as the next event). However, case attribute informa-
tion could be added to each predictor but not the predictands, increasing the
information available for prediction but not the number of possible prediction
targets, and may therefore lead to better prediction accuracy.

Finally, the deep learning approach can be applied to the prediction of process
outcomes. Process outcomes, such as remaining time to completion or violation
of an LTL compliance expression, are continuous or categorical, but not in the
form of sequences. Both are suitable for neural networks, but do not require the
recurrent neural network architecture used here and more ”traditional” archi-
tectures need to be explored and evaluated.
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