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Abstract

Information systems are representations of and situated in the business and
organization. In order to develop effective information systems (IS), the first
step must be to understand and describe this real world domain. System
analysis is this first step, the final result of which is the conceptual model, a
formal description of the business and organizational domain. It serves as the
communication medium to further common domain understanding. System
design, the second step in IS development, builds on this understanding,
together with other requirements regarding e.g. functionality, performance,
quality, usability, to design the software system. The conceptual model
serves as input to this phase.

Every model must be expressed in a language. However, there exists no
widely accepted language for conceptual modelling of the business or the
organization. On the other hand, recent years have seen the emergence and
wide acceptance of object-oriented languages in general, and the Unified
Modelling Language (UML) specifically, for IS design.

This study examines the suitability of using such design languages for
conceptual modelling. In order for a language to be usable for modelling
business and organizational domains, the language constructs must possess
real-world semantics, i.e. it must be clear what they refer to in the real
world, not only in the software domain. Based on ontology, the branch of
philosophy that deals with what exists in the real world, this study assigns
such meaning to UML constructs. Based on these semantics, ontological
assumptions are used to derive modelling rules for UML when UML is used
for conceptual modelling. These rules are formalized using the UML meta-
model.

A case study is conducted which applies the proposed rules in a medium
size IS development project and notes their beneficial effects on the analysis
process and the final conceptual model. An experimental study is conducted
to show specific benefits to domain understanding, induced by models which
conform to the proposed rules.

The chosen method of analysis of languages is applicable not only to
UML, chosen as an example here, but is generalizable to other languages
as well. The results derived in this study, other than the formalization by
means of the specific language meta-model, are therefore generalizable to
other object-oriented languages.
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Chapter 1

Introduction

Information systems (IS) are representations of a business or organizational
domain: The software and database structures of an inventory IS should re-
flect the layout of the warehouses with their aisles, shelves and bins. Changes
in the data managed by the inventory IS should mirror actual changes of
inventory in the warehouse. The structures of a production planning and
control (PPC) system should reflect the type of equipment and material on
the factory floor. Changes in the data in the PPC system should mirror
actual changes of work items and equipment.

Information systems are also situated in and affect the real world do-
main. The inventory system is used for making decisions about stock levels,
purchasing, etc. It is embedded in and affects the business. The production
planning and control system is used to make decisions about production
schedules, equipment changes, etc. It also is embedded in and affects the
business.

For these reasons it is essential that any IS project begin by examin-
ing the real-world domain represented and affected by the IS. Hence, the
first task in IS development, the analysis phase, is concerned with describ-
ing this real world domain through conceptual models. These models are
descriptions of the real-world independent of any information systems or
information technology aspect: ”Conceptual modeling is the activity of for-
mally describing some aspects of the physical and social world around us for
purposes of understanding and communication” (Mylopoulos, 1992). The
purpose of conceptual models is twofold: (1) To serve as communication
medium for understanding of the domain, and (2) to serve as a guide for IS
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design (Kung and Solvberg, 1986).

The description of an information system that is developed in the sub-
sequent design phase differs from the initial description of the real world in
the analysis phase because the context is increasingly shaped by technical
considerations as we progress along the development process. For the IS de-
sign phase, the use of object-oriented techniques is well accepted. A number
of languages have been proposed (e.g. Booch (1994); Coleman et al. (1994);
Jacobson (1992)). Several such languages were combined to form the Unified
Modeling Language UML (Bezivin and Muller, 1999; OMG, 2001). It has
become widely used as a way to describe software elements of an information
system during the design phase.

While the difference between analysis and design models, or between
business and software models, is widely recognized, the lack of languages
specific to conceptual modelling combined with the availability of widely
used IS design languages has a number of detrimental effects: (1) Many
IS development projects begin without explicitly modelling the real world
and developers hold implicit assumptions. (2) Even when the real world
is explicated, the use of IS design languages for this task without specific
guidance leads developers to confuse aspects of the IS and the real world.
For example, an analyst may talk about jobs in the organization as objects,
with the already implicit understanding that they will be represented by
a specific class in the object-oriented software system. (3) The translation
between conceptual and design models is not explicated. This lack of ex-
plicit translation can again lead to hidden assumptions made by different
stakeholders and developers.

Besides the lack of a widely accepted language, there are other problems
potentially affecting IS development. The transition from analysis to design
in the system development introduces the following challenges:

• The object of modelling changes, from a real world business domain
to the information system artifact.

• The model must increasingly take technical considerations into ac-
count.

• The language of description may change.

Clearly, the use of object-oriented languages for both analysis and de-
sign, or for conceptual real-world modelling and software modelling, can
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solve a number of problems. It can provide a language for conceptual mod-
elling that is already familiar to software designers and so can also be used
in the downstream phase of IS design. Thus, no change in language is re-
quired, alleviating potential translation problems, inconsistencies and errors
introduced by changes in modelling languages. Because of these potential
benefits, the central question addressed by this research is:

Can object-oriented approaches and languages, specifically UML,
be used for conceptual modelling and in what way should they
be used?

As there is no commonly agreed on language for describing the real
world, recent research (Green and Rosemann, 2000; Opdahl and Henderson-
Sellers, 1999; Opdahl and Sindre, 1993; Opdahl et al., 1999; Opdahl and
Henderson-Sellers, 2001; Parsons and Wand, 1997; Wand and Weber, 1989;
Wand et al., 1999) has already investigated the feasibility of extending the
use of object-oriented IS design languages in general or specific languages
such as OML or UML for this purpose. The main problem to overcome is
the lack of clear business or organizational meanings for language constructs
such as ’object’, ’class’, ’attribute’, ’operation’.

In order to employ a language for the purpose of describing real-world
business and organizational domains, we must attach or incorporate real-
world semantics. It must be clear which elements of the real world a par-
ticular language construct can or cannot refer to. Ontology is the branch
of philosophy that deals with what exists in the world (Angeles, 1981) and
has been proposed as a baseline against which to evaluate languages for
conceptual modelling (Green and Rosemann, 2000; Opdahl and Henderson-
Sellers, 1999; Opdahl and Sindre, 1993; Opdahl et al., 1999; Opdahl and
Henderson-Sellers, 2001; Parsons and Wand, 1997; Wand and Weber, 1989,
1993; Wand et al., 1999). It can be used to give business meaning, or real
world semantics, to a language.

To assign real world semantics to a language, we map ontological con-
cepts to the constructs of the language and vice versa. Besides providing
meaning to language elements, these mappings also allow the identification
of deficiencies in the language, instances where the mapping is not bijective
or ontologically clear. For the meaning of a language and its constructs to
be clearest, each language construct should be mapped to exactly one real
world concept and vice versa. Thus, a mapping provides maximum ontolog-
ical clarity if it is bijective (Wand and Weber, 1993). To achieve such clarity,
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it may be necessary to map language constructs to ontological concepts only
if they appear in a particular context: Suppose that a language provides a
construct which, depending on the context in which it is used, expresses
two different real-world situations. Ontological clarity can be achieved by
proposing appropriate modelling rules which map that construct, when used
in the first context to the one ontological concept and map it, when used in
the second context, to the other ontological concept.

Once the ontological semantics are assigned and language constructs
are mapped to ontological concepts, the mappings can be used to transfer
ontological assumptions to the language. An ontology may suggest that
certain situations are possible in the real world while others are not. By
virtue of the mappings, some combinations of language elements therefore
describe possible real world situations while others describe impossible ones.
Formal constraints on the language elements can restrict the set of possible
models to allow only the modelling of possible real world situations. These
constraints formalize real-world modelling rules in the syntax of a language;
they govern the way in which language constructs may be combined to form
ontologically valid models.

In summary, thesis is a bottom-up approach that it investigates how
object-oriented software design languages can be extended to include con-
ceptual modelling.

UML We propose to use UML and formal meta-models in this research.
UML serves as an example for object-oriented modelling languages in gen-
eral. It is used to demonstrate the feasibility and validity of the research
approach. UML is chosen for the following reasons:

• UML is the most prominent and widely accepted IS design language.
As such, many developers are familiar with it and its graphical lan-
guage constructs.

• UML is an evolving language. Hence, any research can have practical
influences on the evolution of the language standard.

• UML is a language with a well defined syntax and a formal meta-
model. Thus, it is unambiguous and it enables the formalization of
any research results in terms of this meta-model.

• UML has been developed for modelling software and software com-
ponents. However, it is not specifically limited to this. Therefore,
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it appears possible to extend the application area of UML to include
business modelling.

While the Unified Modelling Language has not been developed or in-
tended to be used for the modelling of business and organizations, the ad-
vantages of being able to use UML also for conceptual modelling, as well as
for software design are manifold. It provides a much-needed formal language
for conceptual modelling. It thereby helps alleviate the problems due to lack
of language discussed above. Furthermore, a common language can ease the
transition from the system analysis stage of the IS development process to
the software design stage. As the intended models are valid models in stan-
dard UML, they can be understood by system designers. Hence, analysts
can use these models not only for communicating amongst themselves for
purposes of understanding, but also to communicate with software designers
to convey information about the software requirements.

The widespread adoption of UML further enhances the usefulness of the
language as a common form of communication among analysts and develop-
ers. It makes models immediately understandable to both groups and can
thus serve to eliminate costly and error prone translations between two lan-
guages. Such translations can be fraught with difficulties as the languages
may not be equally expressive or the translation may be very complex and
thus errorprone.

The rules and guidelines developed in this thesis are intended to maintain
the capacity of the resultant models to serve as the starting points for soft-
ware design, without requiring elaborate transformation efforts1. Hence, the
resulting diagrams should be directly translatable to software and program-
ming statements. However, some transformations may possibly be applied
to the conceptual model. This may be done for a variety of reasons, for
example to increase the computational efficiency of the derived software,
to adapt to certain database technologies, to ease the programming effort
necessary or to adapt to specificities of the programming language or soft-
ware framework. However, such implementation driven transformations are
beyond the scope of this thesis and must be taken up by further research.

Meta-Models Meta-models are models of a model, they describe the el-
ements used in a model and their relationships. Meta-models thus describe
and define the modelling language. Meta-models and formal constraints

1This will be examined in Chapters 7 and 10.
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on them for incorporating ontological semantics into languages are used
for four reasons. First, computer aided software engineering (CASE) tools
and their model repositories are based on language meta-models. Using
a language meta-model in assigning ontological semantics and expressing
modelling rules as constraints on meta-model elements facilitates the incor-
poration of such rules into CASE tools. This in turn enables automatic or
semi-automatic enforcement of real-world semantics for conceptual models.

Second, object-oriented languages, especially UML, are evolving lan-
guages. The evolution of such languages should be informed by theory.
This work is aimed at providing such a theoretical basis. The language
meta-model forms the ideal foundation on which to carry out the evoluation
of a language, as it is well defined and unambiguous. On the other hand,
graphical notations by themselves tend to be less well defined and more am-
biguous. Hence, we employ the UML meta-model for purposes of informing
the language evolution.

We suggest that ontological semantics should be incorporated into the
language standard as long as this is not detrimental to the use of the language
for IS design, which remains the main purpose of UML. Thus, the formal
rules and constraints must not hinder the application of UML for IS design.
Furthermore, the essence of the language must remain intact, i.e. object-
oriented languages must retain support for e.g. encapsulation, classification,
identification, generalization, message passing and other major concepts of
the object-oriented paradigm.

Third, language meta-models are familiar to most users of the language
as they define the use of a language. Thus, ontological semantics, when
expressed in terms of the meta-model and constraints thereon, are immedi-
ately accessible to both the research and practitioner communities and can
be put to immediate use.

Fourth, UML is a modelling technique incorporating many different di-
agrams or perspectives, which are unified by a common underlying meta-
model. By mapping UML constructs into a coherent ontology by means of
this meta-model, we can generate inter-diagram integrity rules to guide the
construction of well integrated conceptual models.

Context This thesis will examine object-oriented design languages, and
UML in particular, from the perspective of their suitability for generating
conceptual models. The rules and ontological semantics derived serve to
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enhance the quality of the models for the task of representing the business
and organizational domain.

This must be put into the broader context of model and modelling
quality. The frameworks by (Krogstie et al., 1995; Lindland et al., 1994),
(Moody and Shanks, 1994, 1998; Moody, 1998) and by (Becker and Schütte,
1995, 1996; Rosemann and Schütte, 1997; Schütte, 1998; Schütte and Rot-
thowe, 1998; Rosemann, 1995; Schütte, 1999) provide some criteria for model
and modelling quality, the adequacy of the language for the modelling task
(Schütte, 1999) is but one of them.

Other important factors include the modelling cost (economic efficiency
in (Schütte, 1999)), pragmatic quality with respect to the interpreter, social
quality with repsect to a group of interpreters (Krogstie et al., 1995), flexi-
bility, simplicity, implementability (Moody and Shanks, 1994), correctness,
comparability, clarity and relevance Becker and Schütte (1996).

These important dimensions of model quality are outside the scope of
this dissertation. For example, the ontological semantics and rules are not
intended to enhance the comparability or simplicity of models. However,
as quality criteria are generally not independent, there may well be side-
effects of the rules on these quality criteria. Two empirical studies, a case
study 10 and an experimental study 11 are conducted, the results of which
may address some of these questions. However, neither of these empirical
studies are specifically intended to address these wider quality dimensions.
Specifically, trade-offs between model cost and benefits of modelling as well
as the efficiency of the model and modelling process are outside the scope
of this thesis.

The remainder of this thesis proceeds as follows. The next chapter
(Chap. 2) further describes the proposed methodology. As part of this
chapter, section 2.3 introduces the concepts of the chosen ontology. This
is followed by a review of previous work in the area of ontological semantics,
formalization of UML, and domain analysis (Chap. 3). Our analysis of UML
is done in three main parts. We examine fundamental static structure con-
structs first (Chap. 4), followed by constructs related to change (Chap. 5)
and finally constructs related to interaction (Chap. 6), thereby covering all
relevant aspects of the language.

Following the main theoretical analysis, Chap. 7 examines the proposed
rules to ensure the rules do not violate fundamental object-oriented princi-
ples. This is followed in Chap. 8 by a generalization of the results to other
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object-oriented languages. Chapter 9 provides two examples showing the
effects which the proposed rules can have on conceptual models.

The second main part of this thesis is the empirical corroboration of the
theoretical results, by a case study (Chap. 10) and an experimental study
(Chap. 11). They serve to show the practical applicability and the specific
benefits of the theoretical results. This thesis closes by pointing out the
contributions to the knowledge of the field (Chap. 12) and future potential
for extensions (Chap. 13) of this research.
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Chapter 2

Methodology

It is clear to the software designer or programmer what any particular object-
oriented language construct means in terms of the programming statements
and code that ultimately results; these constructs possess implementation
related semantics. However, it is much less clear to the business analyst what
any particular object-oriented language construct means in terms of the
business or organizational domain being analyzed; these constructs possess
no real-world semantics.

In order to assign real-world semantics to a language, we must specify
what exists in this world. Ontology is ”that branch of philosophy which
deals with the order and structure of reality in the broadest sense possible”
(Angeles, 1981). A specific ontology makes assumptions about what exists
and how things behave.

In this research, we propose to examine the usability of UML as a lan-
guage for describing the real world by mapping its constructs to a set of
real-world concepts, that is, to an ontology. This mapping will provide
real-world semantics to UML constructs originally introduced to model IS
elements. Our theoretical analysis rests on the following foundations:

1. Ontology : A philosophical commitment to existence

2. The BWW-Ontology: A specific set of ontological concepts and as-
sumptions.

3. Ontological evaluation and assignment of real-world semantics.

4. Transfer of ontological assumptions and derivation of modelling rules.

9



5. Use of the UML meta-model to formally describe the derived rules.

The following subsections describe each of these foundations in more detail.

2.1 Ontological Foundations

Research into knowledge engineering, knowledge management and concep-
tual and domain modelling deals with representing the reality of the business
or organization and has used ontologies for a number years. However, two
different understandings of the word ’ontology’ have evolved.

Research in conceptual modelling uses the term ’ontology’ in its orig-
inal philosophical sense, understood as meta-physics or the philosophy of
existence (Angeles, 1981). Here, an ontology is a fundamental philosophical
position, it is a commitment to the belief in the existence of certain entities
in external reality. Research in conceptual modelling in IS has mainly drawn
on philosophy and adopted a specific, well-developed, philosophical ontology
(Bunge, 1977, 1979), although other ontologies (e.g. Chisholm, 1996) have
been suggested as a basis for research. Once an ontological position has
been adopted, it can only be cast in doubt by a gross inability to explain
and predict observed phenomena (Kuhn, 1996). With the argument that
knowledge representation languages should closely reflect external reality,
ontology in this tradition has been used for analysis and evaluation of mod-
elling languages (Evermann and Wand, 2001b,a; Gemino, 1999; Green and
Rosemann, 2000; Opdahl and Henderson-Sellers, 2001, 2002; Parsons and
Wand, 1991; Wand and Weber, 1989, 1993; Wand et al., 1999). Empirical
results are taken to confirm the commitment to this ontological foundation
to be sensible, reasonable and adequate (Bodart et al., 2001; Cockroft and
Rowles, 2003; Gemino, 1999). Other research based on this foundation ex-
amines reference models (Fettke and Loos, 2003), provides a meta-model
for the ontology (Rosemann and Green, 2002) and examines issues of data
quality (Wand and Wang, 1995).

A specific ontology is a set of asssumptions about what exists in reality.
Adopting an ontology is a fundamental philosphical choice that is necessarily
prior to any science. As such, it cannot be justified or debated a-priori. As
any philosophy, it is the framework that enables one to carry out science
and research (Kuhn, 1996) and can only be assessed based on the results
of that research. It should be noted that an ontology is not a language,
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though it has to be expressed using a language. An ontology is a set of a-
priori assumptions and commitments about the existence of entities that a
language does not make. Ontology is universal. There exists only on world.
The world, or an ontology, can be described by many different languages
and using many different interpretations, but there exists only one world.

This philosphical understanding of ontology is distinct from the under-
standing of ontology in artificial intelligence (AI), knowledge engineering
(KE) and computer science research, e.g. (Uschold and Gruninger, 1996;
Noy and Hafner, 1997). In the AI tradition, the term ontology has come
to signify a language or dictionary, a set of constructs to describe specific
domains (e.g. medical, legal, manufacturing, etc.). Here, an ontology does
not imply a firm commitment to the existence of a particular set of entities
in reality, the connection to the real world have been severed: ”Most of AI
chose not to consider the work of the much older overlapping field of philo-
sophical ontology, preferring instead to use the term ’ontology’ as an exotic
name for what they’d been doing all along in knowledge engineering . . . It
became correspondingly more remote from anything which might stand in
a direct relation to existence or reality.” (Smith and Welty, 2001, p. v).
As such, AI-related ontology research does not make existence claims on a
fundamental philosphical level.

Ontologies are understood as dictionaries, taxonomies, categorization
schemata or modelling languages. AI research constructs its ontologies
as needed. They are, after all, collections of words, a vocabulary or lex-
icon without commitment to any real, metaphysical existence in the world.
The modeller or knowledge engineer is free to design or engineer ontologies
(Gruninger and Lee, 2002; Holsaple and Joshi, 2002) to fit a particular prob-
lem or problem domain. Ontology is interpreted to signify a language that
is specific to an arbitrarily broad or narrow set of users and an arbitrarily
broad or narrow domain. Just like different languages may be employed
to describe reality, in this research tradition, different ontologies may be
employed to describe the domain knowledge. Consequently, in AI research,
ontologies can be changed, adapted and customized to fit a specific purpose
or domain (Gruninger and Lee, 2002). Hence, there is a need to evaluate on-
tologies (Guarino and Welty, 2002) to ensure their suitability for a particular
purpose.

A return to philosophical ontology has been argued for e.g. by Guarino
and Welty (2002, p. 61): ”The computer science use of the term ’ontology’
. . . is taken as nearly synonymous with knowledge engineering in AI, con-
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ceptual modeling in databases, and domain modeling in OO design. We
believe it is important . . . to maintain that ’ontology’ is not simply a new
word for something computer scientists have been doing for 20–30 years; on-
tology is hundreds, if not thousands, of years old, and there are many lessons
learned in those centuries that we may borrow from philosophy along with
the terms”.

In the final instance, both interpretations of the word ’ontology’ suggest
that it is a set of concepts which can be used to describe what exists in the
world. Work in the philosophical tradition treats the ontology as objectively
given, while work in the AI and KE tradition treats ontology as constructed.
This distinction is important, but has no bearing on the methodology that
is described in the subsequent sections.

It is perfectly valid to employ the present methodology with an under-
standing of ontology and a specific set of concepts taken from AI related
research. However, this would weaken the ties to external reality and would
lessen the philosophical foundations of the work. It would furthermore be
unclear whether an AI-style ontology should be substituted on the ontology
side of the present research, as it is argued to be an ontology, or on the
language side, as it is used as a language. When interpreting and examining
AI-style ontologies as languages, the present methodology can be valuable
for comparing the expressiveness of languages and deriving language trans-
lation rules. Thus, in the final analysis, besides the difference of whether
the world (the ontology) is given (philophical ontology) or constructed (AI
ontology), the distinction may simply be one of terminology.

However, this research takes up the call for a return to philsophical on-
tology and, in contrast to the AI research tradition, ontology is considered
as a metaphysical philosophical commitment. While an ontology can be
described by diffferent languages, some more suitable than others, the po-
sition taken in this thesis is that there exists only one ontology, one real
world. This real world is objectively given and exists independently, it is
not chosen, engineered or constructed by the modeller.

2.2 The BWW-Ontology

The specific ontology chosen for our purposes is based on Bunge’s work
(Bunge, 1977, 1979) as applied in a number of studies related to modelling
in IS (e.g Wand and Weber, 1989, 1990, 1993; Wand et al., 1999). We will
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refer to this ontology as the BWW-ontology. Although other ontologies have
been proposed as the basis for IS development 1 we choose Bunge’s ontology
as the basis for our work for a number of pragmatic reasons. As argued in the
previous section, there can be no a-priori theoretical reasons for the choice
of one ontology over another. In the end, the experience, observations and
experimental results of science based on an ontology justifies the choice of
that ontology. In this case, the successful application of the BWW-ontology
and useful results from that research2 justify our adoption of it.

• It is rooted in the ontological work done over a long period in the past:
”Our work is in line with an old and noble if maligned tradition: that
of pre-Socratic philosophers, Aristotle, Thomas Aquinas, Descartes, ...
Peierce, Russell, and Whitehead” (Bunge, 1977).

• It is well formalized in terms of set theory and an axiomatic system.

• It has not been developed specifically for use in information systems
analysis and design, but instead based on ”the ontological presupposi-
tions of contemporary scientific research, topped with new hypothesis
compatible with the science of the day” (Bunge, 1977).

• It has been successfully adapted to information systems modelling and
shown to provide a good benchmark for the evaluation of modelling
languages and methods (Dussart et al., 2002; Fettke and Loos, 2003;
Green and Rosemann, 2000; Opdahl and Sindre, 1993; Opdahl and
Henderson-Sellers, 1999; Opdahl et al., 1999; Opdahl and Henderson-
Sellers, 2001, 2002; Parsons and Wand, 1997; Wand and Weber, 1989,
1993; Wand et al., 1999, e.g.).

• It has been used to suggest an ontological meaning to object concepts
(Wand, 1989).

• It has been empirically shown to lead to useful outcomes by Bodart
and Weber (1996); Bodart et al. (2001); Cockroft and Rowles (2003);
Gemino (1999); Weber and Zhang (1996).

1Milton and Kazmierczak (1999) have used Chisholms ontology (Chisholm, 1996) as
the basis of their investigation. Opdahl and Sindre (1993) suggest a number of concepts
they argue are fundamental. However, the latter work is based on and limited to the
semantics of data flow diagrams.

2See also Chap. 3.
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These reasons are pragmatic in nature but provide a level of support,
especially empirical support, that goes beyond that of other ontologies, and
ontologies developed in the artificial intelligence and knowledge engineering
research traditions. Thus, the adoption of the BWW-ontology as a true
description of externally given and objectively perceived reality is justified.

2.3 Concepts of the BWW-Ontology

This subsection introduces the relevant ontological concepts, based on Bunge’s
work (Bunge, 1977, 1979), summarized in table 2.1.

The world is made up of substantial things that exist physically in the
world. Therefore, entities3 such as ”addresses” and ”jobs” are not things.
Things can combine to form a composite thing. Composite things can be
decomposed into parts that are in turn things. There exist basic things that
cannot be decomposed (Bunge, 1977, Def. 1.1). Moreover, things cannot be
created or destroyed, merely combined or broken up (Bunge, 1977, pp. 34f).

A thing possesses (substantial) properties. Properties in general are those
possessed by a set of things, e.g. ”color”, ”speed”, ”salary”, etc. An indi-
vidual property is one is representable as the value of a property in general,
such as ”blue in color”, ”speed of 100mph” or ”salary of $2000” (Bunge,
1977, p. 63).

Properties can be either intrinsic or mutual. Intrinsic properties are
ones that a thing possesses by itself, e.g. ”color”, whereas mutual properties
exist between two or more things, e.g. ”distance” (Bunge, 1977, p. 65). The
co-domain of a property is some set. Hence, properties may be multi-valued
if that set is a powerset. As an example, the salary of an employee of a
company is a mutual property with a co-domain of a set of values specifying
e.g. base pay, overtime pay and Sunday pay. Note that every powerset
also includes the empty set. Moreover, no two things have exactly the same
properties. Thus, properties can be used to identify things (Bunge, 1977,

3In this thesis everything that exists in the world will be called an entity. This is to
avoid confusion with the notation of individuals and things in the ontology on the one
hand and the notion of objects in UML on the other hand. When any of the latter are
mentioned, the context is assumed to be the ontology or UML respectively. In cases where
it is not clear from the context whether the ontology or the UML is referred to, the item
will be prefixed, e.g. BWW-kind or UML-class. For the same reason a property of an
entity shall be referred to as a feature as the terms ’property’ and ’attribute’ have a very
specific meaning in either or both the UML and the ontology.
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Ontological Concept Explanation

Thing Fundamental concept, the world
consists of things.

Property Things have properties.

Intrinsic Property Property of one thing.

Mutual Property Property of two or more things.

Law Restriction on or relation of
properties.

Composition Things can be composed to form
composite things.

Emergent Property Property of a composite thing not
possessed by parts.

Functional Schema Set of state functions describing
things.

State Defined by values of state
functions of schema.

Natural Kind Set of things adhering to same
laws.

Event Pair of initial and final states.

Lawful transformation Path in state space.

Process Ordered set of events involving a
single thing.

Interaction State history is function of another
thing.

System Composite of interacting things.

Table 2.1: Concepts of the BWW-Ontology
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Post. 2.5).

A law is any restriction on the property values of a single thing (Bunge,
1977, Def. 3.10). Specifically, law statements cannot relate the properties
of different things. Law statements may be specified in different forms.
Common forms of law statements relate the value of one property to those
of other properties. Every substantial property must be lawfully related to
some other (Bunge, 1977, Post. 2.7). Hence, there can be no properties
which are independent (in the sense that they can change independently)
of all others. Moreover, this also implies that a property must occur in at
least one law statement (Bunge, 1977, Crit. 2.1).

Properties of composites may be either resultant (hereditary) or emer-
gent (gestalt) properties (Bunge, 1977, Def. 2.16). Resultant properties are
properties of at least one part of a composite whereas emergent properties
are not possessed by any of the parts of a composite. Emergent properties
can be explained in terms of or derived from properties of parts but are
not reducible to them. Hence, emergent properties cannot be attributed to
any of the parts by themselves. Some substantial properties of all compos-
ites are emergent properties. Hence, every composite must possess at least
one emergent property not inherited from any of the parts (Bunge, 1977,
Post. 2.9). For example, a computer composed of memory and processor
possesses processing power, not possessed by any individual component.

Any thing can be characterized by a set of state functions. These func-
tions correspond to properties of the thing (Bunge, 1977, Def. 3.9). They
are usually functions of time indicating the value of the properties of a thing
at a particular point in time (although other frames of reference are possi-
ble). Such a set of state functions is called a functional schema or model.
Any thing can be described by more than one such schema (Bunge, 1977,
Def. 3.6, Post. 3.4). For example a person may be described by functions
indicating height and weight for one purpose, or described by location and
organizational unit for another purpose. The state of a thing is defined as
the set of values of all state functions (given a particular model) (Bunge,
1977, Def. 3.9). Specifically, states cannot be defined using a subset of state
functions of a given model.

The lawful state space is defined by constraining the co-domains of the
state functions to those values consistent with the laws that the thing ad-
heres to (Bunge, 1977, Def. 3.11). A thing is always in a lawful state, i.e. a
state within the lawful state space (even though that state may not always
be desirable by an observer).
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A set of things is called a natural kind iff there exists a set of laws that
all the things in the set adhere to. Hence, for the definition of a natural
kind the properties of things are irrelevant (Bunge, 1977, Def. 3.21). It
is important to note that natural kinds are defined over an existing set of
things. In this sense, the thing is the primary concept, not the natural kind.
From this follows that there can be no natural kind without members. Since
laws determine behaviour, a natural kind is the set of things that exhibit
like behaviour.

Change may be quantitative, in which case the values of one or more
properties is changed, or it may be qualitative (also called deep change),
in which case properties are acquired or lost. The acquisition or loss of
behaviour is generally concurrent with loss or acquisition of properties that
changge in that behaviour. Change always involves the change of state of
some thing. Since all things are changeable, it follows that the every lawful
state space (recall there may exist different models) for a thing contains at
least two distinct states (Bunge, 1977, Def. 5.1, Cor. 5.1). Then, change is
defined as follows:

”A thing undergoes a qualitative change iff [the lawful state
space] equals the union of at least two subspaces, each of which is
spanned by a different projection of [the set of state functions].
Otherwise (i.e. if none of the components can be ignored during
any stretch of the process), the thing undergoes only a qualitative
change.”(Bunge, 1977, Def. 5.3)

This means that the quantitative changes in the two subspaces (for qualita-
tive change) are independent of each other.

Rather than assigning things a new name on every change of a property,
Bunge advocates keeping the name of a thing until it changes it’s natural
kind (principle of nominal invariance):

”A thing, if named, shall keep its name throughout its history
as long as the latter does not include changes in natural kind –
changes which call for changes in name.”(Bunge, 1977, Princ. 5.1)

Change may be represented either through a description of events as
ordered pairs of states or through a description of processes. An event is
any pair of states that are part of a state space of some thing (Bunge,
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1977, Def. 5.4). Note that events are defined as pairs of states of the same
state space. Hence, qualitative change cannot be described in this form.
Moreover, an event is defined for the state space of a single thing. Hence,
an event cannot involve two or more things. It is of course possible that
a change in one thing leads to a change in another, but this is interaction
consisting of two distinct events in the two things. Events can compose to
form a complex event if the final state of the first event is the initial state of
the second event. Such a complex event is called a process. Many different
processes can have the same initial and final state (Bunge, 1977, Def. 5.6).

If the state space is non-denumerable, e.g. because one or more state
functions are defined with a co-domain of real values, there exist infinitely
many intermediate states between an initial and a final state. In this case
change is represented by a triple (si, sf , g) representing the initial state the
final state and a function g which represents the path in the state space the
thing traverses (Bunge, 1977, Def. 5.8, Princ. 5.3). The lawful transforma-
tion g is a function from the lawful state space into the lawful state space.
Hence, it is compatible with the laws that a thing adheres to and can itself
be thought of as a law or set of laws (transition laws).

A process is an ordered set of events that involve a single thing. The
simplest type of process is serial change, i.e. a chain of events in a thing. In
general, a process may not be a chain but can be ”envisaged as a directed
tree [...] in some event space” (Bunge, 1977, p. 243). Thus, processes may be
diverging or converging series of events. Processes have a defined beginning
and end (Bunge, 1977, Post. 5.8).

Interaction is defined through the state history of a thing: If the way
attributes of one thing change depends on the presence of another, then
the second is said to act on the first (Bunge, 1977, Def. 5.29). Things
interact, if and only if each acts upon the other (Bunge, 1977, Def. 5.30)
and every thing acts on, and is acted on by other things (Bunge, 1977,
Post. 5.10). Finally, every thing undergoes some spontaneous changes and
some externally induced ones (Bunge, 1977, Post. 5.11).

A link between two things is any relation between two things, e.g. ”thing
A is behind thing B”, ”thing A is older than thing B” whereas a connection
or a coupling makes a difference to the things, i.e. two things are connected
(coupled, linked, bonded) if at least one of them acts on the other (Bunge,
1979, p. 6). A system is defined as a composite whose parts are bonded, i.e.
there exists interaction among all the parts (Bunge, 1979, Def. 1.1). Every
system is acted on by its environment and acts on its environment (Bunge,
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1979, Post. 1.1, 1.2). Systems are assembled from parts (i.e. the parts begin
interacting) and every such assembly is accompanied by the emergence of
some properties and loss of others (Bunge, 1979, Post. 1.4, 1.5).

Remarks There are a number of noteworthy things to mention. First,
the BWW-ontology makes no claim to a mechanism of interaction. Inter-
action of things is defined in phenomenological terms and Bunge (1977)
only postulates a criterion for recognizing when interaction has occurred.
Note however, that all possible change must be in accordance with laws and
change happens as a result of laws. If two properties are lawfully related and
one changes, then the other may also change. Moreover, laws relate proper-
ties of one thing only. Hence for a thing A to act on a thing B as the result
of laws, there must exist either a mutual property of A and B or an emergent
property of the system composed of parts A and B. Properties of A and B
must be lawfully related to the mutual property or the emergent property.
Note that while the existence of such a property is a consequence of the
ontological assumptions, it does not constitute a mechanism of interaction.

Second, interaction may give rise to properties, either emergent or mu-
tual ones (e.g. a student enrolls at a university ⇒ ”tuition fee balance”).
Hence, there exist some properties that must necessarily exist prior to in-
teraction and some that may exist post interaction.

Generally, most interactions will give rise to some mutual properties.
Moreover, since these mutual properties will not generally disappear, this
interaction history may be represented by the mutual properties acquired
by a set of things during the course of their interaction.

Since behaviour is governed by the laws that things adhere to, the same
set of laws leads in principle to the same (potential) behaviour. Of course,
different initial conditions may also play a role. Nonetheless, we suggest
that since a natural kind is defined in terms of its laws, a natural kind may
also be characterized as the set of things that exhibit in principle the same
(potential) behaviour.

Third, while the BWW-ontology appears very materialistic and physical,
it has enough descriptive power to give interpretation to what might be
called ’conceptual constructs’ that are not physically existent in the world.
For example, a customer’s order of a product from a supplier is not a thing,
but rather an event, an interaction between the supplier and the customer.
As such, an order history is a set of events.
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2.4 Assigning Real-World Semantics

Assigning ontological meaning to a language amounts to answering two ques-
tions (Wand and Weber, 1993):

1. How can an element of the real-world domain (ontological concept) be
represented in the chosen language?

To answer this question we propose a representation mapping from the
set of ontological concepts into the set of language constructs which
assigns each ontological concept a language construct with which to
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represent it.

Analysis of the representation mapping can identify construct deficits
(Fig. 2.1), situations where the modelling language does not provide
a construct to represent an ontologically relevant aspect of the real
world. This may lead to incomplete models when the language is
used for conceptual modelling. A second potential defect is construct
redundancy (Fig. 2.2), where an ontological concept can conceivably
be mapped to two different language constructs. This may lead to
confusion as the modeller has no guidelines on which construct to use.

2. How can a construct of the language be interpreted in terms of the
real-world domain (ontologically)?

To answer this question we propose an interpretation mapping from
the set of language constructs into the set of ontological concepts which
assigns each language construct an ontological interpretation.

Analysis of this mapping can identify language constructs that have
no ontological interpretation (construct excess, Fig. 2.3) or have mul-
tiple ontological interpretations (construct overload, Fig. 2.4). Use of
a construct without ontological interpretation may lead to an ontolog-
ically meaningless model. Construct overload can lead to ambiguous
models as it is unclear which interpretation to chose. This can lead
to misunderstandings and misinterpretations during the analysis and
design process and result in a faulty information system.

Together, these mappings assign real-world, ontological semantics to a
modelling language. A mapping provides maximum ontological clarity (a
minimal number of defects) if it is bijective (Wand and Weber, 1993), i.e. a
one-to-one mapping that maps all elements.

Our analysis will propose representation and interpretation mappings
and analyzes the mapping for defects. Specifically, construct deficits can
be alleviated by suggesting new language constructs. Other defects do not
require additions to the set of language constructs, but can be solved by
providing appropriate modelling rules, described presently.

2.5 Derivation of Modelling Rules

There are two reasons to introduce modelling rules. First, relationships be-
tween ontological concepts should be reflected in the language. Second, the
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Ontology UML
Figure 2.5: Step 1: Identify ontological concepts and language constructs
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Ontology UML
Figure 2.6: Step 2: Map ontological concepts to language constructs
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Ontology UML
Figure 2.7: Step 3: Identify ontological assumptions, relationships and con-
straints between concepts
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Ontology UML
Figure 2.8: Step 4: Transfer ontological relationships by virtue of mappings,
thereby deriving modelling rules
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representation and interpretation mappings should exhibit minimal ontolog-
ical defects.

Transfer of Assumptions Once the ontological semantics are assigned
and language constructs are mapped to ontological concepts, the mappings
can be used to transfer ontological assumptions to the language. An ontology
may suggest that certain situations are possible in the real world while
others are not. By virtue of the mappings, some combinations of language
elements may therefore describe possible real world situations while others
may describe impossible ones. Thus, if there are rules or constraints that
relate ontological concepts, then by virtue of the mapping, these same rules
or constraints must also hold between the mapped language constructs, in
order to allow only models of possible real-world situations. Hence, the
ontological mapping can lead to modelling rules on how to use the language
for conceptual modelling.

Figures 2.5 through 2.8 show this process. First, the relevant ontological
concepts and language constructs are identified (Fig. 2.5). In a second step,
both representation and interpretation mappings are proposed (Fig. 2.6,
Sec. 2.4). Third, relationships between ontological concepts are analysed
(Fig. 2.7). Fourth and last, these relationships are then transferred to those
language constructs that are mapped to the ontological concepts (Fig. 2.8),
thereby generating modelling rules. These rules constrain the use of the
language in such a way as to allow only the modelling of possible real-world
situations.

For languages with a well-formalized syntax such as UML, the proper
usage of language elements can be enforced by proposing constraints on the
meta-model elements. The constraints restrict the set of possible models to
allow only the modelling of possible real world situations. These meta-model
constraints formalize real-world modelling rules in the syntax of a language;
they govern the way in which language constructs may be combined to form
ontologically valid models.

Ensuring Ontological Clarity A mapping provides maximum ontolog-
ical clarity if it is bijective, i.e. a one-to-one mapping that maps all el-
ements. Mappings which are not bijective exhibit undesirable ontological
defects (Wand and Weber, 1993).

To achieve a bijective mapping, it may be necessary to map language
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constructs to ontological concepts only if they appear in a particular con-
text: Suppose that a language provides a construct which, depending on
the context in which it is used, expresses two different real-world situations.
Ontological clarity can be achieved by proposing appropriate modelling rules
which map that construct, when used in the first context to the one ontolog-
ical concept and map it, when in the second context, to the other ontological
concept. Such rules can be enforced by placing constraints on the meta-
model.

There are two important things to note about this method. First, while
the derived rules may be appropriate for conceptual modelling, they might
not be obvious or applicable when the language is used for IS design purposes
only. It is not the purpose of this work to show modelling rules for IS
design. Instead, we intend to extend the use of design languages into real-
world organizational and business modelling. Second, such rules do not
necessarily guide us in how to perceive the world. Thus, we might suggest
rules on how to model objects and classes, but not on how to identify them.

2.6 Use of Meta-Models

A meta-model is a description of the language elements and the language
syntax in the same or another language. The UML meta-model is specified
in UML itself, with the help of the object constraint language OCL, which is
officially a part of UML. OCL is used in the specification of UML to restrict
the possible combinations of model elements. The UML specification OMG
(2001) makes extensive use of this mechanism. As the UML meta-model
itself is a UML model, this research also makes use of OCL to formally
describe constraints on UML model elements.

The lack of a meta-model and a widely known language for the BWW-
ontology has been partially addressed by Rosemann and Green (2000, 2002)
who propose a model based on entity relationship (ER) diagrams. This meta
model could serve as the basis for comparing modelling languages or method-
ologies (Davies et al., 2003; Rosemann and Green, 2002; Rosemann and zur
Mühlen, 1998). However, their model omits central elements of the BWW
ontology such as states and state transitions. Also, the UML meta-model is
formalized in UML itself, not ER diagrams. These two reasons prohibit the
use of a formal meta-model based approach, e.g. schema matching (Batini
and Lenzerini, 1986; Rahm and Bernstein, 2001), for the time being. This
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last point is also recognized as a hindrance by Davies et al. (2003) who en-
courage the use of meta-models for comparing ontologies and languages and
suggest that such kinds of analyses can benefit from meta-models by being
forced to be comprehensive.

Any proposed changes to the meta-model stem from three sources:

• Construct deficits:

Problems of missing constructs to express ontological concepts can be
solved by introducing new language elements. These new elements are
additions to the meta-model.

• Lack of ontological clarity:

When a naive mapping, a mapping that does not consider relation-
ships among language constructs or among ontological concepts, leads
to ontological defects such a construct overload, modelling rules can
be proposed to limit the mapping to certain contexts in which the lan-
guage construct is used. These limitations may be expressed by OCL
constraints on UML meta-model elements.

• Transfer of ontological assumptions:

Relationships and constraints that exist between ontological concepts
can be transferred to the language by virtue of an ontologically clear
mapping. If a relationship ro exists between two ontological concepts
O1 and O2 which are mapped to language constructs L1 and L2 re-
spectively, we can propose a relationship rl in the language between
constructs L1 and L2.

Such relationships are constraints on possible real-world situations.
Language elements should be usable in only such a way as to allow
models of possible real-world situations and deny modelling impossible
real-world situations. In simple cases such relationships or constraints
may be expressed by adding a relationship or modifying an existing
relationship. More complex cases may additionally involve OCL con-
straints.

The three sources of changes can lead to two types of changes:

• Additions or changes to the UML meta model elements:
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Additions or changes to the UML meta-model elements can take a
number of forms, e.g. changes in association multiplicities, addition
of associations between formerly unrelated meta-model elements, or
additions of classes of language elements4.

We attempt to restrict changes to the UML meta-model to a mini-
mum and instead prefer to employ OCL. Our aim is not to propose a
meta-model of the BWW-ontology in UML, nor do we want to pro-
pose changes to the UML meta-model which would lead to an exact
match with the BWW-concepts and assumptions. UML should re-
main an object-oriented language whose primary use is for IS design.
We aim to find an ontological interpretation which requires the least
reinterpretation and preserves the original language elements and their
valid combinations as much as possible. We wish to preserve as much
as possible the constructs and syntax necessary to support IS design
and all object-oriented principles such as encapsulation, classification,
message passing, etc.

As a consequence, we refrain from changing aspects such as the use
of composition or aggregation instead of ordinary associations. An
example of this is the definition of an ”Instance” in the meta-model as
a composite of zero or more ”AttributeLinks” (values of attributes).
While this is correct for a description of a software design, instances
in the real world are of course described by, not composed of, one or
more attribute values. Hence, this should be modelled by an ordinary
association. There exist a multitude of similar cases in the UML meta-
model but we refrain from suggesting changes to these. Instead, we rely
on the reader of a model to interpret the semantics of these associations
with respect to the real world.

• Specification of constraints in OCL:

Often the ontological assumptions can be expressed using the elements
of the existing meta-model or the suggested alterations to the meta-
model. In these cases changes to the meta-model elements are not
required and instead we rely on OCL to specify our proposed rules
formally.

4All additions to the meta-model and OCL expressions are based on version 1.4 of the
UML meta-model OMG (2001). A full discussion of the meta-model is beyond the scope
of this paper, the reader is assumed to be familiar with the model. Hence, additions to
the meta-model are often suggested without depicting the larger context in which these
are embedded.
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The changes to the UML meta-model are syntactic in nature and by
themselves do not affect the semantics of UML vis-a-vis the real world.
These semantics are determined by the ontological mappings that we assign,
not by the meta-model.

2.7 Scope of Mappings

Chapter 1 outlined our motivation for incorporating ontological semantics
into language meta-models. Besides facilitating CASE tool support, meta-
model level work allows inter-diagram considerations and modelling rules.
UML as a graphical language comprises nine distinct diagrams: use case
diagram, class and object diagrams, sequence and collaboration diagrams,
statechart and activity diagrams, component and deployment diagrams. Not
all of these are necessary for every purpose. In fact, the last two in this list
are considered implementation diagrams, concerned with the physical pack-
aging and distribution of software to hardware components. However, the
UML meta-model provides the underlying integration of these diagrams by
providing relationships between language constructs used in different dia-
grams. Thus, a meta-model analysis allows a comprehensive and integrated
analysis of all UML diagrams.

Such a comprehensive approach is important. Any assignment of se-
mantics to language constructs should not be done individually for each
construct. Instead, it must be done before the background of the whole lan-
guage as an interconnected set of constructs, not as a set of independent sym-
bols. Furthermore, the interpretation and representation mappings should
attempt to preserve the relationships among language constructs, whether
they are formal syntactic constraints or only exhibited in common usage.

As an example, consider the UML-construct ”object”. UML suggests
that each object may have a UML-construct ”state” associated with it. Any
mapping of ”object” and ”state” should attempt to preserve this relationship
between the concepts to which ”object” and ”state” are mapped in the
ontology. If necessary, different mapping must be suggested for ”objects”
and ”states” in different contexts.

The alternative, individual mapping of constructs and disregarding any
relationships between them, may lead to simpler representation and inter-
pretation mappings. However, these may turn out to contradict ontological
assumptions. For example, mapping action states to ontological states will
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contradict the ontological assumptions that state transitions occur within
a single entity. When that is the case, either the ontological assumptions
must be dropped, or the existing language meta-model must be discarded.
To do the first is impossible, as the ontology is externally given, while the
second suggestion may significantly alter the language.

Despite this argument for a comprehensive approach, this thesis does not
consider the language constructs used in the two implementation diagrams,
component and deployment diagrams, nor those in use case diagrams. These
three diagrams explicitly contain the information system or parts thereof as
model elements. As this thesis is concerned with conceptual modelling of the
business and organization, not the software, these diagrams are not relevant
to the purpose of this thesis.

Furthermore, these three diagrams model the information system in the
context of entities such as organizational actors, hardware, etc. which are
external to the IS, e.g. actors interacting with a use case, packages being
distributed to hardware nodes. As the IS is a representation of the real word,
these IS-external entities must consequently be representations of things
external to the real world. This is clearly not possible. Hence for the purpose
of assigning business semantics to UML for conceptual modelling, these
diagrams are not relevant. The IS-external entities in these diagrams cannot
be mapped to any ontological concept, as there exists no such concept that
is external to the real world. Consequently, for the purpose of conceptual
modelling, they are ontologically excessive.
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Chapter 3

Prior Research

Research focussing on the analysis of domains for IS design has a long tradi-
tion in software engineering under the name of domain analysis. Similarly,
research to formalize UML is not new and ontologies have been used for the
analysis of IS modelling languages before. These three streams of research
have had little contact with one another and different aims and goals. This
chapter examines the relevant work and points out weaknesses and differ-
ences to the current work.

3.1 Domain Analysis

In the area of software engineering or software design, it has been recognized
that, for effective reuse of software artifacts, an understanding of the appli-
cation domain is necessary. Within that research area, the term domain
analysis has come to signify the attempt to understand the area of appli-
cation of a software system. Domain analysis attempts to abstract from
the specifics of a particular IS and attempts to model the features of the
application domain in order to build artifacts that enable reuse.

Most of this research views domain analysis not necessarily as the anal-
ysis of the real-world but rather as the first step in the development of a
reusable and expandable software architecture or framework (Arango, 1989;
Morandin et al., 1998; Philippow and Riebisch, 2001; Jayase et al., 2001).
Thus, a domain model is not necessarily a faithful representation of the real
world. Domain analysis then is the identification and documentation of com-
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monalities and differences that can occur across different implementations
of a domain framework or domain architecture.

Object-oriented techniques have been proposed for domain analysis as
those techniques became increasingly popular with software engineering (Go-
maa, 1992). The focus of this early use of object-oriented techniques has
been the identification of variability in a domain, following the promise of
more flexible software design by OO proponents. Therefore, domain anal-
ysis using object-oriented techniques is able to explicitly support reuse of
software components (Cohen and Northrop, 1998) and the domain models
include representation not only of the physical world, but also elements of
data abstraction, control and algorithms (Gomaa, 1992).

This focus on software reuse is also evident in (Galfione et al., 2000):
”[domain analysis is] a methodology to support the identification, collection
and organization or the artefacts used in software development”. Only to
a secondary degree is domain modelling concerned with real-world models.
Instead, it should specifically take into account IS considerations such as
reuse and software configuration issues (Cohen and Northrop, 1998).

The general process of object-oriented domain analysis begins with do-
main exploration and modelling followed by specification of systems and
architectures which include ’hot spots’, points of variability that must be
configured to yield concrete models (Morandin et al., 1998). With the in-
creasing calls for object-oriented techniques for domain analysis (Cohen and
Northrop, 1998; Gomaa, 1992), the use of UML has also been suggested.
However, UML cannot express variability required for domain models to
adapt to various similar domains and needs to be expanded to include con-
structs for instantiating concrete models (Morisio et al., 2000; Philippow and
Riebisch, 2001). In this sense, domain analysis is closely related to reference
models, which have also been examined ontologically. However, a different
methodology than the one proposed here must be used for this (Fettke and
Loos, 2003).

Domain analysis embraces object-oriented techniques for the purpose
of constructing models for software reuse. This contrasts with our under-
standing of conceptual modelling which specifically excludes any software
considerations. Consequently, proposals to extend UML for domain anal-
ysis focus on expressing variability, not on real-world semantics. Domain
analysis does not distinguish between the real world and the real world as
viewed for the purposes of IS design. Moreover, real-world semantics for
UML are implicitly assumed and taken for granted. In contrast, this re-
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search does not accept the suitability of object-oriented languages a-priori.
Instead the primary objective of this research is to assign semantics to en-
sure this suitability. In this way, the results of this research can further the
goals of domain analysis.

3.2 UML Semantics

Another related stream of research is the formalization of UML. This re-
search has taken UML from a purely graphical language with few rules to
a language based on a rigorous meta-model that governs the application
of language constructs. An important result of the precise UML (pUML)1

group and the drive for formalization has been the UML meta-model (Evans
and Kent, 1999; Evans et al., 1999a) which has been described in UML itself
with the help of the object constraint language OCL. This meta-model has
been adopted into the language standard (OMG, 2001) and is used as one
of the foundations of this work.

This section briefly describes recent efforts at assigning not only formal
syntax but also formal semantics to UML.

Breu et al. (1997, 1998b) motivate the formalization effort by arguing
that a formal semantics provides advantages for modellers and tool develop-
ers. They recognize that UML models consist of different diagrams express-
ing various views or perspectives which must be integrated. Hence, UML
constructs are mapped to various mathematical and logical models such as
SYSLAB and Z (Breu et al., 1998a; Bruel and France, 1999).

The pUML group works towards a semantics for UML by formalization in
logic. This kind of semantics is concerned either with internal consistency
(and is thus a coherentist view of semantics) or defines semantics of an
IS as the input/output relationship or transformation rules (and is thus a
procedural semantics). Evans et al. (1999b) propose a formalization of UML
by specifying it in the formal language Z, arguing that Z better supports
logical inferences and proof than the OCL language which is part of UML.
Evans (1998); Evans and Clark (1998) show how UML class diagrams can
be formalized in Z. Lano and Evans (1999) relate UML diagram elements to
a first order set theoretic model called RAL (Real-time Action Logic) and
demonstrate how this can lead to transformation rules that can take UML
models from analysis to design.

1http://www.cs.york.ac.uk/puml
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Various other works claim to assign formal semantics to UML. Lano
and Bicarregui (1999) use formalization as a tool to derive transformation
rules for UML models, Lilius and Paltor (1999) provide a formalization
of UML state machines and Övergaard (1999); Övergaard and Palmkvist
(1999); Knapp (1999) suggest a formal treatment of interaction, especially
collaborations and use cases.

However, all of this research relates to internal consistency and the for-
malization of UML in logic and mathematics, not to its relationship to the
real world. Specifically, these kinds of semantics are not correspondence se-
mantics, i.e. the meaning of constructs is not determined by their relations
to extra-linguistic elements, such as real-world elements. By not relating the
language to extra-linguistic entities they fail to impart real-world meaning to
UML constructs. Thus, none of these approaches make clear the meaning of
UML constructs in the business or organizational domain. They answer the
question of what a particular UML construct means e.g. in the Z language,
but this simply moves the problem to the real-world semantics of Z.

3.3 Ontological Analysis

This section describes research on how ontology and specific ontologies have
been used for the analysis of IS modelling languages. While the research
discussed in the last section lacked this element, most of the work discussed
in this section lacks the formal aspect that is common to research discussed
in that section.

The use of ontology in IS research dates back to the work by Wand (1989)
who introduces the main concepts of Bunge’s ontology to the IS field and
examines five principles of object-oriented concepts. He goes on to suggest
ontological semantics for very general object-oriented concepts without ex-
amining a specific language. Early work (Wand and Weber, 1989) identifies
implementation related languages and constructs that are distinct from rep-
resentation related constructs. Only the latter are deemed suitable for rep-
resenting real-world domains, while the former relate to software artifacts.
Among such implementation related constructs are messages and message
passing concepts (Parsons and Wand, 1991, 1997). This finding reflects the
heritage of the object-oriented approach from software engineering (Opdahl
and Henderson-Sellers, 2001).

Only later is the notion of ontological evaluation developed and applied
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to data flow diagrams (Wand and Weber, 1993). Next to classification theory
(e.g. Lakoff, 1987) and speech act theory (Austin, 1962; Searle, 1969; Aura-
maki et al., 1988, e.g.), ontology is proposed as a third basis for evaluating
models and modelling languages.

Parsons and Wand (1997) describe the applications of ontology in gen-
eral, and the BWW ontology in particular, to the evaluation of systems
modelling techniques and use it to the clarification of the notion of object in
systems analysis. Specific focus on object-oriented techniques has led to a
proposed modelling process (Wand and Woo, 1999) for object-oriented lan-
guages that extends from real-world conceptual modelling to high level IS
design (Wand et al., 2000). The modelling rules and process are generic and
not specific to a particular language. Wand and Woo (1999) do not provide
detailed syntactic rules. As such, the present research is complementary to
their process.

Recent work has focussed on specific languages and even specific lan-
guage constructs such as the relationship construct in entity relationship
(ER) diagrams (Wand et al., 1999). As object-oriented techniques gained
popularity in IS design, various studies have examined the OPEN Modelling
Language (OML). OML is an experimental variant of UML and, when ana-
lyzed using the BWW ontology, exhibits a number of overloaded, excessive
or redundant language constructs as well as construct deficits (Opdahl and
Henderson-Sellers, 1999; Opdahl et al., 1999; Opdahl and Henderson-Sellers,
2001). However, no modelling rules have been proposed.

Ontological analysis has also been successfully applied to more tradi-
tional, non object-oriented languages. The ARIS language (Scheer, 1999) is
a combination of four distinct and slightly overlapping languages. Ontologi-
cal analysis indicates that even as a combination of languages, ARIS exhibits
ontological constructs deficit and cannot express the BWW-ontology com-
pletely (Green and Rosemann, 2000).

On a more critical note, Rosemann and Green (1999) suggest that on-
tological analyses neglect the purpose of the model and characteristics of
the user or modeller. Thus, they argue, the deficiencies identified through
ontological analysis may not be relevant to practical modelling situations.
They demonstrate this using examples of activity based costing and workflow
modelling and suggest that the ontologies used should be either amended
or restricted to fit the purpose and user. However, as argued above, an
ontology is a most fundamental philosophical position and as such is not
tied to a specific purpose. It should be departed from only if the results of
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research based on that position obviously violate accepted truth. Moreover,
some languages are not intended to completely express the BWW ontol-
ogy (Opdahl and Henderson-Sellers, 2002; Parsons and Wand, 1991, 1997),
and changes to the BWW-ontology to accomodate e.g. software specific
constructs should not be considered.

Analysis of UML Two other research groups have used the BWW-
ontology to analyze the UML language (Opdahl and Henderson-Sellers,
2002; Dussart et al., 2002), the former being more comprehensive than the
latter. Both works stop short of suggesting modelling rules to be incorpo-
rated into the meta-model, but instead analyze the language for ontological
deficiencies. This chapter reviews the different choices those authors made
in mapping ontological concepts to UML language elements. Since a full
discussion of the research is beyond the scope of this thesis, the mappings of
the most fundamental constructs and concepts will be discussed. The end
of this section draws some general conclusions from this discussion.

Both (Opdahl and Henderson-Sellers, 2002) and (Dussart et al., 2002)
map UML-objects to BWW-things, but in order for UML-objects not to
be overloaded, this interpretation mapping needs to be restricted to those
objects which are substantial. Other UML-objects must be mapped to e.g.
BWW-properties, and the modeller must be given a rule for this mapping.
The representation mapping from BWW-things into objects is not problem-
atic. Dussart et al. (2002) map a BWW-thing also to a swimlane, or more
formally, a partition in UML. However, this leads to state transitions be-
tween two objects, which, when mapped back to BWW-things, should not
be possible.

Opdahl and Henderson-Sellers (2002) as well as Dussart et al. (2002)
map BWW-classes to UML-classes. However, this neglects the fact that a
UML class is a specification, not a collection of things like a BWW-class.
Collections of things are modelled as aggregates and composites in UML.

BWW-properties are mapped to UML attributes (intrinsic properties)
and associations (mutual properties) by Opdahl and Henderson-Sellers (2002)
while (Dussart et al., 2002) make the unorthodox mapping of BWW-properties
to UML-activities and UML-partitions. The first mapping has to con-
tend with the fact that properties are mapped to two very different UML-
elements, while the second mapping brings with it the problem that parti-
tions are not features of UML-objects, so that the BWW-properties mapped
to them are not actually features of UML-objects. This mapping also over-
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loads the partition construct to represent both things and properties.

Both Opdahl and Henderson-Sellers (2002) and Dussart et al. (2002)
map BWW-states to UML-states and both attempt to find a mapping for
the BWW-state history of a thing, the collection of states through time of
a thing. Dussart et al. (2002) map the history to the UML-shallow history
construct, which does not fully capture the meaning of the BWW-history
concept. Opdahl and Henderson-Sellers (2002) on the other hand map the
BWW-history to a UML-object lifeline, which, while often shown in sequence
diagrams, is not a formal UML element defined in the meta-model. While
this captures some sense of a thing’s history, it does not, or only indirectly
by tracing messages to state transitions, reflect the series of states that a
thing has gone through.

Interestingly, Dussart et al. (2002) map the conceivable state space of a
thing to a UML-state machine and the lawful state space to the set of sub-
states, recognizing that a state machine contains states just like a state space
contains states. Opdahl and Henderson-Sellers (2002) find no counterpart
in UML corresponding to the conceivable or lawful state spaces. The map-
ping to UML-state machines however requires that these are state machines
which are associated with a classifier, i.e. those which specify the behaviour
of instances or objects, not those which specify the behaviour of methods.
This must be ensured by an appropriate modelling rule. While this is a step
towards capturing the meaning of the conceivable state space, one would
also need to include states and sub-states of all state machines which de-
fine behavioural features of UML-objects. With this extended reading, the
mapping by Dussart et al. (2002) is a good interpretation mapping.

Opdahl and Henderson-Sellers (2002) map ontological stable states to
UML-final states and vice versa. This neglects the fact that BWW-stable
states are defined through interaction, a concept which should be mapped to
UML-events or actions. Hence intermediate states may also be considered
stable, if state transitions from such states are caused by external interac-
tion.

Opdahl and Henderson-Sellers (2002) propose an interpretation mapping
which maps most interaction related constructs such as transitions, guard
conditions, actions, etc. to BWW-laws. On the other hand, a BWW-law is
not mapped to the obvious equivalent of a UML-constraint. This mapping
is problematic without clear guidelines to the modeller as it shows a lot of
ambiguity with respect to the representation of BWW-laws in UML.
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There are a number of important things to note. First, in Dussart et al.
(2002) it is unclear whether the mappings given are interpretation or rep-
resentation mapping or both. Also, their research is restricted to UML ele-
ments used mainly in activity charts and concerned with interaction. Both
Opdahl and Henderson-Sellers (2002) and Dussart et al. (2002) suggest map-
pings that clearly show ontological deficiencies such as overloaded language
constructs or construct redundancy. This is the result of trying to map the
elements without restricting the applicability of the mappings to make the
mappings less problematic. Their conclusions, that the languages are defi-
cient, is a direct result of this. On the other hand, our research attempts
to find rules by not only transferring ontological assumptions to the UML-
language but also, and perhaps more importantly, suggesting ways in which
to enhance the ontological clarity of the mapping and reduce the ontolog-
ical deficiencies. For example, we restrict the mapping of UML-objects to
BWW-things to substantial objects only, thus reducing ontological deficien-
cies and providing a clear modelling rule.

Second, there exist elements in the UML-meta-model which have no se-
mantic role to play. These are not mapped to BWW-elements in the present
research and no modelling rules need to be derived. Other UML-constructs
such as sync states, focus of control, timing mark, etc. that are mapped
by Opdahl and Henderson-Sellers (2002) are not mapped in this thesis due
to the following reasons. First, we believe that these are very UML spe-
cific constructs that have no general object-oriented counterpart or mean-
ing. Second, these constructs are specifically related to IS implementation.
Third, these constructs, if they were mapped, would result in ontological de-
ficiencies in the mapping, such as construct overload. In contrast to Opdahl
and Henderson-Sellers (2002) we have therefore decided not to map such
UML-constructs.

To summarize, previous work has concentrated on ontological evaluation
of languages. In contrast, our present aim is to employ ontology in a more
prescriptive way and assign ontological semantics to a language. The present
work builds on earlier work (Evermann and Wand, 2001a,b) to use the BWW
ontology not only as the basis to determine ontological deficiencies, but also
in a constructive way: Through the interpretation or representation map-
ping we can assign real-world meaning (ontological semantics) to language
elements. Hence, this tells us not only whether to use such languages to
model the real world, but also how to use them. This work also builds on
the formal syntax and formal semantics of the UML meta-model and the
object constraint language, attempting to bridge the two diverse streams
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of research. It is the first study to employ formal descriptions of the rules
resulting from an ontological analysis.
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Chapter 4

Static Structure

Our world consists of a static structure of things with their properties,
changes in things and interactions of things. Hence, this is the order of
the following discussion. Each of the following chapters first employs a rep-
resentation mapping, followed by an interpretation mapping. From these
mappings a number of modelling rules follow as consequences. These are
first stated informally and then formalized using the UML meta-model and
OCL. As stated in Sec. 2.5, the derived modelling rules are intended for
conceptual modelling of real-world domains. They are not applicable for
use of UML in software design and software modelling.

4.1 Representation Mapping

The representation mapping is intended to find a first UML representation
of the basic ontological notions. The basic building blocks of the world
are things, which possess intrinsic and mutual properties. Things can be
classified into classes or natural kinds. This section attempts to map these
ontological concepts to UML constructs. By doing this we narrow the possi-
ble uses of UML constructs. This is reflected in the derived rules. We begin
our discussion with the most basic concept, that of a thing.
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4.1.1 Things

A primary concern of every modelling endeavour is the identification of the
basic structure of the domain. In UML, the modeller needs to decide what
to model as an object and what not to model as an object. Questions such
as ”is an employee an object?” or ”are skills or transactions objects?” are
of fundamental importance.

Because every BWW-thing is an entity in the world, we propose that a
BWW-thing is equivalent to a UML-object. The inverse is not necessarily
true: Not every UML-object is equivalent to a BWW-thing. Entities such as
”location”, ”jobs”, ”orders” 1 are not things in the ontological sense but are
still often modelled by UML-objects. If we want to assign the ontological
semantics of a thing to a UML-object, we must follow rule 1:

Rule 1 Only substantial entities in the world are modelled as objects.

Fig. 4.1 is an example UML class diagram to show the implications of
our rule. The model is taken from (Fowler and Kendall, 2000) and described
as an anlysis level model, not a design model. It depicts a situation typ-
ically found in object-oriented models. Note that according to rule 1 the
UML objects ”Order” and ”OrderLine” should not be modelled here as they
have no substantial counterpart in the real-world. Hence, we must find an
alternative description for entities such as ”Job”, ”Order”, etc.

4.1.2 Properties

Having identified what to model as an object, and what not to, we find
that many of the items that we rejected as objects are properties of things.
For while an employee should be modelled as an object, skills of employees
should not, nor should addresses of employees as these are not substantial
things. Instead, they are BWW-properties of things and we suggest they
should be modelled as UML-attributes.

In ontology, every thing possesses properties, which may be either in-
trinsic, possessed by the thing alone, or mutual, joint properties of two or
more different things. We propose that all properties find their equivalent

1We are not interested in the physical manifestations, such as an order form. These
are merely descriptions of an order.
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Figure 4.1: Example UML class diagram without ontological semantics
(Fowler and Kendall, 2000)
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in UML-attributes. The following paragraphs examine intrinsic and mutual
properties.

Intrinsic Properties

We propose that BWW-properties of things are equivalent to UML-attributes
of an object. Thus, when using UML for conceptual modelling, we suggest
following rule 2:

Rule 2 Ontological properties of things must be modeled as UML-attributes.

One implication of this rule is a clear distinction between attributes
and objects which reflects the clear distinction between BWW-properties
and substantial things (see also Wand et al., 1999). For example, while
an address is a property of a person, it is not part of a person. The entity
”Person” in the information system is a representation of a real person and as
such can be compositionally associated in the IS with another representation,
”Address”. In the real world, a person is the physical entity but an address
is a conceptual construct and they cannot be compositionally associated.
Rules 1 and 2 together lead us to propose the following:

Corollary 1 Attributes in a UML-description of the real world cannot refer
to substantial entities.

Consider for example a person that has a language skill. Because a skill
is a conceptual entity, i.e. it is not substantial, it cannot be modeled as an
object but must be an attribute of the person 2. Ontologically, a skill is a
property of a person.

The above rules relate model elements to elements of the real world and
can therefore not be formally expressed in the meta-model or in OCL.

Mutual Properties

The results regarding the representation of properties as attributes are not
restricted to intrinsic properties but should be applicable to all properties.

2Note that in IS design, a skill is often modelled as an object or entity, but this must
be the second step in the IS analysis and design process, after the description of the real
world.
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Hence, mutual properties must also be represented by UML-attributes. This
section will discuss mutual properties in detail.

The BWW-ontology distinguishes intrinsic properties from mutual prop-
erties. The former are possessed by a thing alone while the latter are prop-
erties of two or more things. Since all properties must be represented by
attributes (rule 2), we propose that attributes of ’ordinary’ UML-classes
represent intrinsic properties while attributes of association classes repre-
sent mutual properties. Recall that mutual properties are properties that
are shared between two things, e.g. the salary of an employee of a company
or the tuition fee of a student of a university. These properties can only be
attributed to two or more things jointly, not to a single thing.

A special case of an attribute in UML is an attribute of an association
class. At this point we are not concerned with associations themselves and
defer that topic for later discussion (Sec. 4.2.7). It suffices to introduce
associations as some kind of ’connection’ between classes, i.e. an association
represents some semantic relationship between the objects of the associated
classes.

We propose that association classes represent bundles of mutual prop-
erties, each association class attribute represents a mutual property. E.g.
the property ”Order volume” represents a mutual property between a sup-
plier and a customer, the property ”Salary” represents a mutual property
between an employer and an employee. Note that we specifically do not
make any interpretation of the association construct itself yet.

Rule 3 Sets of mutual properties must be represented as attributes modelled
with association classes.

With this interpretation of a bundle of mutual properties, an association
class cannot represent or describe substantial entities because in that case
its attributes would be intrinsic ones of a substantial thing.

Corollary 2 An association class cannot represent substantial entities or
composites of substantial entities.

In the following we show that this is not a limitation. We examine three
different semantics of association classes as they are commonly found in
object-oriented models. Based on the above ontological mapping we suggest
rules for how these three cases must be treated to conform to our proposed
ontological semantics. These rules follow from rule 3 and corollary 2.
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Computer Robot

Controller

Serial#
Manufacturer
Model

TurnOn
TurnOff

controls

Figure 4.2: A substantial association class in UML

1. The association class is intended to represent a substantial entity.

Figure 4.2 illustrates this case. A computer controls a robot via a con-
troller device. This device has attributes and operations. In this case,
the intended instances of the UML-association class are substantial
entities and can thus be described as regular classes. The association
class attributes are intrinsic properties of the controller device and
should be modelled as such. This motivates the following rule:

Corollary 3 If an association class of an n-ary association is in-
tended to represent substantial things, the association should instead
be modelled as one with arity (n+1).

Fig. 4.3 shows this transformation using the above example. The con-
troller association class is reinterpreted as a participant of the now
ternary association. It has intrinsic attributes.

2. The intended interpretation of the association class can be identified
as a composite or aggregate.

Sometimes an association class represents emergent properties of a
composite. When this is the case, the UML model should reflect this
composition by showing an aggregation relationship. Figure 4.4 shows
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Figure 4.3: A reinterpreted substantial association class

Processor Memory

Computation

ComputationPower

Figure 4.4: An association class represents a composite
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Processor Memory

Computer

ComputationPower

Figure 4.5: Reinterpreting an association class as a composite

an example. A processor and memory are associated to perform com-
putations. This association has an attribute of computing power. This
should instead be modelled properly as a composite with emergent
properties, as depicted in Fig. 4.5.

Corollary 4 An association class representing a composite must in-
stead be modelled as a composite with attributes representing emergent
intrinsic properties.

3. The association class is intended to represent a set of mutual proper-
ties.

Consider the situation depicted in Fig. 4.6. This third case reflects the
ontological mapping that we have proposed above. A ”Job” is not a
substantial thing and hence cannot be modelled as a class. However,
the attributes of the association class ”Job” are mutual attributes of
the company and the employee. They could be rewritten as a set of
binary mutual properties:

{ JobTitle(Company, Worker)

Salary(Company, Worker)

StartDate(Company, Worker) }

Additional laws are required to ensure that these properties occur
together.
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Figure 4.6: A conceptual association class in UML

Of the three possible intended meanings of an association class one al-
ready conforms to our ontological and the other two should not be modelled
as association classes because their attributes represent either intrinsic prop-
erties or emergent intrinsic properties of composites.

Consequences and Characteristics of Association Classes Recall
that in UML, an association class possesses all the characteristics of a class
as well as that of an association. This means that in UML an association
class can be generalized, participate in further associations, and define op-
erations and methods. The next paragraphs will examine whether these
characteristics are still attributable to UML association classes with our
ontological interpretation.

Ontologically, all change is tied to things. There can be no change with-
out a thing that changes. In light of the fact that association classes do
not represent substantial things, we propose that an association class as a
set of mutual properties cannot possess methods or operations nor can it be
associated with a state machine specifying any behaviour.

Corollary 5 An association class cannot possess methods or operations.

We can express this in OCL as follows:
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(4.1)
context AssociationClass inv:
self.feature

->select(f | f.oclIsTypeOf(BehaviouralFeature))

->size()=0

Corollary 6 An association class cannot be associated with a state ma-
chine.

(4.2)
context AssocationClass inv:
self.behaviour->Size() = 0

Moreover, since an association class attribute represents a mutual prop-
erty, every association class must possess at least one attribute. While an
empty set of mutual properties is still a set and thus technically satisfies
corollary 3, it is ontologically meaningless. Hence we propose rule 7:

Corollary 7 An association class must possess at least one attribute.

(4.3)
context AssociationClass inv:
self.feature

->select(f : feature | f.oclIsKindOf(Attribute))

->size() > 0

Furthermore, as properties in ontology cannot themselves possess mutual
properties with other properties or things, an association class in UML must
not be associated with any other class.

Corollary 8 An association class must not be associated with another class.

51



(4.4)
context AssociationClass inv:
self.specifiedEnd->size() = 0 and
self.association->size() = 0

Since properties themselves cannot be generalized, an association class
cannot be generalized or specialized.

Corollary 9 An association class must not participate in generalization re-
lationships.

(4.5)
context AssociationClass inv:
self.child->size() = 0 and
self.parent->size() = 0

There seem to be numerous examples of property generalization: Having
more than zero course credits generalizes the property of having three course
credits, having ordered two items is generalized by the property of having
ordered some number of items, having borrowed one book is generalized by
the property of having borrowed books.

On first sight, the concept of precedence of properties appears to be
a solution. It suggests that if the set of things possessing a property X
is a subset of the things possessing property Y, then Y is said to precede
X, formally: Y ≺ X. However, this is not always a generalization. For
example, the property of having items on order with a supplier is preceded
by the property of having good credit with that supplier. However, having
good credit is not a generalization of having items on order. Thus, property
precedence is not equivalent to property generalization.

What about the above examples? (Bunge, 1977, pp. 68, 125) suggests
that while attributes that represent properties can be dichotomized (e.g.
borrowed one book, borrowed two books, borrowed three books), such di-
chotomization does not imply that the represented properties are dichoto-
mous. Moreover, attributes that serve as state functions (see Sec. 5) should
reflect properties in general such as ’number of books borrowed’. Hence,

52



Job

JobTitle
Salary
StartDate

Company

RaiseSalary
Terminate

Employee

Terminate

Figure 4.7: Association class and operations in UML

UML-attributes that represent properties should not be dichotomized un-
necessarily or artificially.

What about properties such as ’can move’ and ’can fly’? Clearly flying
is a special way of moving. These attributes do not represent properties
but potential change in things. Both, moving and flying are activities, not
properties. Thus, they will need to be examined in our section on change
(Sec. 5). Abilities should not be modelled as attributes.

In general, precedence of properties in the BWW-ontology is a law. We
will later see that law statements are represented by UML constraints (see
Sec. 6.1.1). Thus, we suggest to use UML-constraints to express general
property precedence.

Recall that corollary 5 proscribes that association classes be assigned
operations or methods. How then do mutual properties change?

Given that properties represented in association classes are mutual to
the participants of the association, they may be changed when the things
represented by the participant classes themselves undergo changes. Hence,
we propose that methods and operations intended for association classes
should be modelled with the participant classes. In the example of Fig. 4.6,
the operation ”RaiseSalary” should be modelled with the company and the
operation ”Terminate” may be modelled with either the company or the
employee or both, depending on the real-world situation. Fig. 4.7 shows
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this interpretation.

Rule 4 If mutual properties can change quantitatively, methods and oper-
ations that change the values of attributes of the association class must be
modelled for one or more of the classes participating in the association, ob-
jects of which can effect the change, not for the associations class.

Mutual properties usually occur together. For example, some mutual
properties arise out of interaction, e.g. after a customer and a car rental
company interact, there exist a number of mutual properties such as ’Date-
Out’, ’DateDue’, ’BalanceDue’, ’DepositPaid’ etc. We suggest that sets of
mutual properties that arise out of one interaction be modelled in a single
association class. On the other hand, there exist situations in which unre-
lated sets of mutual properties exist. We suggest that each association class
expresses related concurrent properties and that different association classes
be used if sets of properties are not concurrent:

Rule 5 An association class represents a set of mutual properties arising
out of the same interaction.

As a result, different association classes should be used for sets of mutual
properties that arise out of different interaction. Consequently, two classes
may be linked by more than one association. For example, the interaction
of a customer ordering an item that gives rise to mutual properties such as
’Payment Balance’, ’Expected Delivery Date’, etc. between the customer
and the supplier. Consider another interaction when the customer returns a
defective product for warranty. Mutual properties such as ’Return Merchan-
dise Number’, ’Fault Description’ etc. arise. These two sets of properties
should in UML be modelled as two separate association classes between the
company and the supplier. We suggest further that in cases where the in-
teraction is modelled in other parts of the model (see Sec. 6) that the name
of the association class refer to this interaction.

Mutual properties and scope of model It is often the case that mutual
properties are properties of two or more things, some of which are beyond
the scope of the model. In the simple case, a mutual property of two things,
one of which is beyond the scope of the model, must then be modelled as an
intrinsic property of the other thing. In doing so, the set of other things that
the property is mutual with becomes part of the co-domain of the intrinsic
property.
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As an example, a student that has earned different degrees from dif-
ferent universities, e.g. a ’BSc’ from UBC, a ’MSc’ from UofA, a ’MBA’
from UToronto and a ’PhD’ from UVic. If the other schools form part of
the model, an association class should be modelled with an attribute ’De-
greeEarned’. However, if the other schools are beyond the scope of the
model, but the degrees earned are not, we must instead model an intrinsic
property by two attributes, ’DegreeEarned’ and ’School’ (or a single multi-
valued attribute).

For the remainder of the discussion, the properties of any thing are
represented by the union of attributes defined for a class and the attributes
of association classes which that class participates in. Expression (B.4)
defines this in OCL. As we discuss aggregation in subsection 4.1.3, expression
(B.4) in Appendix B already includes as properties all properties of parts of
aggregates.

4.1.3 Composition and Aggregation

Often, the modeller is confronted with the fact that different things are
combined in some way to yield other things. However, not every combination
of things is meaningful. This section will examine composition of things and
develop guidelines to help ensure ontologically meaningful models.

The composition relationship in the BWW-ontology defines composite
things as being made up of parts. In contrast to UML, it makes no assump-
tions as to any ownership or any restrictions on these part/whole relation-
ships.

UML distinguishes between composition and aggregation. These differ
along two semantic dimensions: In a composition relationship, the parts of
the composite are existentially dependent on the composite and also cannot
be part of any other composite. In an aggregation, the parts can exist inde-
pendently of the aggregate and can also, at the same time, be parts of multi-
ple aggregates. The aggregation semantics are equivalent to the ontological
notion of composition, whereas the more restrictive UML-composition has
no ontological counterpart.

Rule 6 A composition relation must not be modelled.

This can be expressed in OCL by proscribing the value ”composite” as
attribute of an AssociationEnd:
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(4.6)
context AssociationEnd inv:
self.aggregation <> "composite"

In some cases it may the case that individuals change behaviour or lose
or acquire properties if they become part of an aggregate. These changes
may occur when they become part of the aggregate. Examples of this are the
behaviour of team members as part of teams, employees as part of companies
etc. Once could reasonably argue that team members ’disappear’ once they
leave the team. However, on closer examination, the team members do not
disappear or get destroyed: Changes in properties or behaviour lead to sub-
classification, a topic that will be examined closer in Sec. 4.2.3 in connection
with multiplicities of associations.

Our ontology distinguishes between hereditary and emergent properties
of composites. The former are properties of some part that the composite
also exhibits, while the latter are properties of the composite that none of
the parts exhibit. Emergent properties are defined over properties of parts
and are thus a function of the properties of the parts. Take for example a
composite of two parts, A and B, each with one property, e.g. u1 and u2.
We can define the emergent property k as a function of the properties of the
parts:

u1 = 0 u1 = 1

u2 = 0 k = 0 k = 2

u2 = 1 k = 1

The property k is a function of the properties of the components A and
B of the composite and can be reduced to these, but it is not exhibited by
either component alone.

In the BWW-ontology, a composite must possess at least one emergent
property, otherwise there exists not a composite but only a set of things
(parts). In other words, a composite things must be more than simply the
’sum’ of its parts. This leads us to propose rule 7 as a specific version of
rule 8 below for composites:

Rule 7 Every UML-aggregate must possess at least one attribute which is
not an attribute of its parts or participate in an association with association
class.
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Note that under attributes we understand attributes that represent both
intrinsic and mutual properties, as defined in expression (B.4). Hence, we
can formally express the above rule by the following OCL expressions, mak-
ing use of expression (B.3) in Appendix B:

(4.7)
context Class inv:
self.association->exists(a | a.aggregation="aggregate")

implies
self.allNonPartProperties->IsEmpty() = false

Consider again the example depicted in Fig. 4.4 of the processor and the
memory. Only the fact that together the processor and memory give rise to
a property makes the composition meaningful. Otherwise, the processor and
the memory would simply be two things that happened to be close together.
Our rules ensure that only meaningful compositions of things are modelled
as an aggregate in UML.

4.2 Interpretation Mapping

The previous section examined the basic ontological concepts of the static
structure of the real world: Things, properties and composition of things.
This section will examine UML and object-oriented concepts and constructs.
With the previously made representation mapping in mind we identify their
ontological interpretation and explore the consequences of the representation
mapping.

4.2.1 Class

In UML, a class is defined as a description of a set of objects which share
the same attributes and operations. The role of classes in UML as primary
construct is that of templates or ’object factories’. Objects depend on classes
and cannot exist without them. Objects are created from class templates,
i.e. an object as a class instance possesses all methods and attributes defined
for its class. A UML-class is a description of a number of objects.

A BWW-natural kind is the set of things that adhere to the same set of
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laws and in turn exhibit the same type of behaviour. A natural kind is a set
of things, not a description or a template of or for a set of things. Sets differ
semantically from classes in that they are defined over pre-existing things
and do not exist without the things that comprise them.

Thus, UML-classes and BWW-natural kinds are fundamentally different,
hence we refrain from mapping them onto each other. However, the BWW-
ontology provides the concept of a functional schema. Such a schema is a
description of the properties of a thing or a set of things with like properties.
We propose that a UML-class is equivalent to a functional schema describing
the entities that form the corresponding BWW-natural kind.

Because all things possess properties and adhere to some laws, the func-
tional schema must reflect this and so we suggest the following rule:

Rule 8 All UML-classes must possess at least one attribute or participate
in an association.

It is however possible that things possess attributes inherited from their
parts. They are then defined as aggregate classes which participate in ag-
gregations. In that case, rule 7 is applicable, which in turns yields rule
8.

The following OCL expression is an invariant on the Class construct which
formalizes this rule:

(4.8)
context Class inv:
self.allProperties->IsEmpty() = false

Another important aspect of classes in object-oriented approaches is that
of an ’object factory’, i.e. classes serve to ’instantiate’ or create objects
according to the class template. Since in the BWW-ontology things cannot
be created or destroyed, this aspect of a class has no ontological equivalent
(but see Sec. 4.2.4).

4.2.2 Object Identity

Object identity, while not explicitly modelled in UML, is an important as-
pect in object-oriented techniques. In our ontology, things are identified
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through their unique set of property values and there exists no special iden-
tification criterion or identifier. An Object ID as a special attribute has no
ontological equivalent in the real world is thus excessive.

Rule 9 Object ID’s must not be modelled as attributes.

Instead the modeller must determine a combination of attributes that
uniquely identify an object3:

Rule 10 The set of its attribute values must uniquely identify an object.

The following OCL expression specifies this constraint:

(4.9)
context Class inv:
self.Instance->forAll(i1, i2 : |

i1.allProperties().slot.value =

i2.allProperties().slot.value

implies
i1 = i2)

In the context of information systems design it may not be desirable to
include all identifying attributes. In this case they may be summarized or
aggregated in the form of an artificial object identifier. This identifier thus
represents all those properties of things that ensure its uniqueness. However,
in the conceptual model, the identifying attributes should be modelled.

4.2.3 Multiplicities

UML allows the modeller to assign multiplicities to attributes and associa-
tion classes. Because multiplicities express different semantics in each case,
they are dealt with separately, beginning with multiplicities of attributes.

3In this respect relational data models, where the modeller defines a set of attributes
whose values uniquely identify an entity, are closer to the BWW-ontology than object-
oriented techniques which expressly rely on object identifiers.
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Attributes

We begin with an important observation: Since attributes represent prop-
erties by being assigned some value at some time, these values reflect a
property (Bunge, 1977, p. 119f). Hence, every attribute must have a value:

Rule 11 Every attribute has a value.

(4.10)
context Attribute inv:
self.AttributeLink->isEmpty() = false

Special values such as ’NULL’, ’NIL’ or ’void’ are sometimes used to
indicate the lack of a value. This contradicts rule 11. Moreover, these
special values are not elements of the co-doamin of any real world property.
Hence we proscribe their use as an attribute value in any model4.

If there is no multiplicity assigned to an attribute it represents a simple
property with implicit multiplicity of one, the domain of which is a set of
values. In general, the co-domain of any property is a set. In the most
general case, this set is an element of the powerset P of another set. Tech-
nically, the empty set ε is also a member of any powerset. We suggest that
attributes with a declared multiplicity of k can take for a value all elements
of P which consist of k element. It is of course meaningless to assign a
multiplicity of zero to an attribute, as that attribute would only be able to
take the empty set for a value. Not only is this ontologically meaningless,
but it would also imply that the represented property is unable to change.
This contradicts the BWW-ontology5 .

Attributes must correspond to substantial properties of a thing. Thus,
while in theory attributes may be multi-valued or take as value the empty
set, this may not correspond to the real-world situation. Furthermore, the
modeller must take care to identify the meaning of the attributes in terms
of the underlying properties. Consider the example depicted in Fig. 4.8.
While the position in (A) is modelled with a multiplicity of two, this does
not represent the true real-world situation. On closer inspection we find
that the two values are not freely interchangeable, but that instead they

4See also (Wand et al., 1999)
5Note also that the empty set ε is not equivalent to a ’NULL’ value.
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Figure 4.8: Multiplicity of Attributes

possess different meanings and should therefore be modelled as shown in
(B). Thus, one criterion for when unary attributes are combinable into a
multi-valued attribute is that the order or position is semantically irrelevant.
This conforms to our set-oriented interpretation above, since a set too is by
definition unordered.

Corollary 10 Attribute multiplicities greater than one imply that the order
of the different individual attribute value components is semantically irrele-
vant.

Attributes may also be assigned multiplicities in the form of a range
specifying lower and upper bound to express set-valued properties. The
upper range can be unlimited, expressed by the ’*’ symbol. With our above
interpretation and discussion, we suggest that such attributes can take values
of a powerset that contain a variable number of values. Again, it must
be noted that while the empty set ε is a member of any powerset it may
not necessarily have an ontological interpretation in any given situation.
Furthermore, corollary 10 applies to this case as well, suggesting the modeller
must carefully analyze the represented properties.

For example, the declaration of a variable a with multiplicity three such
as a[3] while allowing ’NULL’ values may seem to be equivalent to declaring
a[0..3] while not allowing ’NULL’ values. In both cases, the attribute a can
represent either zero, one, two or three values. However, we argue that the
second representation better expresses the ontological real-world semantics,
as it does not require use of special ’NULL’ values. Still, it possibly violates
rule 11 if it allows for value to be present and hence must not be modelled.
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Note that the arguments in this section regarding multiplicities of at-
tributes are valid for attributes of ordinary classes as well as for attributes
of association classes, since both represent BWW-properties.

Association Classes

The semantics of multiplicities of associations, esp. association classes, are
different than those of attributes. In contrast to attribute multiplicities,
multiplicities assigned to association classes express the number of other
things or objects a particular thing or object shares mutual properties with.
Specifically, they do not express set valued attributes so that the arguments
made above for UML-attributes are not applicable. Instead, multiplicities
for association classes serve to support the acquisition of properties or loss
of properties, as discussed in the following paragraphs.

Wand et al. (1999) argue that a distinction should be made whether
a thing possesses mutual properties or not. Using an example of a book
and a student which may borrow it, they argue that instead of associating
a student with zero or more books that she borrowed, the student should
be specialized into a ’Borrower’ which borrows one or more books while
the more general ’Student’ has not borrowed any books (Fig. 4.9). Their
argument for this is that the model in Fig. 4.9(A) shows mutual properties
(DateOut, DateDue) for the student, even if none are existent in the case
where a student has not borrowed any books.

While this argument is sound for this example, it does not show the
more general case. It could be argued for the above example that a simi-
lar distinction should be made between a borrower that has borrowed one
book and a borrower that has borrowed two books, leading to yet another
specialization relationship in the class diagram. This argument leads to an
infinite number of classes to be modelled.

The fundamental reason why the distinction between possessing mutual
properties with zero or one other things is generally considered more impor-
tant than the distinction between possessing mutual properties with one or
two things is that the acquisition of the first set of mutual properties (with
the first other thing) also defines new behaviour for the class of things that
acquire this first set of properties. Moreover, this additional behaviour is
substantially identical for the subsequently acquired sets of mutual prop-
erties. In our example, the ’Borrower’ can return a book, extend its loan
period and exhibit other related behaviour. She can take the same actions
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Figure 4.9: Optional properties and re-classification
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for the second, third and any subsequent book that she borrows. The stu-
dent who has not borrowed any books does not exhibit this behaviour. This
distinction by behaviour is consistent with our interpretation of classes as
functional schema of natural kinds, which are also characterized by the po-
tential behaviour of their members (Sec. 2.3, also Sec. 4.2.1). This implies as
a consequence that in certain domains it may be necessary to make further
distinctions than the ”zero” vs. ”one or more” distinction usually made.

To summarize, a thing that either exhibits relevant additional mutual
properties6 or exhibits additional behaviour should be modelled as an object
of a more specialized class. We therefore propose the following rules:

Rule 12 Classes of objects that exhibit additional behaviour, additional at-
tributes or additional association classes with respect to other objects of the
same class, must be modelled as specialized sub-classes.

Changes in natural kind of a thing correspond to changes in class mem-
bership of an object. UML does not provide a construct to express this. In
this respect it is ontologically deficient. To complement rule 12, we suggest
a mechanism for re-classification that employs the UML semantics of object
creation and destruction7:

Corollary 11 An object acquiring additional behaviour or properties must
be destroyed as instance of the general class and created as instance of the
specialized class that is modelled with the relevant operations or association
classes.

This rule leads the modeller to show the creation and destruction in
sequence diagrams, which allow a time ordered view of object behaviour.
More on object creation and destruction in Sec. 4.2.4.

Not every interaction leads to the acquisition of new behaviour. Hence,
not every interaction is accompanied by changes in natural kind and thus
not every interaction between two objects leads to specialization as described
above.

Since all things possess at least one common property (Bunge, 1977,
Post. 5.3), an important implication of the previous rule is that re-

6Relevance is subjective and depends on the purpose of the model.
7The fact that the object identifier change during destruction and subsequent creation

is consistent with our ontology. If interpreted as an object’s ”name”, the change agrees
with Bunge’s principle of nominal invariance (Sec. 4.2.4).
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classification, i.e. deep change, can only occur within a given generalization
or specialization hierarchy. If the modeller identifies a need for qualitative
change that does not fit a given hierarchy, she must search for and identify
a common super-class to form such a hierarchy:

Corollary 12 Re-classification occurs only within a generalization / spe-
cialization hierarchy.

Aggregation Relationships

An even stronger argument concerning multiplicities and re-classification
can be made for the case of UML-aggregation which models the ontological
notion of composition. A thing cannot be a composite thing if it does not
comprise at least two parts. Thus, we formulate the following rule:

Rule 13 Every UML-aggregate object must consist of at least two parts.

If the parts are homogeneous, this implies that the lower bound on the
multiplicity must be two. If the parts are heterogeneous, no lower bound on
each of the aggregation relationships can be inferred. Note in this context
also rule 7 above, that requires aggregates to possess emergent properties.

As discussed above, the acquisition of properties can be through assem-
bly, in which case the acquired properties may be emergent, i.e. an intrinsic
property of the composite or aggregate. The example in Fig. 4.10 illustrates
this. A tour group consists of at least two travellers. A guided tour group
adds to this one or more tour guides. Note that in this case rule 13 does not
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lead to a specific lower bound on any of the aggregation relationships, as
the tour group and also the guided tour group are heterogeneous aggregates,
consisting of adult travellers, child travellers and tour guides.

In analogy to re-classification in connection with acquisition of mutual
properties, the acquisition of additional parts does not necessarily lead to
re-classification of instances and specialization of classes. However, the ac-
quisition of emergent properties must be modelled by specialization since
property acquisition leads to different or additional possible behaviour of
things (see above, also (Wand et al., 1999)). Consider a tour group com-
posed of five adults. Adding five children to the same tour group will not
lead to a re-classification of the tour group. This is because no emergent
attribute is acquired through the addition of the five children, whereas the
addition of one or more tour guides leads to the acquisition of e.g. an
’itinerary’ property and thus to a re-classification of the tour group as a
guided tour group because a guided tour group can e.g. change its itinerary.
We therefore propose the following rule, a special case of rule 12.

Rule 14 An instance of a class that by virtue of additional aggregation rela-
tionships acquires emergent properties or emergent behaviour must be mod-
elled as an instance of a specialized class which declares the corresponding
attributes and operations.

While the earlier rule 12 was derived based on acquisition of mutual
properties and behaviour through interaction, rule 14 refers to acquisition
of emergent intrinsic properties arising out of aggregation relationships. The
mechanism suggested above to express re-classification using object destruc-
tion is also applicable in this case. More on object creation and destruction
presently.

4.2.4 Object Creation & Destruction

Object creation and destruction have no direct equivalent in the BWW-
ontology as things cannot be created or destroyed. Instead we relate these
notions to Bunge’s principle of nominal invariance (Bunge, 1977):

”A thing, if named, shall keep its name throughout its history
as long as the latter does not include changes in natural kind -
changes which call for changes of name.”(Bunge, 1977, Princ. 5.1)
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Consistent with this principle, object creation and destruction have been
related to changes in classification (see Sec. 4.2.3). This principle supports
our interpretation of changes in classification through object destruction
and creation. Changes in classification occur through acquisition or loss of
a property. Two cases are common for property acquisition, corresponding
to the two instances discussed for sub-classification above (rules 12 and 14).

1. The acquisition of the property is by composition or assembly and the
acquired property is an emergent one.

2. The acquisition of the property is by interaction and the acquired
property is a mutual one.

By analogy, object destruction occurs when an object loses a property
which is necessary for membership in a certain class or kind. In Sec. 4.2.3
object creation and destruction were discussed with respect to changes in
classification. A special case is the classification of an object as instance of a
class when before it was an instance of a class that is not part of the model.
In this case there is no object destruction being modelled that corresponds
to the object construction. The following examples illustrate these ideas.

A set of bricks combined into a house ’creates’ the new thing ’house’ with
the emergent property of ’NumberOfBedrooms’. This is object creation by
composition. Altering the way the bricks are combined makes the house
into an office building. It undergoes a qualitative change, losing the prop-
erty ’NumberOfBedrooms’ and acquiring the property ’NumberOfOffices’.
A broken machine being fixed so that its parts start interacting again is an
example of the second case. If we now assume that the house but not the
bricks are part of our description of the world, then it would appear to us
that a house had been created. Similarly, if we assume that ’house’ but not
’office building’ is part of our description, it would appear as if a ’house’ had
been destroyed. These examples motivate rule 15:

Rule 15 Object creation occurs when an entity acquires a property so that
it becomes a member of a different class.

Corollary 13 Object destruction occurs when an entity loses a property
that is necessary for membership in a particular class.

As discussed above, object creation and destruction usually occur to-
gether to suggest reclassification of an instance within the model, except
when the ’source’ class or the ’target’ class is outside the scope of the model.
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This interpretation of object creation and destruction is for purposes
of conceptual modelling. In IS design, the interpretation and the rules for
object creation and destruction may be different. For example, in the real
world, a customer is not created, rather a person becomes a customer, once
she acquires the property of having bought an item. In the IS we can however
create a new customer record.

4.2.5 Class Attributes

UML allows the modeller to attach attributes to classes or, technically, de-
clare the scope of an attribute to be the class. Thus, a class attribute is an
attribute of the class of objects, not of an instance. The functional schema
that we have mapped to UML-classes in Sec. 4.2.1 is not a substantial thing
and hence cannot possess properties representable by attributes. Thus, we
cannot ascribe attributes to it that would represent properties.

Instead, we propose to interpret a class attribute as representing a prop-
erty of the composition of things that form the extension of the natural kind
which is in turn described by the functional schema corresponding to the
UML-class. Thus, the property is an emergent one and we suggest that the
composition be modelled explicitly:

Rule 16 Attributes with class scope should instead be modelled as attributes
of an aggregate representing the objects of the class.

No OCL expression can be given for this rule as it does not relate dif-
ferent meta-model elements. The rule instructs the modeller which of two
modelling alternatives to use, both of which are consistent with the UML
meta-model.

A typical example is the property ”Number of Instances”, that is often
ascribed to a UML-class. This is a property of the collection or composite of
all the things that are in the extension of the corresponding BWW-natural
kind. A specific example is shown in Fig. 4.11. Whereas UML allows us to
model a number of aircraft as in situation (A), ontologically we require that
the class be made explicit by using composition as shown in situation (B).

Some object-oriented approaches argue that classes themselves are non-
composite objects (see e.g. Opdahl and Henderson-Sellers, 2001). This
allows the treatment of class attributes and class operations, such as the
”new()” operation to create an instance, on the same footing as attributes
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Figure 4.11: Class attributes

and operations of regular objects. However, such ’class objects’ would not be
creating things, instead they may assemble things or cause changes of clas-
sification through modification of things. This assembly interaction should
be modelled independently and separately from the class in its role as de-
scription and templace of instances, e.g. by explicitly including a factory
object or class in the model.

4.2.6 Abstract Classes & Generalization

In UML, generalization is realized by attribute and operation inheritance
and method specialization. It describes a relationship between two UML-
classes where a specific subclass has all the features of a more general su-
perclass and may possess additional features. In the BWW-ontology the
concept of generalization is very similar although generalization is not de-
fined by inheritance but rather through the scope of properties or laws.
Thus, a natural class defined using the same and additional laws as another
natural kind can be considered as a specialized natural kind.

While more general classes in UML are often declared to be ’abstract’,
i.e. with no instances, the discussion of the BWW-ontology in section 2.2
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showed that there are no empty natural kinds in ontology. There are no
properties without things possessing them and there are no laws without
things adhering to them.

Therefore, the declaration of an abstract class that is specialized implies
that there exist no members of the more general class that are not members
of one of the specialized classes. Hence, declaring a specialized class as
abstract is equivalent to declaring the specialization as complete.

Rule 17 If a class that is specialized is declared as abstract, the specializa-
tion must be declared to be ’complete’.

The UML reference manual (OMG, 2001) also recognizes this connection
between completeness of a specialization and abstract super-classes.

On the other hand, if a class is not specialized, there exist no sub-classes
that its instances could be members of. Hence, all the instances are members
of that class itself. Hence, it cannot be declared abstract:

Rule 18 A class that is not specialized cannot be declared abstract.

In OCL:

(4.11)
context Class inv:
self.isLeaf() implies not self.isAbstract

Acquisition of properties occurs when either emergent or mutual prop-
erties are gained. Hence, we require that specialized classes define more
properties or more behaviour than the general ones:

Rule 19 A specialized class must define more attributes, more operations
or participate in more associations than the general class.
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(4.12)
context Class inv:
self.parent-exists()

implies
self.allPartProperties->IsEmpty() = false
or
self.feature

->select(f | f.oclIsTypeOf(BehaviouralFeature))

->size() > 0

This rule is related to rules 12 and 14 which state that if a class defines
more operations or properties (represented as attributes or attributes of
association classes), then it must be specialized. These three rules together
now specify necessary and sufficient conditions for specialization.

With rule 19, we are also in a position to summarize specialization of
classes. Any class that is a special class of a more general super-class, must
declare any of the following:

• Non-inherited operations (representing intrinsic, emergent behaviour),

• Non-inherited attributes (representing intrinsic, emergent properties),

• Non-inherited participation in an association class (representing emer-
gent mutual properties).

• Non-inherited participation in an aggregation relationship (which in
turn requires non-inherited attributes, see rule 7).

4.2.7 Associations

There exist three kinds of associations in UML, of which only the ’ordinary
association’ is of interest here. Composition and aggregation associations
are discussed in Sec. 4.1.3.

Section 4.1.2 provided an interpretation of association classes and their
attributes while deferring treatment of associations. In UML an associa-
tion class is a subtype or specialization of both a UML-association and a
UML-class, i.e. an association class is an association. For the ontological
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interpretation of UML-associations we need to briefly introduce the main
results of the discussion on interaction, following below in Sec. 6.2.1.

Associations are employed in UML to enable message passing. Our dis-
cussion in Sec. 6.2.1 below will show that a stimulus, the instance of a
message, travels along a link, the instance of an association. Hence, associa-
tions are necessary for interaction to occur in the message-passing paradigm.
However, since message passing is a design related concept and there exists
no equivalent in the BWW-ontology, we propose that associations are on-
tologically excessive (see Sec. 6.2.1). Hence, they should not be employed
for conceptual modelling. Instead their use should be deferred until the IS
design phase. We express this using the following rule:

Rule 20 Every ordinary association must be an association class.

(4.13)
context Association inv:
self.oclIsTypeOf(Association) and not
self->forall(ae : AssocationEnd | ae.aggregation

= "aggregate")

implies
self.oclIsKindOf(AssociationClass)

One can argue that boolean mutual properties, ones that either exist
or do not, should be modelled by associations. However, such a suggestion
would lead to ambiguities since the same ontological concept, mutual prop-
erties, would be mapped to two different UML constructs, attributes and
associations. In the interest of ontological clarity this should be avoided.
Hence, even boolean mutual properties should be expressed using associa-
tion class attributes.

This interpretation proscribes modelling any concept not related to mu-
tual properties or interaction as an association. Specifically, mutual proper-
ties should not be modelled as associations but as attributes of association
classes (see rule 3). As an example, the mutual property of ’being employed’
should not be modelled as an association between an Person and a Com-
pany. Instead, an association class should be used with attributes such as
’Job Title’, ’Salary’, etc.

The following two examples, taken from (Wand et al., 1999) demonstrate

72



our interpretation. Both of them are interpreted as associations by Wand
et al. (1999).

A student attends a university

Ontologically, this is an example of interaction giving rise to mutual
properties. Hence, it must be modelled as an association class that repre-
sents properties arising out of the interaction of enrollment. Examples of
such properties are ’CreditsOnFile’, ’Academic Standing’ or ’Tuition Bal-
ance Owing’. It may be that the interaction is outside the scope of the
modelled domain, i.e. in the past, so that the re-classification of e.g. a
person as a student, is not modelled. If the interaction is part of the model,
there must exist a class ’Person’ of which ’Student’ is a subclass. Only the
students share mutual properties with the university and upon the enroll-
ment interaction taking place, an instance of class ’Person’ must be destroyed
and re-created as instance of class ’Student’ with the requisite mutual prop-
erties being modelled as attributes of an instance of the association class.
Furthermore, the interaction itself must be modelled and is subject to the
rules developed in Sec. 6.1.1.

A customer orders a product with product number XYZ

This is again an example of interaction giving rise to mutual properties
between a customer and a supplier. It gives rise to mutual properties such
as ’Quantity Ordered’, ’Quantity Delivered’ or ’Balance Owing’. Similar to
the first example, the model may be different depending on whether the
interaction itself is part of the modelled domain.

4.3 Summary

This section began by examining the central ontological concepts and mapped
them to UML constructs. These include things, properties and composition.
With this representation mappings in mind, we have interpreted object-
oriented concepts such as classes, object identity, attribute and association
multiplicities, object creation, class attributes and generalization / special-
ization. Table 4.1 shows a summary of the mappings.

The table shows that most of the basic ontological concepts have a UML
equivalent and this mapping is a one-to-one relation or has been made so by
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Ontological
Concept

UML Construct Remarks

Thing Object

Property Attribute

Intrinsic Property Attribute of ’ordinary’
class

Mutual Property Attribute of
association class

Emergent Property Class attribute

Functional Schema Class

Natural Kind Aggregate object Described by class

Composition Aggregation

Composition

Property inheritance Attribute inheritance

Re-classification Explained by object
creation and destruction

Object Creation Employed to express
re-classification

Object Destruction dto.

Object Identifier Property values
determine identity

Association

Table 4.1: Summary of Static Structure Interpretations
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our proposed rules. On the other hand, there exist some UML constructs
and concepts that have no direct equivalent in ontology. Some are exam-
ples of construct excess, such as object identifiers or composition, others can
be explained in ontological terms without having a direct ontological coun-
terpart, such as object creation and destruction. There also exist cases of
construct deficits, such as the lack of a construct to describe changing class
membership of objects. For these, we have found alternative expressions
using existing UML elements, e.g. processes involving object creation and
destruction.
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Chapter 5

Change

The previous chapter examined the static structure of the world and laid
the foundation for the present discussion of change. The BWW-ontology
postulates that everything changes and that change is manifested in state
transitions. As with the previous chapter on static structure, this chap-
ter begins with the representation mapping followed by the interpretation
mapping.

5.1 Representation Mapping

The central concept related to any change in the BWW-ontology is that of a
state. Change is manifested through changes in the state of things. Hence,
the representation mapping identifies the UML constructs corresponding to
this ontological notion.

5.1.1 States and State Transitions

In the BWW-ontology, states are intricately tied to values of attributes. A
state is the complete assignment of values to the state functions, i.e. a vector
of the values of all attributes. There exist no states which are independent
of attributes because properties express all the characteristics of a things.
A state transition changes the state that a thing is in.

UML provides states and the semantics of state machines to specify dis-
crete dynamic behavior. The UML manual (OMG, 2001) defines a state
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loosely by some invariant condition, i.e. a condition that holds while the
object is an that state 1. State semantics are based on Harel state charts
(Harel, 1988; Harel and Gery, 1996). However, states in UML are inde-
pendent of attributes or properties and UML provides no mechanism with
which to specify any such connection2.

We propose that BWW-states are mapped to UML-states and conse-
quently that BWW-state transitions are mapped to UML-state transitions.
This mapping allows us to transfer the relationship between states and prop-
erties in the BWW ontology to UML by proposing the following rule:

Rule 21 A UML-state represents a specific assignment of values to the at-
tributes and attribute of association classes of the objects for which the state
is defined.

This rule may be used by the modeller to ensure inter-diagram consis-
tency between state charts and class diagrams.

In the UML meta-model, an excerpt of which is presented in Fig. 5.1,
there exists no explicit relationship between states and attributes or at-
tribute links 3 4. Instead, objects in the current meta-model are instances
that are modelled as being composed of such assignments. While this may
be true in software design, for real-world considerations such a model con-
founds an object (instance), i.e. the thing existing in the world, with its
state. We propose (Fig. 5.2) that this distinction be made and states be
explicitly tied to attributes 5. For this, we suggest that a class, a subtype of
model element, has a number of state machines (at least one) specifying it’s
behaviour, depending on the model or functional schema used to describe

1While UML allows the association of a state machine and states with other classifiers
such as use cases, it unclear in such cases what the states are states of.

2While previous authors have noted the connection between attributes and states
(Booch, 1994; Coad and Yourdon, 1990; Jacobson, 1992; Rumbaugh et al., 1991), none pro-
vide explicit rules or constructs for specifying this connection and UML does not support
this connection.

3An attribute link is an instance of an attribute which has a value. A value in turn is
an instance.

4Note that a state machine only contains a single state, the top state. Other states
are contained recursively as sub-states. This is why the meta-model also allows states not
to belong to any state machine; the association of states to state machines indicates only
direct containment.

5Chapter 3 mentioned that Rosemann and Green (2000, 2002) developed a meta model
that could serve to compare UML with the BWW-ontology. However, their model does
not include states and state transitions.
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Figure 5.1: States and objects in the current meta-model
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the behaviour:

(5.1)

context Class inv:
self.behavior->Size() > 0

OCL expression (5.1) augments (OMG, 2001, Sec. 2.12.3.5.1), which requires
that a state machine be associated with either a classifier or a behavioural
feature. We return to behavioural features in Sec. 5.2.5 below.

In our proposed meta-model, states are defined by a set of AttributeLinks.
An AttributeLink is an assignment of a value to an attribute. The discus-
sion in Chap. 4 showed that object attributes corresponding to properties
of a thing are those that are defined for the object itself, inherited from
super-classes as well as those defined for its parts (Sec. 4.1.2 and expression
(B.4) in Appendix B). These properties therefore span the state space of a
thing. Consequently, the corresponding attributes must be used to define
the state of an object in UML:

(5.2)
context State inv:
self.Machine().context.allProperties()

->inludesAll(self.slot.attribute)

UML offers the construct of sub-states. These are states that are embed-
ded in composite states in a single state machine. Hence, sub-states, when
mapped back to ontology, must be states of the same state space. Hence,
sub-states must be defined by the same set of attributes as their super-state.
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(5.3)
context State inv:
self.oclIsTypeOf(CompositeState)

implies
self.subvertex

->select(sv | sv.oclIsTypeOf(State))

->forall(sv1, sv2 |

sv1.slot.attribute = sv2.slot.attribute)

In the BWW-ontology, things can be in more than one state, depending
on the model that is used to describe them. A thing is in one particular
state at a point in time in each model. This ontological relationship must
be mapped to UML. The proposed meta-model suggests that there exists
more than one current state for an object (Fig. 5.2). In order to make sure
that these correspond to different models in the ontology, these states must
be defined by a different set of attributes, hence be part of a different state
space:

(5.4)
context Instance inv:
self.currentstate->forall(cs1, cs2 : currentstate |

cs1->attributeLink.attribute <>

cs2->attributeLink.attribute)

An important ontological assumption is that state transitions are de-
fined only within a single thing. This implies for UML that, because of the
mappings made, state transitions can only occur between states of the same
object:

(5.5)
context Transition inv:
self.source.Machine() = self.target.Machine()

In ontology, state transitions express changes in properties. Conse-
quently, changes in properties may result in the change of a state, but all
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changes of state are caused by changes to properties. Based on the mapping
of states and properties, this ontological assumption can be transferred to
UML and motivates the following rule:

Corollary 14 A UML-transition must change the value of at least one at-
tribute used to define the state space.

Using the proposed meta-model (Fig. 5.2) this is specified in OCL ex-
pression (5.6):

(5.6)

context Transition inv:
self.source.slot.value <>

self.target.slot.value

To summarize, this section examined the ontological concepts of states
and state transitions and mapped them to UML-states and UML-state tran-
sitions. In order for this mapping to hold, UML-states and UML-state
transitions must obey the same principles as BWW-states and BWW-state
transitions. The proposed mappings were used to transfer these ontologi-
cal principles to UML and resulted in a number of modelling rules, which
are formally represented by a change to the UML meta-model and a set of
constraints expressed in OCL.

5.2 Interpretation Mapping

With the UML representation of ontological states and state transitions
established in the previous section, this section proceeds to examine UML
constructs that are closely related to state charts. The discussion begins by
interpreting sub-states.

5.2.1 Substates

It is possible in UML to define a hierarchy of states. A composite state
or submachine state may be refined as a state machine comprising sub-
states and transitions among sub-states. A state may be refined into one or
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more concurrently operating state machines, specified as orthogonal regions.
Each orthogonal region in turn is a sub-state. The notion of orthogonality
and concurrency is independent of that of composition or aggregation: ”Or-
thogonality in statecharts is not intended for specifying components that
correspond to different sub-objects.” (Harel and Gery, 1996, p. 252).

The BWW-ontology does not contain the notion of sub-states. Instead, it
requires the complete assignment of values to state functions for specification
of a state. Hence, state functions and functional schema must be used to
interpret sub-states. We will show by example that we can provide the
same level of detail ontologically as found in UML state charts. From our
discussion of the BWW-ontology in section 2.3 we know that a thing can be
described by multiple different models or functional schemata, depending
on which properties one is interested in. Consider the situation shown in
the UML-diagram of Fig. 5.3. It depicts a state C refined using an initial
pseudostate6 and four sub-states. The system under consideration can be
in state C and at the same time in different sub-states that leave the super-
state C invariant. We can describe the same situation ontologically using a
combination of functional schemata.

Assume that the composite state C is described by assignment of values
to a state function SC , e.g. SC = A. A is an element of the co-domain of the
state function SC , e.g. some numeric value. The single state function SC

defines model M1. The sub-states 0 and 3 and the unnamed sub-state com-
posed of two orthogonal regions can be described by complete assignment of
values to the two state functions SC and S03, e.g. < SC = A,S03 = X > for
sub-state 0, < SC = A,S03 = Y > for sub-state 3 and < SC = A,S03 = Z >

for the state composed of orthogonal regions. The two state functions SC

and S03 define model M2. Since sub-states 1 and 2 are at the same level
of abstraction and are concurrent we describe them by two different sets of
state functions SC , S03 and S1 (model M3) for sub-state 1 and SC , S03, and
S2 (model M4) for sub-state 2, e.g. < SC = A,S03 = Z, S1 = H > for
sub-state 1 and < SC = A,S03 = Z, S2 = I > for sub-state 2. In total we
have described this situation ontologically using four different models, M1

through M4.

In general, states can be described by sets of state functions and their
assignment. Thus SC , S03, S1 and S2 may be thought of as sets of state

6An initial pseudostate is the sub-state the system is in, when the super-state of that
sub-state is entered. Pseudostates are constructs with a purely syntactic purpose and
without ontological meaning.
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Pseudostate (fork)
Transient

Figure 5.3: Composite states and sub-states in UML

functions, with the assigned values being vectors.

Our suggested addition to the UML meta-model (Fig. 5.2) incorporates
these semantics by allowing that each model element such as a class has more
than one state machine associated with it and that these include different
states spanned by different sets of attributes.

The above example shows that whenever we encounter sub-states, the
set of attributes used to describe them must be extended from the set used
to describe the super-state. Whenever we move among sub-states on the
same level, a set of attributes changes their values. From this discussion we
can formulate the following rules:

Rule 22 For every level of refinement of a state C, there must be an addi-
tional set of attributes in the class description or in participating association
classes that change as the object transitions among the sub-states.

This applies only if there are more than two sub-states of any such state.
This is expressed formally in the following OCL expression which requires
of any state that is a composite state that its definition include and extend
the set of attributes that define the sub-states.
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(5.7)
context State inv:
self.oclIsTypeOf(CompositeState) and
self.subvertex

->select(sv | sv.oclIsType(State))->size() > 1

implies
self.subvertex->select(sv | sv.oclIstypeOf(State))

.slot.attribute

->includesAll(self.slot.attribute)

and
self.subvertex->select(sv | sv.oclIsTypeOf(State))

.slot.attribute

->exists(a | self.slot.attribute->excludes(a))

Corollary 15 For all immediate substates of a super-state, the values as-
signed to attributes describing the super-state are invariant and are equal to
those defining the super-state.

To express this in OCL we require that for all sub-states the attribute link
values of those attribute links referring to attributes also found in the sub-
state must be the same as the attribute link values of the latter attributes.

(5.8)
context State inv:
self->oclIsTypeOf(CompositeState)

implies
self

.subvertex

->select(sv | sv.oclIsTypeOf(State))

.attributeLink

->select(al | self.attributeLink.attribute

->includes(al.attribute))

->forall(al | al.value = self.attributeLink.value and
al.attribute = self.attributeLink.attribute)

Hence, in the above example, the values assigned to < SC > when in
sub-states 0 or 3 must be the same. Furthermore, by corollaries 22 and 15
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concurrent sub-states require additional attributes which can concurrently
take on different values, hence must be mutually disjunct:

Corollary 16 Concurrent sub-states require mutually disjunct sets of ad-
ditional attributes in the class description or in participating association
classes.

In OCL we ensure that the intersection of the attribute sets spanning the
concurrent regions, excluding those defined for the containing state, is empty:

(5.9)
context CompositeState inv:
self.isConcurrent = true

implies
self.subvertex->select(s | s.isRegion=true)

->forall(s1, s2 |

s1.slot.Attribute

->reject(a | self.slot.attribute->includes(a))

->intersect(

s2.slot.Attribute

->reject(a | self.slot.attribute->includes(a)))

->isEmpty()

In conclusion, we have shown that we can benefit from linking the static
structure description of a system to the dynamic concept of states without
compromising the level of detail description that UML state charts provide.
The proposed rules can help the modeller to ensure that class diagrams
which define the attributes of objects are sufficiently detailed to support the
desired behavioural characteristics in state charts.

5.2.2 Guard conditions

A common element of UML state charts are guard conditions. These are
conditions on a state transition which have to be fulfilled in order for the
object to transition between two states. The BWW-ontology does not con-
tain the notion of guard conditions but allows the description of a state
space and the possible events (transitions) in that state space. Hence, these
ontological concepts must be used to interpret guard conditions.

86



U

S

T

R

C=0

C=1

Figure 5.4: State chart with guard conditions

(1,1) (0,0)

(0,1)

(1,0)C=1

C=0

(0,1,0)

(0,1,1)(1,1,0)

(1,1,1) (0,0,1)

(0,0,0)

(1,0,0)

(1,0,1)

(A)

(B)

Figure 5.5: Reinterpreted State chart
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Without loss of generality, assume an object with two binary attributes
A,B. These span a state space of four states, namely R = (0, 0), S =
(0, 1), T = (1, 0), U = (1, 1) (Fig. 5.4). Note that the guard conditions on the
state transitions (R,S) and (R, T ) introduce an attribute C. Since the state
space is spanned by all attributes of a particular model, this expands the
conceivable state space to eight states: R0, R1, S0, S1, T0, T1, U0, U1 where
the subscript denotes the values of attribute C. We can then transform
Fig. 5.4 to explicitly include the expanded state space as depicted in Fig. 5.5.
Fig. 5.5 (A) shows the initial state chart, equivalent to Fig. 5.4, whereas
Fig. 5.5 (B) shows the transformed state chart. For demonstration purposes,
we have written out the attribute assignments in this figure.

The resultant state chart does not contain an explicit guard condition.
Instead the semantics of the guard condition are now modelled by the al-
lowed state transitions.

Ontologically, a thing can be in only one current state in any given
model. Guard conditions are employed to specify the conditional transition
of an object from one state to exactly one of a number of others. Hence, we
require that the guard conditions for all state transitions beginning with the
same state and ending in non-concurrent region states be mutually exclusive,
i.e. under no circumstances can two or more of them evaluate to true. Only
then can it be guaranteed that the object representing the thing is not in
two states at the same time, without these explicitly being concurrent sub-
states. We propose the following rule to express this. Since the elements
of guard conditions are not described in the UML meta-model, no OCL
description can be given for this rule.

Rule 23 Guard conditions on transitions from the same state to non-
concurrent sub-states must be mutually disjunct.

If this is not the case, the analyst must identify whether the two or more
target states are actually concurrent regions of a single super-state. If that is
the case, they should be modelled accordingly and rule 22 and corollaries 15
and 16 become applicable.

5.2.3 Action States

Action states in UML are states of an object during which the object un-
dergoes a change. This is incompatible with the ontological notion that a
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SubmachineStateActionState

Figure 5.6: Action states as submachine states

state is an assignment of values to attributes at a specific instance in time.
However, for an ontological interpretation of action states we can build on
the interpretation for sub-states (Sec. 5.2.1). If there is change occurring
while a thing is in a certain state, there must exist a state variable not em-
ployed for the state definition and that state variable may change. Hence,
this can be represented in UML in the form of sub-states. We suggest to
follow rule 24 when modelling action states.

Rule 24 Action states are super-states of a set of sub-states. The object
transitions among these while in the action state. State charts must reflect
this fact.

Fig. 5.6 proposes a change to the UML meta-model which reflects this
interpretation. In the current meta-model, action states are a specialization
of simple states. We propose that they instead be interpreted as sub-types
of submachine states and thus composite states.

UML further allows an action construct to be associated with states.
These actions are intended to represent the activity that is ongoing while
an object is in that state. Based on the above discussion, there appears no
need to assign such an action. Any activity can be described by the set of
sub-states and the transitions among them.

Corollary 17 States must not be associated with any actions. Sub-states
corresponding to different models should be used instead.

This translates to OCL as follows:
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On Loading Dock

On Truck

Being shipped

(A)

(B)

Being shipped

Figure 5.7: Action states as super-states

(5.10)
context State inv:
self.entry->Size()=0 and
self.exit->Size()=0 and
self.doActivity->Size()=0

An example of this interpretation is shown in Fig. 5.7. The situation
in (A) is equivalent to that in (B). An item that is in the action state of
”being shipped” undergoes state transitions while being in that state, e.g.
from state ”on shelf” to a new state ”in packing system” etc. Since action
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states often appear in activity diagrams, this rule ensures inter-diagram
consistency between these and state charts. Because of the sub-classing of
action states as submachine states, corollaries 15 and 16 are also applicable
to action states.

5.2.4 Partitions

Partitions (”swimlanes”) are employed in UML activity diagrams to group
states or action states together. These partitions have no further semantics
in UML, but are often featured prominently in activity diagrams. It is
therefore important to examine them ontologically.

In UML, an activity diagram is a state machine and state machines de-
scribe the behaviour of the objects of a single class or the implementation of
an operation (see Sec. 5.2.5 below). The elements of a partition are there-
fore interpreted ontologically as states and state transitions between states.
Ontologically, states are defined for a given thing and state transitions are
defined only between states of the same thing (see also Sec. 5.1.1). Given
this ontological constraint, partitions cannot represent objects or classes of
objects. Otherwise, state transitions that cross partitions would represent
state transitions between different objects. This leads us to propose the
following rule:

Corollary 18 All states in an activity diagram must be states of the same
object.

No OCL expression needs to be given, as the meta-model ensures this
rule through the specialization of StateMachine to ActivityGraph. We state
this rule for the benefit of visually modelling activity graphs.

Recall that the attributes of an object include those of its parts. If
states of what may appear to be different objects are included, the mod-
eller or analyst must examine whether these different objects are not parts
of a composite. For example, activity graphs are often used for business
process representations Dussart et al. (2002). State transitions between two
partitions, e.g. ”Marketing Department” and ”Production Scheduling De-
partment” can be interpreted as state transitions within the single composite
object ”Company” or ”Plant”. In that case, this composite object must be
explicitly modelling in a class diagram.
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Corollary 19 If the partitions of an activity diagram represent different
objects, they must be part of a composite which is shown in the class diagram.

5.2.5 Operations

The BWW-ontology provides no construct that is equivalent to methods
or operations and it has been suggested that these are an implementation
related construct, i.e. without relevance for real-world models (Parsons and
Wand, 1991, 1997) and thus need not be interpreted ontologically. However,
as they feature prominently in class diagrams, it is important that they be
given some ontological explanation.

Whereas operations specify behaviour only in abstract terms without
suggesting an implementation, a method provides just this implementation
of an operation. As dynamics are expressed ontologically through states
and state transitions, these concepts must be used to interpret methods and
operations ontologically. We begin by examining the operation construct
which is followed by a discussion of methods in Sec. 5.2.6.

Both state semantics and operations are related to the same ontologi-
cal notion of change and so we require agreement between the two types of
description. We begin the mapping with the observation that in the object
approach, the entire range of behaviour is determined by the set of opera-
tions. Ontologically, all (quantitative) changes of a thing are describable by
a series of state transitions among stable states. We therefore propose the
following rules:

Rule 25 The quantitative object behaviour (for each model) is entirely de-
scribable by top-level state chart (SC0)

We will see below, that this top-level state chart specifies the object
behaviour with respect to external events (see corollary 22). In terms of the
UML meta-model, this rule implies that for every class there must exist at
least one top-level state chart that expresses the possible behaviour of the
objects of that class. OCL expression (5.1) already requires the state chart.
We must now ensure that this is a top-level state machine, i.e. not contained
in others as a sub-state.
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Figure 5.8: Operations and state transitions in the meta-model

(5.11)

context StateMachine inv:
self.context.oclIsTypeOf(Class)

implies
self.top.container->size()=0

Since the behaviour of objects is limited to the operations defined on the
object, and the top-level state charts of objects describe this behaviour, we
propose rule 26:

Rule 26 All UML-transitions in SC0 must correspond to an operation of
the object which SC0 is associated with.

We propose that this rule be formalized as an addition to the UML
meta-model (Fig. 5.8). An operation is the realization of one or more state
transition. This allows a single operation to realize state transitions in
two different models of the object. Conversely, a state transition may be
realized by an operation of the object. The meta-model changes allows state
transitions not to be realized by operations. This is necessary for example
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when the state transition is not a state transition of a top-level state chart.
The discussion below will show that methods themselves can be specified
using state transitions and these method-internal state transitions need not
themselves be realized by operations. Otherwise, this would lead to an
infinite regress. We therefore express rule 26 in OCL as follows, making use
of expression (B.11) in Appendix B:

(5.12)
context Transition inv:
if

self.isTopLevel()

then
self.realization->size()=1 and
self.realization.owner=self.Machine().context

else
self.realization->size()=0

endif

This specifies that if a transition is a transition of a top-level state chart
specifying class behaviour, then there exists an operation that realizes it
and this operation must be an operation of the same class that the state
machine is specifying the behaviour of. Note that the OCL expression (B.11)
in Appendix B defines also those transitions as top-level transitions that are
contained in sub-states of a state machine specifying class behaviour.

We have suggested that the operations defined for an object express the
entire range of possible behaviour. Since in our ontology everything must be
able to change (either quantitatively or qualitatively), we propose rule 20:

Corollary 20 Every object must have at least one operation.

(5.13)
context Object inv:
self.classifier.feature

->exists(f : feature | f.oclIsTypeOf(Operation))

The BWW-ontology distinguishes among stable and unstable states.
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Stable states are those states that are not left without some external interac-
tion while unstable states are intermediate states that an object can transi-
tion out of by itself. In UML, an object remains in a particular state until an
operation is invoked by some other object. As operations are realizations of
top-level state transitions, this implies that top-level state transitions orig-
inate with stable states. Since all top-level state transitions originate from
top-level states, we propose the following rule:

Corollary 21 States in SC0 are stable.

The question then becomes how to represent the notion of stability in
UML. UML contains no reference to stability or instability of states. Adding
sub-classes to states in the meta-model is unsatisfactory, as this cannot ex-
press the semantics of external interaction through which stability is defined.
However, it is possible to make use of the UML event construct.

In UML, external interaction is indicated through the event construct
(see Sec. 6.2.2 below). An event may be associated with a state transition
as the trigger of that transition7. This corresponds well with the ontological
idea that some changes, i.e. state transitions, are externally induced and
others are spontaneous. In the BWW-ontology, this is used to mark the
difference between stable and unstable states. We can transfer the notion
of stability to UML by noting that with our interpretation mapping UML-
events serve as indicators of external action. It is therefore possible to
identify those state transitions which are externally induced. An object is
in a stable state, if all possible transitions out of that state have an associated
UML event. If there exists at least one transition out of that state that does
not have an associated event, the state is unstable as the object can undergo
spontaneous, i.e. not externally induced, changes. OCL expression (5.14)
defines a function that indicates whether a state is stable.

7UML models this as an aggregation. Ontologically, a transition does not consist of
triggering events.
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(5.14)

context State::IsStable() : Boolean

result =

if self.outgoing->forAll(t : Transition |

t.trigger->Size()=1)

then
true

else
false

endif

We can now express corollary 21 in OCL as follows, making use of expression
(B.12) in Appendix B:

(5.15)
context State inv:
self.isTopLevel()

implies
self.IsStable()

Because all the states in the top-level state chart are stable, the transi-
tions must be associated with events:

Corollary 22 All UML-transitions in SC0 must be associated with a UML-
event.

Using expressions (5.14) and (B.11) in Appendix B we can express corol-
lary 22 in expression (5.16):
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Figure 5.9: Class definition and state chart

(5.16)

context Transition inv:
if

self.isTopLevel()

then
self.trigger->size()=1

endif

The above rules and corollaries allow the modeller to identify operations
that may have been missed in constructing the class diagram or identify
operations for which there are no corresponding state transition. Such op-
erations are redundant. Fig. 5.9 shows an example. Consider a car that can
be in three states, stopped, (engine) running and going forward. Assume
that the states of a car are defined as follows:

Stopped (Speed = 0, RPM = 0)

Running (Speed = 0, RPM = 1000, Gear = 0)

Forward (Speed = 50, RPM = 3000, Gear = 1)

The class definition (A) is consistent with the top-level state chart SC0

depicted in (B).
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In addition to these rules, we remind the reader of rules 4 and 5 in the
context of association classes that are applicable to operations as well.

The benefit of explicitly modelling the link between operations and state
transition is to give the method designer some way of ensuring that the
full state description of a system is realized. It also helps ensure that the
methods and operations do not implement any change beyond that contained
in the state description. Such additional behaviour could cause a faulty
information system.

To summarize, both operations and state charts are linked to the same
ontological concept of change and can be linked through state semantics. We
conclude this section with an examination of the implications of qualitative
change.

Operations and Qualitative Change

The complete behaviour of an object is defined by its operations and this be-
haviour must express the total possible change of the represented thing. By
corollary 12 we know that qualitative change occurs within a generalization
hierarchy. In other words, in order for qualitative change to occur, there
must exist a super- or sub-class. However, since qualitative change involves
two distinct state spaces or models, it cannot be described by state transi-
tions (Sec. 5.2.8). Hence, in the case when a super- or sub-class of particular
class exists, and qualitative change is possible for a thing represented by an
object of said class, an object must possess additional operations that ex-
press qualitative change. These operations are not included in those defined
to satisfy rule 25. That rule is applicable only to quantitative change.

Rule 27 An object must exhibit additional operations expressing qualitative
changes, if a super- or sub-class is defined and instances can undergo changes
of class to the super- or sub-class.

The discussion in Secs. 4.2.3 and 5.2.8 shows that qualitative change is
characterized primarily by loss or acquisition of behaviour, represented by
operations and state charts. In OCL, this leads us to require that if and only
if there exists a super- or sub-class there must exist at least one operation
not associated with a state transition expressing re-classification. At most,
there exists one such operation for every sub- and super-class. We say ”at
most” because it may not be possible for a thing to loose properties once it
has acquired them.
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(5.17)
context Class inv:
if self.child->size() + self.parent->size() > 0

then
self.feature

->select(f | f.oclIsTypeOf(Operation) and
f.realization->isEmpty())

->size() > 0

and
self.feature

->select(f | f.oclIsTypeOf(Operation) and
f.realization->isEmpty())

->size() =< self.child->size() + self.parent->size()

endif

5.2.6 Methods

Operations are not the atomic units of behaviour in UML, but are realized
by methods. Section 2.3 discussed the concept of a lawful transformation as
a ’path’ in state space between an initial and a final state and noted that
there may exist many such lawful transformations for each pair of initial and
final states. With the interpretation of UML operations as state transitions,
this leads to the mapping of methods to lawful transformations. Hence, a
method describes a lawful ’path’ through state space. This path begins in
the source state of the state transition represented by the operation which
the method implements.

Methods themselves can be described by state charts. The UML meta-
model allows the modeller to associate state machines with behavioural fea-
tures, which are either a method or an operation 8:

Rule 28 Methods may be described by state charts other than top-level state
charts.

A lawful transformation may or may not be expressible by a series of state

8Here and in many other places, the UML meta-model specifies an aggregation asso-
ciation, which is ontologically incorrect. For reasons outlined in Sec. 2.6 above we refrain
from changing this.
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transitions. If the transformation represents change of a continuous variable,
as is often the case, a series of state transitions can only approximate the
path in state space. However, if the change is discrete and there does exist
a state chart describing the corresponding method, this state chart must
follow some rules, developed presently.

We can think of methods as representing lawful transformations which
’implement’, i.e. describe in greater detail, a state transition represented
by an operation. As such, the beginning and end of the path in state space
represented by a method must match the initial and final states of that state
transition. We therefore propose rule 23:

Corollary 23 A state chart describing a method must begin and end with
those states in SC0 which the operation that the method implements is a
realization of.

To state this in OCL, we make use of initial pseudostates and the fact
that final states of a state machine are an explicit subclass of states. The
corresponding OCL expression to the above rule then reads as follows:

(5.18)
context StateMachine inv:
self.context.oclIsTypeOf(method)

implies
self.top.subvertex->select(sv :

sv.oclIsTypeOf(State)

and
sv.incoming.source.oclIsTypeOf(Pseudostate)

and
sv.incoming.source.kind="initial")

= self.context.specification.transition.from

and
self.top.subvertex->select(sv :

sv.oclIsTypeOf(FinalState))

= self.context.specification.transition.to

Moreover, since a method is a more detailed description of an operation,
it must be true that it is caused by the same event that causes the operation.
This motivates the following corollary:
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Corollary 24 State transitions out of the initial state of a method realizing
an operation must be associated with the same event that is associated with
the transition in SC0 which represents that operation.

(5.19)
context Operation inv:
self.method->forall(m : method |

m.behaviour->exists()

implies
m.behaviour.top.internalTransition

->select(tr : tr.source.incoming.source

.oclIsTypeOf(PseudoState)

and
tr.source.incoming.source

.kind="initial")

.trigger

= self.realization.trigger)

endif

Since the UML meta-model allows the association of one model element
with any state machine, we suggest that this model element is either a
class, in which case the state machine describes the top-level behaviour, or
a method, in which case the state machine describes the method. If a state
machine is not associated with any model element, it describes a composite
state contained which defines sub-states.

Corollary 25 A state chart either expresses the external behaviour of an
object (SC0), a method, a signal reception or is a composite state contained
in another state machine.
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(5.20)

context StateMachine inv:
if not
self.context->isEmpty()

then
self.context.oclIsTypeOf(class) or
self.context.oclIsTypeOf(method) or
self.context.oclIsTypeOf(reception)

else
self.SubMachineState->isEmpty() = false

This specifically precludes the association of operations with state-
machines. If an operation is implemented by a method then this method
may be associated with a state machine. If the method defines continuous
change between two states, it cannot be described by a discrete state ma-
chine. In that case, the state transition that is realized by the operation is
an adequate description of change and no state machine is necessary. We
therefore suggest the following rule and corollary:

Rule 29 An operation is not directly specified by state machines. Instead,
the methods that implement operations are specified by state machines.

(5.21)
context Operation inv:
self.behaviour->size()=0

Furthermore, we propose that state machines which express the be-
haviour of objects or of methods must not be contained is composite sub-
states in other state machines. The following corollary and OCL expression
ensures this:

Corollary 26 A state machine that specifies the behaviour of a class or a
method is not contained in other state machines.
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(5.22)
context StateMachine inv:
self.context.isEmpty() = false
implies
self.SubmachineState

->forall(sms : SubmachineState |

sms.Container->size() = 0)

Rule 28 and corollaries 23, 24 allow the modeller to identify incomplete
or redundant state charts and methods: If a method is not associated with a
state chart, it may be redundant or it represents a form of continuous change
not expressible using discrete change concepts. If a state chart describing a
method does not begin and end with the proper states, it may be incomplete.

The BWW-ontology requires that each state transition must change the
value of at least one attribute (see Sec. 2.2). This motivates the following
rules:

Corollary 27 The method corresponding to a state chart must modify the
attribute values of the object corresponding to the values defined for the initial
and final state of the method.

The adoption of this rule will help to design and specify methods that
conform to the state description by ensuring the modeller or designer is
provided with exact specifications of the pre- and post-conditions of any
method. With the help of the meta-model we can determine the attribute
values before and after the execution of a method.

(5.23)
context Method:

let preAttributes

= self.specification.transition.source.slot.value

let postAttributes

= self.specification.transition.target.slot.value
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Figure 5.10: Meta model linking signal reception to operations

5.2.7 Signal Reception

This section examines the UML reception construct in terms of ontological
concepts. UML provides the construct of a signal reception to specify which
UML-signals objects of a certain class can receive and react to. A reception
is a behavioural feature like operations and methods.

All behavioural description in UML must be mapped to states and state
transitions of the BWW-ontology. UML behaviour already mapped include
state charts as well as operations and methods. Receptions form yet another
way to express externally induced behaviour and must also be mapped to
state transitions. However, receptions do not provide anything that could
not be expressed before. Both operations and state transitions can be as-
sociated with events which trigger them. For these reasons, the reception
construct is redundant in UML.

If receptions are being used by the modeller, there must exist modelling
rules which ensure consistency in their use. We suggest that every signal
reception correspond to exactly one operation. This is shown in the proposed
addition to the meta-model in Fig. 5.10 and made explicit in the following
rule:

Rule 30 An operation must be associated with the declaration of signal re-
ception.

Since a signal reception and the operation specify the same ontological
behaviour, they must be triggered by the same external event. We therefore
propose:

Rule 31 The event associated with an operation must be identical to the
event associated with the signal associated with the reception.
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(5.24)
context Reception inv:
self.operation.transition->forall(t : transition |

t.trigger = self.signal.occurrence)

Moreover, an operation is specified or implemented by a method. The
method in turn may be associated with a state machine which provides
details about it. On the other hand, a reception can also be associated
with a state machine. Operation and signal reception specify the same
abstract behaviour, i.e. both specify the same initial and final state, but not
necessarily the same path in state space. Thus, instead of requiring that an
operation and a reception be associated with the same state machine, we
make a weaker requirement:

Corollary 28 The state machines associated with a reception and with a
method specifying the implementation of an operation which is in turn asso-
ciated with that reception, must possess the same initial and final states.

We can formalize this using OCL expressions (B.18) and (B.19) in Ap-
pendix B to propose the following invariant on signal receptions:

(5.25)
context Reception inv:
self.signal.event->forall(e : Event |

e.transition->forall(t : transition |

self.behaviour.allInitialStates()

->includes(t.source)

and
self.behaviour.allFinalStates()

->includes(t.target)))

Methods, operations and declarations of signal reception are behavioural
features. All of them may be associated with a state machine that describes
their behaviour. Additionally, an operation is implemented by a method and
a signal may also trigger a state transition. Fig. 5.11 shows the relationships
among these constructs. Thus, UML provides three different ways to express
dynamic behaviour, while the BWW-ontology provides only one way.
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Figure 5.11: Relationships between behavioural constructs in UML

The rules developed in this section give the modeller some guidelines in
how to design operations and methods that correspond to behaviour speci-
fied in state machines or state charts. Thus, they help ensure correct system
specification and system behaviour.

5.2.8 Specialization and Changes of Class

A major problem with specialization is the question of how behaviour, i.e.
state machines are specialized. The fact that every instance of the special
class is also an instance of the super-class implies that any instance of a
subclass may be behaviourally substituted for an instance of the super-class.
It must exhibit the same behaviour as an instance of the super-class. What
does ’the same behaviour’ mean in this context? Prior research (Lakos and
Lewis, 2000; Harel and Kupferman, 2000; Schrefl and Stumptner, 2002) has
examined this question and proposed rules or guidelines to this effect.

However, none of the past studies considered the integration of behaviour
with static structure as exhibited in the BWW-ontology through the def-
inition of states as vectors of attribute values. This integration allows us
to identify two criteria for behaviour specialization. The first criterion fo-
cuses on substitutability of a sub-class instance with respect to a single state
transition:

1. State definitions in terms of attribute values may be interpreted as
pre- and post-conditions for state transitions. Hence, state transitions
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Figure 5.12: Behaviour specialization: States of A

A

a

X1
X2

Figure 5.13: Behaviour specialization: Class definition A

in derived sub-classes must conform to these conditions.

Condition (1) is necessary but not sufficient for proper specialization,
since it does not guarantee substitutability for sequences of state tran-
sitions. We therefore add the following condition (2):

2. Behavioural substitutability means that a derived sub-class can un-
dergo the same sequences of top-level state transitions as the base
class. Equivalently, the derived sub-class can undergo the same series
of operations than the base class.

Consider a class A defined with attribute a and two operations, x1 and
x2. Let two states be defined for instances of A: s1 =< a = 1 > and
s2 =< a = 2 >. This is shown in Fig. 5.12 and Fig. 5.13 respectively. The
two operations are associated with state transitions between s1 and s2. The
state definitions serve as pre- and post-conditions for the operations.

Consider now a specialization of class A by sub-class B, defined in
Fig. 5.14. The specialized behaviour, i.e. the top-level state chart of B

must conform to the two criteria outlined above. Figs. 5.15, 5.16 and 5.17
show some state charts that fulfill these criteria. In order to simplify the
diagrams, we have named the states so as to show their definition in terms
of attribute values.
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Figure 5.14: Behaviour specialization: Class definition B
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Figure 5.15: Behaviour specialization: Possible state chart of B

a=1 a=2

b=1 b=2
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Figure 5.16: Behaviour specialization: Possible state chart of B
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Figure 5.17: Behaviour specialization: Possible state chart of B

Note that in the state chart in Fig. 5.15 the methods x1 and x2 are each
assigned to two state transitions. Depending on the value of attribute b,
these methods have different effects. This may be expressed in the method
description e.g. through guard conditions and may require overloading the
inherited method in an IS implementation. On the other hand, the method
may only modify the values of attribute a.

The diagrams in Fig. 5.16 and 5.17 introduce new state transitions which
must be realized by an operation. Hence, two new operations, y1 and y2
are required in the definition of class B which are not defined in the model
of Fig. 5.14.

As a more concrete example, consider a customer whose relevant states
are defined in terms of an attribute ’OrderVolume’. Assume two relevant
states A and B, defined by ’OrderV olume < $100’ and ’OrderV olume ≥
$100’ respectively. Further assume a possible state transition between these
states. The two state definitions are now invariant constraints which must
be satisfied by all customers that undergo this state transition.

Now assume a special kind of customer, e.g. ’VIP Customer’. In order to
be behaviourally substitutable, a ’VIP Customer’ must be able to undergo
the same state transitions, i.e. changes in the value of ’OrderVolume’ must
satisfy the same conditions. However, assume that the ’VIP Customer’ pos-
sesses another attribute expressing the ’Volume Discount Rate’ and let this
be dependent on the ’OrderVolume’. Then a state transition from a state
C defined by ’OrderV olume < $100’ and ’Volume Discount Rate = 10%’
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to state D defined by ’OrderV olume < $200’ and ’Volume Discount Rate
= 20%’ is considered behaviourally substitutable as it does not violate the
constraints given by the state definitions. Beyond this redefined transition,
the ’VIP Customer’ may of course exhibit additional behaviour in the form
of additional state transition that she can undergo.

Research by Schrefl and Stumptner (2002); LeGrand (1998) argues along
similar lines of reasoning. Schrefl and Stumptner (2002) focus primarily on
behavioural substitutability in the sense of our criterion (2) above, whereas
LeGrand (1998) also considers the fact that states are linked to static struc-
ture attributes and their values. The three example state charts shown
above conform to results derived in LeGrand (1998). This agreement of an
ontological argument with prior research lends further support to both the
ontological semantics and the prior research.

Acquisition of Properties The BWW-ontology suggests that additional
properties appear as a result of interaction of a thing with other things. This
leads to specialization of things in terms of structure (the additional acquired
properties) and behaviour (the state changes now possible). There exist two
general cases of property acquisition, depending on the relationship of the
acquired attributes to the existing ones.

1. Acquisition of independent properties

Harel (1988) introduces orthogonal regions in state charts as contain-
ing concurrent sub-states, i.e. a thing is in two states at the same time.
Sec. 5.2.1 shows that concurrent sub-states require mutually disjunct
sets of attributes which span the orthogonal regions of the state space.
Harel (1988) advocates the use of such orthogonal regions in order to
mitigate the problem of exponential growth of the number of states
that is experienced in state transition diagrams when state variables
are added.

In the case of independent properties, the additional properties span an
independent (orthogonal) subspace of a things state space. Thus, it is
possible to employ the construct of orthogonal regions of state charts
to support this type of property acquisition. We therefore propose
rule 32 which reflects this:

Rule 32 Acquisition (loss) of independent properties leads to expan-
sion (contraction) of a thing’s top-level state space SC0 by an orthog-
onal region.
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Figure 5.18: Example specialization

If the acquired properties are independent of existing ones, then by
corollary 16 (orthogonal regions defined by disjunct attribute sets) it is
these and only these that span the new orthogonal region. This agrees
with the two criteria regarding behavioural substitutability set forth
above: Sub-classes that exhibit independent additional properties are
behaviourally substitutable, as the new behaviour is independent of
the existing behaviour.

2. Acquisition of non-independent properties

In the case of acquisition of new properties that are not independent,
the existing state-space is redefined and generally the entire state ma-
chine description of the object must be re-developed ab initio.

This may not be necessary in certain cases and it may be possible to
develop the derived state machine based on the state machine descrip-
tion for the more general class.

Consider the situation depicted in Fig. 5.18 showing a general class
A with attribute a and two operations x1 and x2. There exist two
specialized sub-classes B and C which inherit attribute a and define
additional attributes b and c. Assume that the domain of a is the set
{B,C} and that for instances of B, a = B and for instances of C,
a = C. The value of attribute a then determines not only the state of
the instance, but also the sub-class of the instance.
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Figure 5.19: Example specialization: State chart

a=B a=C

b=1

b=2

c=1

c=2

Figure 5.20: Example specialization: Derived state chart

Assume that the state description of instances of A is as shown in
Fig. 5.19. Then, according to the above criteria for substitutability,
only a state machine description like the one in Fig. 5.20 will be valid.
Notice that the attribute b is only present when a = B. This in
turn implies that the state chart of instances of B will be a sub-state
machine contained in state a = B. Similarly, the state machine for
instances of C will be a sub-state machine contained in a = C. Thus,
in the case where a change in an attribute (or a change in state) is
also a change in sub-class, the state machine descriptions of the sub-
classes need not be completely be re-defined but are merely a sub-state
machine within a more general state description.

An example for this kind of specialization is that of a set of students
attending a university. On the level of the students, there exists a prop-
erty ’ProgramEnrolledIn’ which can take on the values ’Undergrad’,
’Grad’, etc. Depending on the value of the attribute representing this
property, the students can be sub-classed into the classes ’Undergrad-
Student’, ’GradStudent’ etc. which in turn possess different attributes
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Undergrad Graduate

Alumnus

Figure 5.21: Example specialization: Student state charts

such as ’Major’ and ’Minor’ for undergraduate students, ’NameOf-
Supervisor’ for graduate students etc. while all students may possess
properties such as ’TuitionBalance’, ’CreditsAccumulated’, etc. In this
case, the properties ’Major’ and ’Minor’ are only present in instances
for which ’ProgramEnrolledIn’ is equal to ’Undergrad’. Thus, states
that depend on the values of ’Major’ and ’Minor’ are only defined for
undergraduate students and can therefore only be substates of student
states for which ’ProgramEnrolledIn=Undergrad’.

For practical modelling we suggest that the state chart for each sub-
class includes the relevant states of the general class and show the
state refinement for that particular sub-class of instances. Figs. 5.21,
5.22 demonstrates this for the student example.

With this discussion of qualitative change, we are now in a position to
further formalize the conditions of changeability imposed on UML by the
mapping of BWW concepts. The BWW-ontology requires that every thing
must be able to change. This implies that either it can undergo a quantita-
tive change or a qualitative change. In order to undergo qualitative change,
by rule 12 which states that qualitative change occurs within generalization
hierarchies, a class must either possess a more general super- or specializing
sub-class. This motivates the following rule, expressing this:

Corollary 29 Every object must be capable of at least one state transition
or be able to undergo change of class to a super- or sub-class.

With the help of expression (B.13) in Appendix B we can state this
requirement in OCL:
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Figure 5.22: Example specialization: Undergraduate student state charts

(5.26)
context Class inv:
self.child->size() > 0 or
self.parent->size() > 0 or
self.behavior

->exists(sm : StateMachine | sm->OneTransition())

5.3 Summary

This chapter examined the notion of change both from the ontological per-
spective (representation mapping) and, with that mapping in mind, from
the perspective of UML (interpretation mapping). We have mapped BWW-
states and BWW-state transitions directly to corresponding UML constructs.
Other UML constructs have required a more elaborate interpretation. Ta-
ble 5.1 shows the ontological interpretations of the concepts and constructs
discussed in this section.

The table shows that the basic ontological concepts have direct UML
equivalents and this mapping relation is again made bijective by the pro-
posed rules constraining the use of the UML constructs. We have noted that
the description of change in UML through the use of methods and, at the
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Ontological
Concept

UML Construct Remarks

State State Connection with
attribute made

State State Machine UML allows nested
sub-states

State Sub-state dto.

State Action State Action states are
super-states

Transition Transition

Transition Operation

Lawful transformation Method

Law Guard condition

Partition

Reception

Table 5.1: Summary of Interpretations Related to Change

same time the use of state charts, may be ontologically redundant as it must
be mapped to the same ontological concepts. This allowed us to propose
some rules to keep these two concepts of change consistent. Similarly, the
discussion of signal receptions has shown that these may be ontologically re-
dundant. Again, if used, the modeller must obey rules to ensure the model’s
overall consistency.
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Chapter 6

Interaction

In previous chapters we have discussed static structure (Chap. 4) and change
within a thing or object (Chap. 5). This section is now concerned with
the interaction of two or more things. We will discuss this first from the
ontological perspective and then from the UML point of view.

6.1 Representation Mapping

The BWW-ontology does not provide constructs or concepts specifically for
the description of interaction. Instead, interaction is defined through state
transitions which have already been discussed in Chapter 5. Two or more
objects are said to interact, if and only if the state transitions that each
object undergoes depend on the existence of the other object. The possible
states and transitions are constrained by laws and hence, interactions can
in theory be derived from the knowledge of the laws1.

6.1.1 Interaction & Laws

This section will examine how interactions are caused by laws and how,
depending on the laws, a particular state transition may give rise to inter-
action, i.e. be mapped to a UML-event or UML-action.

1We say ’in theory’ because for practical purposes this requires methods such as con-
straint solving (Mackworth, 1977) or constraint programming (Van Hentenryck, 1989)
which are not generally applicable and, except for special cases, not computationally effi-
cient, i.e. not of polynomial computational complexity.
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Ontologically, interaction is described by state histories. When the state
history of one thing depends on the existence of another, there exists inter-
action. This is not a mechanism of interaction. Interaction arises because
things adhere to laws that must be satisfied at all times: When an event in
thing A changes a property which is lawfully related to a property of thing
B, the property of thing B must adjust so that the law remains satisfied2.
Thus, interaction is a primary concept in UML and the object approach (in
the sense that it is directly specified, not derived), it is derivative in ontol-
ogy: Interaction can be deduced from properties and the laws that relate
them to one another.

Object-oriented approaches express interaction through message-passing.
However, any given message passing pattern is simply one specific way of
satisfying the laws and there may be

1. other mechanisms beside messages passing or

2. other patterns of messages that also satisfy the laws.

The ontological nature of message passing is discussed in Sec. 6.2.1 below
as part of the interpretation mapping.

In general, it is the system designer’s task to ensure that the modelled
message-passing pattern satisfies all laws. Hence, message-passing and the
modelling of message-passing is a design oriented task. It is often the case
that such laws are not explicitly stated, but only implicitly understood by
the analysts. Our ontological evaluation can help by explicating the exis-
tence of laws or constraints and suggesting possible ways to use message-
passing to satisfy the laws. In sum, the BWW ontology supports a de-
scriptive and declarative style of modelling whereas the object-oriented ap-
proach is more prescriptive and procedural. This is not surprising as early
object-oriented approaches were rooted in procedural programming. Early
object-oriented programming systems were pre-processors that would trans-
late object language code, e.g. C++, into corresponding procedural code,
e.g. in C. Methods were realized by implementing pointers to function in
the same structure as variables (attributes of objects).

We use the remainder of this section to examine when and how interac-
tion should be modelled. We do this before the background of the message

2Note also that an information system (or any artificial system) is always in a lawful

state. However, this state may be undesirable to the IS designer and so is a symptom of
a design fault.
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passing paradigm that is prevalent in object-oriented approaches and UML.
Specific UML constructs will be discussed in the following interpretation
mapping.

In the discussion of the BWW-ontology in section 2.3 we remarked that
since laws constrain the state variables of only a single thing, changes among
two things must happen by virtue of mutual properties. If the two things are
parts of the same composite, changes among them may happen by virtue of
emergent properties. Thus, a change in one thing not only leads to a change
in another thing but is a change in another thing. Only one property is
changed by a state transition in one thing and this change is a change of the
same property in the other thing and thus is a state transition in the other
thing.

With the mapping of mutual properties to association class attributes,
this discussion leads us to propose the following rule for modelling interac-
tion in UML:

Rule 33 For every two classes of objects between which message passing is
declared, there exists an association class or the two classes are parts of the
same aggregate.

In OCL, making use of expressions (B.6) and (B.7) defined in Appendix B:

(6.1)
context Message inv:
self.sender.base.allProperties()

->exists(p : attribute |

p.owner.oclIsTypeOf(AssociationClass)

and
self.receiver.base

.allProperties()->includes(p))

or
self.sender.base.partOf()->intersect(

self.receiver.base.partOf())

->isEmpty() = false

This rule is helpful for the modeller to identify which messages need to
be shown in a model and between which two object an association class
needs to be identified.
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There are some situations when this rule may need to be relaxed in prac-
tice. It is not always possible nor desirable to model intermediate objects
such as communication systems. Instead, these are often taken for granted
as they are outside the scope of the system. For example, a telephone line
between two people possesses mutual properties with both the speaker and
the listener. It is these mutual properties and the properties of the phone
line (voltage, waveform, etc.) which undergo change. In practice, the tele-
phone line and it’s properties will not be included in the model and instead
be assumed implicitly.

Bunge (1977) proposes that every thing acts on and is acted upon by
other things. This means that there must exist some interaction originating
and terminating in any particular thing:

Rule 34 Every object must be the receiver and sender of some message.

While this is a very strong requirement, it shows the need to critically
examine the interactions or information flows. One could argue that things
in a system’s environment may only send but not receive messages, e.g. a
customer ordering a product, a student registering for a course, etc. But
even for these examples, the actions of ordering and registering are pointless
unless the customer and the student also receive messages. This could be
order acknowledgements or shipping details for the customer. For the stu-
dent, the messages may involve tuition fee billing or text book requirement
messages. In other words, neither the customer nor the student will only
send messages without receiving any. Note also that messages in UML are
more general than information, but represent the change of mutual prop-
erties. Thus, the customer receiving the shipment and the student being
invoiced the tuition fees is also represented by messages.

Often, a thing is an aggregation of parts. In such cases, it is sufficient
if the aggregate or any of its parts receive and send some message. The re-
ceiving and sending must not necessarily be done by the same part. Assume
there exists an aggregate a with parts p1 and p2. If p1 receives messages
but does not send any and p2 sends messages but does not receive any, we
consider rule 34 to be satisfied, as the aggregate a both receives and sends
messages. With this, the above rule 34 can be expressed in OCL as follows,
making use of expressions (B.5) and (B.7) defined in Appendix B:
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(6.2)
context Class inv:
self.allParts()

->union(self.partOf())->exists(cls : Class |

cls.ClassifierRole->exists(clr : ClassifierRole |

clr.sender->size() > 0)) and
self.allParts()

->union(self.partOf())->exists(cls : Class |

cls.ClassifierRole->exists(clr : ClassifierRole |

clr.receiver->size() > 0 ))

This OCL expression specifies that some part of a class or some aggregate
of which the class is part of (or their generalized super-classes from which
they inherit) plays the role of sender of a message and some other part of a
class or some other aggregate of which the class is part of plays the role of
receiver of a message.

This implies by rule 33, that there exist mutual properties or emergent
properties of common aggregates that relate any one thing to some other
thing. Moreover, these must exist before the message is passed. In most
practical situations, these are mutual properties of intermediate objects that
may be omitted, such as the telephone line in the example above.

As association classes are interpreted as representing bundles of mu-
tual properties, not substantial things, they can be part of interaction only
by being changed as part of change in the objects of participating classes.
They represent the things possessing the mutual properties undergoing that
change. Association classes do not represent things that are capable of
change. Furthermore, rule 4 suggests that behaviour should be modelled
with the participating classes. This leads us to propose the following rule:

Corollary 30 An association class cannot be the sender or receiver of a
message.

Hence, association class instances cannot interact with other instances,
reflecting the fact that in ontology mutual properties do not interact, that
it is the things possessing them that interact. As an example, consider the
mutual property of a salary of an employee with a company. While the
employee and company are substantial things that can interact, the salary
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is a property that cannot interact, even though it may be changed as part
of changes in either the employee or the company (e.g. when the company
promotes the employee and raises the salary). In OCL:

(6.3)
context Message inv:
not self.sender.base.oclIsKindOf(AssocationClass) and
not self.receiver.base.oclIsKindOf(AssociationClasse)

Laws

UML provides the construct of a constraint. A constraint relates two or
more elements of a model and restricts their value. We propose to map a
constraint to a BWW-law. For this to be a valid mapping, we must restrict
UML-constraints to relating attributes of the same object, i.e. declared
within the same class. Rule 35 ensures this:

Rule 35 A constraint relates attributes of a single class or attributes of
association classes the class participates in.

In OCL this is described by the following OCL expression (6.4), making
use of expression (B.14):

(6.4)

context Constraint inv:
self.constrainedElement->forall(c1, c2 :

c1 <> c2 and
c1.oclIsKindOf(Attribute) and
c2.oclIsKindOf(Attribute) and
( c1.propertyOf()->includes(c2.propertyOf()) or
c2.propertyOf()->includes(c1.propertyOf()) )
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6.2 Interpretation Mapping

This section examines the UML constructs and concepts that are related to
interaction, while keeping in mind that these must be interpreted in terms of
state transitions and laws. The central concept of object-oriented interaction
is that of message passing. We begin this section by examining the language
constructs that UML provides to support this interaction paradigm.

The discussion of the BWW-ontology in section 2.3 showed that all prop-
erties are lawfully related to others. We therefore propose the following rule:

Rule 36 For every attribute there exists a constraint which relates this at-
tribute to some other attribute.

For example, the throughput of a machine is constrained by its possible
input, by the production schedule, by the material of the parts it works on.
Similarly, the expected quarterly profit is constrained by economic expecta-
tions of the management team, the number and productivity of the group
of employees comprising the company and many other factors. In general,
there exists no property that can be freely changed without affecting or
being affected by constraints that relate it to other properties.

As constraint conditions are not decomposable in the UML meta-model, this
rule cannot be expressed in OCL.

6.2.1 Message Passing

Message passing is one of the core concepts of the object-oriented approach.
Message passing is the mechanism by which object interaction and object
communication is realized. UML supports message passing through a num-
ber of constructs. Stimuli (instances of messages) are passed along links (in-
stances of associations) between objects (instances of classes). The stimulus
specifies the nature of the communication, i.e. which operation to invoke or
which signal to raise. A stimulus is created and sent by an action. Receipt
of a stimulus is an event. Different actions may create different stimuli. The
UML meta-model does not explicitly sub-class the stimulus construct. The
class of stimulus is determined by the associated action that created it:

• Call action – Synchronous or asynchronous method invocation

• Send action – Results in the (asynchronous) sending of a signal
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• Create action – Creation of an instance of some class

• Destroy action – Destruction of the target object

• Return action – Returning a value to the sender of the call action

• Terminate action – Results in the self-destruction of an object

• Uninterpreted action – Any other action which has no interpretation
in the UML meta-model

The first four of these actions create a stimulus for inter-object com-
munication. While the create action does generate a stimulus, UML does
not associate a target object with a create action. The last three do not
create a stimulus. In the UML meta-model a stimulus is associated with the
action that dispatches it. Hence, there is no need to explicitly associate a
stimulus with a signal (of which it may be a carrier) or an operation (whose
invocation it may signify), as the sub-class of the dispatching action deter-
mines what effect the stimulus will have. Since objects, with the ontological
interpretation of things, cannot be destroyed or created, there is no creating
or destroying thing that a stimulus could be sent to. Hence, only the first
two of these actions are relevant to the interpretation of message-passing.

Stimuli can be interpreted in two ways, depending on the ontological
status we ascribe to them:

• Stimuli are not things in the world. They are abstract concepts that
serve as descriptions, illustrations, abstractions or representations of
interaction.

• Stimuli are substantive things in the world. They are ontologically
real.

There are two main arguments against the second interpretation. First,
consider messages or stimuli such as:

• The machine sends a message to a part to change its location.

• The general ledger sends a message to an office desk to depreciate its
value.

• A truck sends a message to the crate asking it to load itself onto the
loading dock.
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Such messages among objects have not been observed in the real world.
Instead, we find that machines interact with parts to change their location,
rather than sending a message. General ledgers do not send messages, but
companies depreciate the value property of inventory and forklift operators
interact with forklifts and crates and thus change the latter’s location. No
messages are sent in this case either. In special circumstances, we may
see message passing in the real world, e.g. between two human actors or
between interconnected machines or information systems. This is message
passing in a much more special sense than the message passing in the object
paradigm, which is used to describe any kind of interaction. This argument
confirms indications that messages may be a construct related more to IS
design than the real world, as suggested by Wand (1989); Parsons and Wand
(1991); Wand and Weber (1993).

Second, if stimuli were real things in the world, then instead of two ob-
jects interacting directly, one object would have to interact with a stimulus,
which in turn would need to interact with the second object. This only
defers the problem to the interaction of a stimulus thing with another thing
instead of the two original things.

This discussion showed two reasons against interpreting stimuli as onto-
logically real and we therefore consider stimuli as conceptual abstractions of
interaction, not as things.

6.2.2 Stimuli, Actions & Events

With the ontological status of message-passing in mind, the following para-
graphs examine various UML constructs related to message-passing. We
begin the discussion by interpreting stimuli, actions and events before pro-
ceeding to the special cases related to signaling or method calling.

Stimulus

A stimulus is an instance of a message that is sent between two objects, i.e.
it has a sender and receiver. It is dispatched by an action and travels along
a link. It forms the mechanism of interaction.

The BWW ontology does not specify any mechanism for interaction, al-
though all laws must be satisfied at all times3. Given the above discussion,

3While there exist techniques in IS design and implementation that allow the same (e.g.
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we propose that stimuli have no equivalent in ontology and hence are onto-
logically excessive. Since a stimulus is not ontologically real, there is also
no ontological equivalent to a message, the specification of a stimulus.

Actions

A UML-action is the creation and dispatch of a stimulus. Since the previous
paragraphs interpret stimuli not as ontologically real but as an abstract
description of interaction, a UML-action is similarly interpreted as change
in one object that brings about a change in another object. In the BWW-
ontology this kind of interaction occurs when a BWW-state transition in
one thing changes a mutual property of two things, thus also being a change
in the other thing, since mutual properties span the state space of both4.

Hence, we map a UML-action to the ontological concept of a BWW-
state transition, specifically a state transition in the acting thing. With the
interpretation of mutual properties as association classes (Sec. 4 we can then
formulate the following rule, which is limited to quantitative change:

Corollary 31 A UML-state transition associated with an action must mod-
ify an association class attribute’s value or an emergent property of an ag-
gregate.

With the help of OCL expressions (B.16) and (B.17) in Appendix B we
can define the following OCL expression to formalize rule 31:

(6.5)
context Transition inv:
self.action->exists() and not
self.isTopLevel()

implies
self.changesMutualProperties() or
self.changesEmergentProperties()

constraint programming, constraint solving techniques (e.g. Mackworth, 1977; Van Hen-
tenryck, 1989)) in most object-oriented techniques the designer is responsible for specifying
a suitable mechanism for ensuring the satisfaction of all laws at all times.

4See also Sec. 6.1.1
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We restrict this rule to UML-state transitions in method descriptions,
i.e. we exclude those in top-level state charts, because operations may leave
the object in the same state or in a state in which at least the mutual or
emergent properties possess the same values. This however cannot be the
case in the more detailed decomposition of such a top-level state transition
in a method.

Events

Section 5.2.5 mapped UML-events to the ontological concept of a state tran-
sition. Given that the dispatching UML-action of a stimulus is mapped to a
state transition in the acting thing, we propose that a UML-event signifying
reception of the stimulus be mapped to a BWW-state transition in the thing
acted upon. It is that state transition in the acted upon object which corre-
sponds to the changes in the mutual property caused by the corresponding
UML-action.

With this interpretation, the following corollary relates interactions to
the state charts of the interacting objects:

Corollary 32 For every interaction between UML-objects, there must exist
a corresponding UML-state transition in both interacting UML-objects.

Like corollary 31, corollary 32 is applicable to quantitative change only.
Separating the interaction into action and event, we can formulate the fol-
lowing rules in OCL:

(6.6)
context Action inv:
self.transition->size()=1

(6.7)
context Event inv:
self.transition->size()=1

This rule helps the modeller with the identification of state transitions
and methods, since the latter are related to top-level state transitions by
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way of the operations which they implement. From the observation of in-
teraction, the modeller can thus derive an initial list of state transitions and
methods of objects.

Analogous to the justification for corollary 31 we propose that every
transition which is externally induced, i.e. associated with an event, must
modify the values of some mutual or emergent properties, the former repre-
sented as association class attributes.

Corollary 33 A state transition associated with an event must modify an
association class attribute’s value.

(6.8)
context Transition inv:
self.event->exists() and not
self.isTopLevel()

implies
self.changesMutualProperties() or
self.changesEmergentProperties()

Similar to the argument for rule 31 we also restrict the scope of this rule
to transitions not part of the top-level description of object behaviour.

With this interpretation a UML-event is distinct from the ontological
notion of an event. In the BWW-ontology, any state transition is an event.
In contrast, a UML-event corresponds to an ontological event iff the state
transition was externally induced, i.e. resulting two things being related by
law or a mutual property. The proposed modelling rules in this and the
previous chapter support this distinction.

Having interpreted the general case of actions and events, we now pro-
ceed to investigate the two special cases of object interaction, sending signals
and invoking operations.

6.2.3 Signal Events and Send Actions

For the same reasons for which we interpret a stimulus as not ontologically
existent, we decide against interpreting a signal, carried by a stimulus, as on-
tologically real. Instead, it too, serves as an abstraction of object interaction
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Figure 6.1: Signals are associated with operations

which we have mapped to state transitions. Together with the discussion in
Sec. 6.2.2 this leads us to conclude that it is ontologically excessive.

Signal events, as events, may be associated with state transitions in
the receiving object. In Sec. 5.2.5 we proposed that state transitions that
are associated with an event must be realized by an operation. Since they
originate by definition from a stable state, they are top-level transitions. We
propose to make this relationship explicit through the additional association
in the UML meta-model shown in Fig. 6.1. In addition we require the
following OCL invariant to maintain consistency. It states that for every
signal, all associated signal events are associated with transitions that are
realizations of the operation which the signal is associated with.

(6.9)
context Signal inv:
self.signalEvent->forall(se : SignalEvent |

se.transition.realization=self.operation)

This interpretation of a signal event implies that signal events can only
be associated with state transitions in top-level state charts (state charts
that are associated with classes), as those state transitions correspond to
operations being performed (executed). This leads to the following rule:

Corollary 34 A signal event may only be associated with a transition in
a top-level state chart and the initial transition of a method implementing
this.

In OCL expression (6.10) we ensure that either there exists a combina-
tion of two associated transitions satisfying rule 34 or, in case no method
implementation is given in terms of a state chart, the signal is only assigned
to top-level transitions.
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(6.10)

context SignalEvent inv:
self.transition->exists(t1, t2 |

t1.isTopLevel() and
t2.source=t1.source)

or
self.transition.isTopLevel()

Next we look at the second mode of inter-object communication, that of
method calling.

6.2.4 Call Events and Call Actions

In Sec. 5.2.5 we have mapped operations to state transitions in top-level
state charts. Similar to our arguments for stimuli and signals we propose
that the call action corresponds to a state transition in the calling thing,
while the call event is mapped to a state transition in the called thing (thus
rendering either the operation or the call event ontologically redundant).
Analogous to the rule restricting signal events to top-level transitions, we
define the same restriction for call events:

Corollary 35 A call event may only be associated with a transition in a
top-level state chart or the initial transition of a method implementing this.

The corresponding OCL expression (6.11) is analogous to expression
(6.10):

(6.11)

context CallEvent inv:
self.transition->exists(t1, t2 |

t1.isTopLevel() and
t2.source=t1.source)

or
self.transition.isTopLevel()
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In the UML meta-model, the call action and call event are associated
with the operation that is invoked. Because top-level state transitions are
also associated with operations, the operation specified for the call action
and call event must be the same as the operation specified as the realization
of the state transition that is triggered by the call event:

(6.12)
context CallEvent inv:
self.transition.realization=self.operation

6.2.5 Get and Set Messages

Object-oriented models often include ’Get’ and ’Set’ messages specifying
corresponding stimuli and invoking corresponding operations. These are a
direct consequence of the idea of encapsulation which is central to the object-
oriented approach: No other thing can set or get a value of an attribute that
belongs to a particular thing but through such messages. The purpose of
such messages is thus for the object to either influence or be influenced by
some other object’s state. Hence, Get and Set methods or messages specify
a mechanism for interaction.

In the BWW-ontology, the principle of encapsulation does not hold.
Mutual properties, by which interaction occurs, are exactly that: mutual.
They are shared properties of two or more things. Thus, interaction can be
described without artificially separating the interacting things. ’Get’ and
’Set’ messages are an implementation driven constructs.

’Set’ operations may be interpreted as any other operation, correspond-
ing to a top-level state transition. Like all other state changes, they must
be a result of the laws governing the things and reflected in state charts.

The ’Get’ operations are ontologically excessive: If an object A sends
a ’Get’ stimulus to object B, it means that some state information about
object B is or should be shared with object A. In contrast, ontologically,
interaction is described through mutual properties spanning state spaces of
two or more things, and therefore the explicit exchange of state information
is not necessary. Rather, to conform with the BWW-ontology, such state
information can only be information about mutual properties. Hence, the
modeller must identify these mutual properties and model them as associa-
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Figure 6.2: Synchronous communication

tion class attributes.

Instead of a ’Get’ operation, the model must properly express interaction
so that the association class attributes which represent the mutual proper-
ties, are updated to reflect the current state. In other words, a ’Get’ message
indicates that the modeller missed some mutual properties which changed
during interaction that occurred prior to the Get operation.

6.2.6 Synchronous and Asynchronous Communication

Object interaction can be synchronous, in which case the acting object waits
for a response from the object acted upon, or asynchronous, in which case
the acting object does not wait for a response or a response is not required.
Ontologically, this difference can be described using appropriate sets of al-
lowable state transitions.

Suppose an object X communicates synchronously with an object Y and
Y returns a result. This is interpreted ontologically as thing X causing a
change in Y , thereby putting thing Y into an unstable state and starting an
internal process. While thing Y goes through the series of unstable states,
thing X is in a stable state that can only be changed by changing a mutual
property of X and Y by Y : X acts on Y and then Y acts on X to relay
the result. An example of this is shown in Fig. 6.2 where the first object
transitions from state A to state B, causing a state transition in the second
object from K to L, thus beginning an internal process. At the end of that
process, the state transition from N to O causes the first object to transition
out of stable state B to state C, indicating some result. This discussion leads
us to propose the following rule:
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Corollary 36 Synchronous communication of objects implies transition to
a state which cannot be left except through a state transition associated with
the return signal.

This rule allows the modeller to keep state diagrams and interaction
diagrams such as sequence diagrams consistent with one another.

When the object communicates asynchronously with the other object,
the restrictions of corollary 36 on the occurrence of other transitions out of
B are not applicable. We can distinguish two cases:

• Asynchronous communication without reply

• Asynchronous communication with reply

The first case is trivial. Since no reply is necessary or expected by the
acting object, no additional restrictions are placed on the actions of either
object.

The second case implies that the acting object must eventually enter a
state in which the response from the object acted upon can be received.
In other words, at least one state that the acting thing can enter after
transition from B must allow for at least one state transition caused by the
last transition in the object acted upon, i.e. that from state N to state O,
indicating the response. This leads us to propose the following rule:

Corollary 37 Asynchronous communication of objects with expected re-
sponse implies the existence of at least one state transition caused by the
object acted upon, signifying the return interaction after the state transition
signifying the original communication.

Communication by signals is always asynchronous (OMG, 2001) and no
result is implied. Hence corollaries 36 and 37 do not apply and no further
restrictions are placed on the states and state transitions of either object.

Communication by method invocation through call events and call ac-
tions may be either asynchronous or synchronous, in both cases requiring
a response interaction5. Hence, depending on the call action, either of the
above corollaries 36 and 37 apply. Since UML provides the construct of a
”Return action” without an associated ”Return event”, the formalization of

5If no response is required or expected, send actions using signals should be employed.
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corollary 36 in OCL is problematic. However, we can ensure that every final
state transition of every state chart describing every method implementation
of an operation called by a call action is associated with a return action:

Corollary 38 The final state transitions of any method implementing an
operation that may be invoked through a call action must cause a return
action.

This is ensured formally in OCL by the following expression:

(6.13)
context Transition inv:
self.effect.oclIsTypeOf(CallAction) and
self.effect.isAsynchronous=false

implies
self.effect.operation.method->forall(m |

m.behaviour.top.internalTransition->forall(t |

t.target.oclKindOf(FinalState)

implies
t.effect->size()=1

and
t.effect.oclIsKindOf(ReturnAction)))

)

In OCL, we can ensure that if a transition causes an asynchronous call
action then there exists another transition within that super-state which is
caused by an event resulting from an action by the target of the original
send action:
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(6.14)
context Transition inv:
self.effect.oclIsTypeOf(CallAction) and
self.effect.isAsynchronous=true

implies
self.state.internalTransition->exists(tr : transition |

tr <> self and
tr.event->size()=1 and
tr.event.signal.sendAction->exists(sa : CallAction |

sa.target=self.Machine().context))

With this ontological interpretation of the two types of object commu-
nication, both sending of signals and calling of methods are mapped to the
same ontological concepts. Ontologically the main difference is not that one
relates to behaviour by methods while the other relates to behaviour by
state changes, as is the case in the UML description, but rather that one
type requires a response whereas the other does not. In ontological terms,
while a send action represents action, a call action represents interaction.

This discussion also shows that for any state transition’s effect to be a
return action, that particular method must have been invoked first by a call
action. This leads us to propose the following rule:

Corollary 39 For the state machine of a method to contain a state transi-
tion whose effect is a return action, there must exist a corresponding state
transition in a state machine of some other object whose effect is a corre-
sponding call action.

We can express this in OCL as an invariant on the return action con-
struct:
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(6.15)
context ReturnAction inv:
self.transition.Machine().context

.specification.callAction->Size() > 0

and
self.transition.Machine().context

.specification.callAction->exists(ca |

ca.target =

self.transition.Machine().context.owner)

6.3 Summary

Earlier work by Wand (1989); Parsons and Wand (1991); Wand and We-
ber (1993) argues that messages are an implementation related construct
and may be ill-suited for conceptual modelling of the real-world. Our inter-
pretation of stimuli and signals as ontologically not existent confirms their
conclusions. In the real world, object interaction is a result of laws that
must be satisfied, no mechanism is needed. Message-passing is an abstrac-
tion that may serve purposes of software design and implementation or as
a metaphor for illustrating certain software mechanisms. The modeller be-
comes responsible for finding ’correct’ patterns or sequences of interaction.

To summarize, in this section we have examined interaction from the
perspective of the message-passing paradigm prevailing in object-oriented
approaches. We have examined the UML constructs provided to support
this paradigm and have interpreted them in terms of BWW-state transitions
and laws. Table 6.1 shows the ontological mappings that we have made.

This summary table shows that while the message-passing paradigm
and the associated constructs are related to IS design and implementation,
most of them can be interpreted in terms of the standard BWW-concepts
related to interaction. When these mappings are made, it leads to construct
redundancy and care must be taken to ensure consistency. The proposed
rules can help the modeller with this task.
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Ontological
Concept

UML Construct Remarks

Stimulus Not ontologically real

Message dto.

Signal dto.

Transition Event Of the thing acted on

Transition Action Of the acting thing

Transition Call Event

Transition Call Action

Transition Signal Event

Transition Send Action

Law Constraint

’Get’ message Indicates prior
interaction

Transition ’Set’ message Interpreted like other
actions

Table 6.1: Summary of Interpretations Related to Interaction
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Chapter 7

The Object Paradigm

In Chapters 1 and 2 we have argued for a careful and cautious process in
assigning semantics to UML. The discussion in those chapters recognized the
danger of re-defining a language beyond recognition and re-defining it so far
that it fails to be the language familiar to IS designers. This is a major
concern when re-interpreting any language and proposing rules that alter
the admissible construct combinations. The question whether the essence
of the language remains must be explored.

In the case of this research we need to examine whether the suggested
guidelines and changes to the meta-model maintain the object-oriented char-
acteristics and features of the language. In other words: Have our changes
redefined UML beyond recognition or is it still essentially an object-oriented
language?

To answer this question, we examine the commonly accepted funda-
mental principles that define the object-oriented paradigm. While there is
no unique list of generally principles of the object-oriented approach to IS
development, there is some convergence among researchers. For example,
Parsons and Wand (1997) have compiled a set of characteristics and suggest
the following principles:

• Identity

• Encapsulation

• Persistence

• Homogeneity

• Classification and Instantiation

• Specialization and Inheritance

• Composition
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• Communication and Interac-
tion through message-passing

• Relationships

• Polymorphism

• Dynamic Binding

• Concurrency

where Barker et al. (1993) examine the object-oriented paradigm and
suggest the following general characteristics:

• Objects and Encapsulation

• Message Passing

• Classification and Instantiation

• Subclassification and Inheri-
tance

• Polymorphism

Korson and McGregor (1990) suggest the following essential character-
istics of the object-oriented approach to IS development:

• Objects and Encapsulation

• Classification

• Inheritance

• Polymorphism

• Dynamic Binding

Other feature compilations (Capretz, 2003; Fil, 1999; Kirstensen and
Osterbye, 1996; Wegner, 2003) provide similar feature sets as defining for
object-oriented modelling languages. Our critical assessment of the proposed
changes focuses on the following six principles. These six criteria form the
common core of the research referenced above and are generally accepts as
the main constituents and principles of the object-oriented paradigm.

Encapsulation This principle suggests that objects consist of structure
and behaviour. While the structure part of objects, the attributes, map
more or less directly to ontological properties of things, the behavioural
aspect, operations and methods require a more complicated mapping.

Our suggested rules do not violate the principle of encapsulation except
in one case. We do not allow the modelling of behavioural features for as-
sociation classes. As association classes serve only as a ’container’ for their
attributes and do not correspond to substantial things, the corresponding
behavioural features must be ascribed to the classes and objects partici-
pating in the association. Hence, the attributes of an association class,
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representing mutual properties, are accessible by the participating classes.

On the other hand, our approach retains encapsulation in the sense that
only mutual properties represented by association class attributes are acces-
sible. Intrinsic attributes of regular classes are by their very definition not
publically accessible and therefore adhere to the principle of encapsulation.
They are changed only by internal processes.

Classification Objects of similar structure and behaviour form classes.
Given that object-oriented modelling languages derive from programming
languages, a class is not considered a collection of objects but a specification
of objects.

In ontology, we define classes as sets of things with similar properties.
Bunge (1977) suggests that laws of a thing are a kind of property, where
property is used in a wider sense. As laws determine the behaviour of
things, ontological classes and kinds are thus formed by things of similar
structure (properties in the narrow sense) and behaviour (properties in the
wider sense).

Our rules do not prohibit the formation of classes. On the contrary, the
rules suggest what should or should not be modelled as an object and can
therefore be classified. UML association classes are one instance where our
rules do prohibit the classification of an entity that is classifiable in regular
UML. The attributes of association classes correspond to mutual properties
which are properties of their respective things, not a third ’intermediate’
thing. However, our suggested rules do allow the modelling of a class even
in this case, but we place a number of constraints on such an association
class.

A slight difference is our focus on behaviour for determining when sub-
classification should occur. In UML any additional feature, regardless of
whether this is a static or behavioural feature, leads to sub-classification.
In our proposal, it is primarily additional behaviour which necessitates sub-
classification. However, this additional behaviour is generally concomitant
with additional properties.

Inheritance Inheritance allows objects of a sub-class to inherit the fea-
tures of the superclass. Objects of sub-classes can also possess additional
features and re-define inherited behavioural features. Sub-classification and
inheritance are orthogonal features. In other words, inheritance may be
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used for sub-classification, but need not be employed for this (Meyer, 1996;
Tailvalsaari, 1996).

As the semantics of classification is slightly different in ontology than it
is in UML and other object-oriented design languages, so are the semantics
of sub-classes and therefore inheritance. Classes in UML are merely descrip-
tions of objects, not collections. Therefore, defining a sub-class and using
inheritance is a descriptive technique, it operates on the syntactic level to
aid reuse of specifications.

On the other hand, the semantics of a class in ontology is that of a set
(of things sharing properties or behaviour). Hence, a sub-class is a sub-set
of some set. Hence, the elements of the subset quite naturally possess the
features they share with the elements of the complement of the sub-set.
Therefore, there is no need in ontology for the notion of inheritance, as it is
not concerned with the description or specification of things.

The rules that we suggest for UML do not prohibit the kind of inheritance
expressed or expressible in UML. On the contrary, it is a helpful tool for
describing what exists in a domain. Our rules and semantics are compatible
with the notion of inheritance in object-oriented languages. This is evident
from the OCL expressions, a number of which make heavy use of inheritance
of features and work well within the inheritance hierarchies provided by the
meta-model.

Polymorphism Polymorphism is the ability of objects to interact with
other objects without being aware of their exact class. In other words, as
long as a particular object that is acted on can exhibit a certain behaviour,
it is irrelevant to which class this object belongs. In common object-oriented
languages, polymorphism is generally restricted to objects of sub-classes of
common super-classes.

While the BWW-ontology does not employ message-passing and inter-
action is a primary, derivative concept, there are analogs to polymorphism
in the BWW-ontology. Interaction is described through changes in mutual
properties. As such, interaction is not specific to any particular class or
kind of thing that exhibits this property. Hence, the BWW-ontology ex-
hibits polymorphism in this particular way. In contrast to object-oriented
approaches, this kind of polymorphism is not restricted to sub-classes of a
common super-class.

Polymorphism is a natural aspect of the BWW-ontology. This is not
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surprising given that the BWW-ontology is primarily instance based, rather
than class-based. Things with their properties and behaviour are primary.
Classes are defined on top of sets of things. Thus, it is irrelevant for a
thing which class it is an element of. What matters in the ontology are the
properties and behaviour of a specific thing.

Moreover, we have examined behavioural substitutability which is an
important aspect of polymorphism. The two criteria that were developed are
in agreement with other research (Schrefl and Stumptner, 2002; LeGrand,
1998) that suggests conditions for polymorphism interpreted as behavioural
substitutability. Hence, our ontological semantics does not preclude the
notion of polymorphism in interaction and is compatible with the general
notion of polymorphism in UML and other object-oriented approaches.

Message-Passing Message-passing is one of the central principles of object-
oriented approaches and specifies the interaction mechanism by which ob-
jects communicate. As discussed in the previous chapters, the BWW-
ontology makes no claim to such a mechanism and we found some of the
constructs involved in message-passing to be excessive.

However, we have attempted to interpret message passing as an abstrac-
tion of interaction. As a result, we were able to suggest a mapping of some
of the language constructs that implement message-passing to ontological
concepts. Our suggestion is that message passing be used to describe in-
teraction, but that modellers keep in mind that interaction is described
through changes in mutual properties, expressed as changes of association
class attributes.

Thus, while use of the message construct is permissible and encouraged
e.g. in sequence diagrams or collaboration diagrams to indicate the interac-
tion pattern of objects, this must lead, by virtue of our rules, to the speci-
fication of appropriate association classes and state charts in other parts of
the model.

Information Hiding/Abstraction As identified in the discussion of en-
capsulation, the one instance where our rules violate the principle of in-
formation hiding is that of association classes. Because of our mapping,
attributes of association classes are modified by operations or methods de-
fined for the classes participating in the association. No other rules violate
this principle.
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To summarize, this examination of six fundamental principles of the
object-oriented approach to systems specification shows that our suggested
semantics support all of the principles. The only exception to this is the vio-
lation of encapsulation for association classes. Encapsulation can be restored
by allowing and introducing ”Get” and ”Set” operations for association class
attributes. Thus, if desired for software design and implementation mod-
els that must fully conform to the principle of encapsulation, such a simple
transformation will have the desired effect. This transformation should be
applied only after the conceptual model is fully developed.

In summary, the changes to the meta-model and the rules will lead to
valid object-oriented models. UML, with the proposed semantics and with
the proposed rules, remains the object-oriented language that is familiar to
software designers.
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Chapter 8

Generalizability

This chapter will examine the results derived in the previous sections of this
thesis and attempt to draw general conclusions for object-oriented languages,
abstracting from the specific language chosen. There exist numerous object-
oriented programming and modelling languages, so that a compehensive
review is beyond the scope of this chapter. For an overview of various
languages and their respective features see e.g. (Capretz, 2003; Kirstensen
and Osterbye, 1996; Wegner, 2003).

Any object-oriented language will exhibit a set of constructs to support
the core principles, e.g. stimuli, call actions and reception in UML which
support the communication by message-passing. However, each language
will also have specific idiosyncratic constructs that may differ from language
to language. Thus, any generalization of the results to other object-oriented
languages cannot be focussed on specific constructs but must be oriented
along the main principles of the object-oriented approach as discussed in
Chap. 7.

The previous chapter has discussed a number of core principles of the
object-oriented approach. These principles underly any object-oriented lan-
guage. As our discussion in that section showed, the suggested rules and
language changes do not violate these principles. Hence, object-oriented
modelling languages that can express those principles, can be assigned simi-
lar ontological semantics. Insofar as the language does not depend on specific
idiosyncratic constructs to support those principles, the ontological seman-
tics can be transferred from UML to that language.

The formalization of the results in terms of OCL and the meta-model is
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language-specific. Different languages may or may not provide a formalized
meta-model in which to attempt formalization. Moreover, the meta-models
of other languages may itself be expressed in other languages, not necessarily
in UML, e.g. as generative grammars or as Entity Relationship Diagrams.
However, the constraint language OCL is flexible enough to be usable in
conjunction with such languages, the syntax and semantics of OCL and the
usage of UML meta-model elements in OCL are independent of each other.

Tables 8.1 to 8.3 examine each of our proposed rules and corollaries as
to whether they are applicable to object-oriented languages in general or
whether they involve constructs that are specific to UML. This allows an
assessment to what extent our rules are transferable immediately to other
languages. Rules that make use of idiosyncratic language constructs cannot
simply be transferred. Instead, the new language must be re-analyzed in
those parts. Generally, it is not expected that any object-oriented language
needs to be re-analyzed completely.

Table 8.1 shows that a large part of our interpretation is specific to
languages that provide association classes as mutual properties are mapped
to attributes of these. For object-oriented languages which do not provide
this construct, another mapping must be found for mutual properties.

Furthermore, languages must support the modelling of attributes. As the
representation of state information by attributes is not considered a central
aspect of the object-oriented approach (e.g. Capretz (2003); Kirstensen and
Osterbye (1996)) there exist languages which encapsulate state information
and behaviour, without providing constructs that further reduce the state
information to attributes. For such languages, another representation for
ontological properties must be found, with different resultant rules.

As table 8.2 shows, some rules are applicable only to languages that have
well developed state constructs, such as Harel state charts (Harel, 1988)
rather than simple state-transition machines such as Moore or Mealy ma-
chines which do not provide constructs to express sub-states. As state charts
or state-transition diagrams are not central to the object-oriented approach,
there may exist object-oriented languages that do not provide any state con-
structs and are limited to descriptions of behaviour in terms of methods and
operations. The mapping that we made in our analysis of UML leads to a
set of rules and corollaries which mainly serve to ensure consistency between
state charts and class diagrams. When a language does not provide state
descriptions, such consistency constraints are not needed.
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Table 8.1: Generalizable Rules (Static Structure)
(Gen.=Generalizability
X=unconditionally generalizable to other object-oriented languages;
(X)=generalizable conditional on existence of a particular language construct)

Rule Gen. Comment

Rule 1 (Substantial objects)
X The object is the central construct to all OO languages.

Rule 2 (Properties as attributes) (X) The language must provide an attribute construct.

Cor 1 (Attributes are not things) (X) See above rule.

Rule 3 (Mutual properties as assoca-
tion classes)

(X) Most OO languages possess association or relationship constructs,
although not all languages permit attributes to be modelled for these.

Cor’s 2, 3, 4, 5, 7, 8, 9 (Constraints on
association classes)

(X) See above rule.

Rules 4, 5 (Mutual properties and in-
teractions)

(X) While methods, operations and interactions are central concepts of
the object paradigm, association classes are not.

Rule 6 (No composition) (X) Not all object-oriented languages make the distinction between ag-
gregation and composition.

Rule 7 (Aggregates must have at-
tributes)

X

Rule 8 (Classes must have attributes) X

Rule 9 (Object ID’s are not attributes) X While a distinct object identity has not been unanimously proposed
as a fundamental principle, it is usually implicitly assumed.

Continued on next page
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From previous page

Rule Gen. Comment

Rule 10 (Attribute values uniquely
identify objects)

X

Rule 11 (Attributes have values) (X) The language must provide an attribute construct.

Corollary 10 (Attribute multiplicities
and the ordering of attribute values)

X

Rule 12 (Additional behaviour or at-
tributes lead to specialization)

X Generalization and Inheritance are central principles of the object-
oriented approach.

Cor’s 11, 12 (Reclassification of ob-
jects)

X See above rule.

Rules 13 (Aggregates must have two
parts), 14 (Emergent properties lead
to specialization)

X

Rule 15 (Object creation as change of
class)

X Object construction is supported in all languages.

Cor 13 (Object destruction as change
of class)

X See above rule.

Rule 16 (No class scope attributes) X

Rules 18, 19 (Abstract classes and
generalization)

X Generalization and Inheritance are basic principles of OO languages.

Rule 20 (No ordinary associations) (X) Association class construct may not be provided by all OO languages.
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Table 8.2: Generalizable Rules (Change)
(Gen.=Generalizability
X=unconditionally generalizable to other object-oriented languages;
(X)=generalizable conditional on existence of a particular language construct)

Rule Gen. Comment

Rule 21 (State defined by attribute
values)

X If a language provides both the attribute and state construct, this
rule is applicable.

Cor 14 (Transitions change an at-
tribute value)

X See above rule.

Rule 22 (Sub-states require additional
attributes)

(X) Only applicable to OO languages that provide state chart constructs.

Cor’s 15, 16 (Sub-states and concur-
rent sub-states)

(X) See above rule.

Rule 24 (Action states are sub-states) The distinction between states and action states is not made by all
OO languages.

Cor 17, 18 (States, actions and activ-
ity diagrams)

See above rule.

Cor 19 (Partitions as parts of compos-
ites)

Partitions are not a fundamental OO construct.

Rule 25 (Quantitative behaviour as
top-level state chart)

(X) If a language provides state constructs, this rule is applicable.

Rule 26 (Top-level transitions corre-
spond to operations)

(X) If a language provides state constructs, this rule is applicable.

Continued on next page
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From previous page

Rule Gen. Comment

Cor 20 (Objects have at least one op-
eration)

X

Cor 21 (Stable states in top-level state
chart)

(X) If a language distinguishes between stable and unstable states, this
corollary is applicable.

Cor 22 (Top-level transitions associ-
ated with events)

(X) If a language provides the event construct, this is applicable.

Rule 27 (Qualitative change requires
operations)

X

Rule 28 (Methods describe state
charts)

(X) If a language provides state constructs, this is applicable.

Cor 23 (Method state charts initial
states)

(X) See above rule.

Cor 24 (Method state charts and
events)

(X) If a language provides the event construct, this is applicable.

Cor’s 25 (State charts’ relationship to
other change constructs), 27 (Methods
and attribute value changes)

(X) If a language provides the state construct, this is applicable.

Cor 28 (Reception and state charts) A reception is a very specific construct that may not be provided by
all OO modelling languages.

Rule 29 (State charts implement
methods, not operations)

(X) If a language provides the state construct, this is applicable.

Continued on next page
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From previous page

Rule Gen. Comment

Rules 30 (Operation associated with
reception), 31 (Reception, operation
and unique event)

A reception is a very specific construct that may not be provided by
all OO modelling languages.

Rule 32 (Qualitative change and or-
thogonal regions)

This is specific to Harel state charts.

Cor 29 (Objects are changeable) (X) If the language provides the state construct, this is applicable.

149



Table 8.3: Generalizable Rules (Interaction)
(Gen.=Generalizability
X=unconditionally generalizable to other object-oriented languages;
(X)=generalizable conditional on existence of a particular language construct)

Rule Gen. Comment

Rule 33 (Message passing requires as-
sociation classes)

(X) Assumes an association class construct.

Rule 34 (Objects send and receive
messages)

X

Cor 30 (Messages not between associ-
ation classes)

(X) Assumes an association class construct.

Rule 35 (Constraints within class) Constraints may not be found in all OO languages.

Cor 31 (State transitions modify asso-
ciation class attributes)

Assumes both an association class construct and state transitions.

Cor 32 (Interaction is state transition
in both objects)

(X) Applicable if the language provides states and transitions.

Cor 33 (State transitions modify asso-
ciation class attributes)

See Cor 31 above.

Cor’s 34, 35 (Signal and call events
associated with top-level state transi-
tions)

Different event types are specific to UML.

Continued on next page
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From previous page

Rule Gen. Comment

Cor’s 36, 37, 39 (Synchronous commu-
nication in state charts)

Not all OO modelling languages distinguish synchronous and asyn-
chronous communication.
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The analysis of rules and corollaries related to interaction (Table 8.3)
shows that interaction in UML is expressed using a number of very specific
constructs that are likely not generally available in all object-oriented lan-
guages. In addition, in our analysis we chose not to interpret messages as
ontologically real. As a consequence, very few of the rules are generally appli-
cable. Of those that are, the majority relate the message-passing interaction
to state charts, as interaction is expressed as state changes in the BWW-
ontology. This in turn requires not only that the language provides state
and transition constructs but also association classes, as we have mapped
mutual properties to attributes of association classes. Mutual properties in
turn play a central role in interaction in the BWW-ontology.

To summarize, a substantial number of the guidelines is transferable to
other object-oriented languages. Where they are not, the detailed discus-
sion in Chapters 4 through 6 may be used as a guide for the re-analysis of
particular aspects of the target language.
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Chapter 9

Examples

This section provides two brief examples taken from textbooks on UML
systems analysis. These examples are intended to demonstrate how models
developed according to the proposed rules and with an ontological back-
ground differ from ’standard’ UML analysis models. Such a demonstration
serves to highlight two important results: (1) It shows a clear difference be-
tween two very different types of models. On the one hand, models generated
with an implicit but not articulated background of IS development. These
models are often termed analysis or conceptual models by their developers,
but are produced before the background of IS design and implementation.
On the other hand, models developed by specifically excluding any IS con-
siderations and critically examining the real world. (2) It shows that the
proposed semantics and rules are applicable in practice and that they lead
to useful outcomes. Thus, practitioners are able to immediately put this
research into practice.

Unfortunately, very few cases using UML are available in the literature
which cover static and behavioural elements. The following examples fo-
cus therefore on class diagrams. These include operations assigned to class
instances, so that a certain part of behaviour is modelled.

9.1 Example 1

This section will demonstrate the proposed semantics using an example
taken from the systems analysis textbook by Hoffer et al. (2002) and the
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Figure 9.1: Car rental example class diagram, from (Miller, 2002)

instructor’s manual (Miller, 2002). The next paragraph provides the de-
scription given in (Hoffer et al., 2002), followed by an analysis of the given
model vis-a-vis the proposed rules. We then re-analyze the case and derive
a diagram which follows the proposed rules.

Description ”An auto rental company wants to develop an automated
system that would handle car reservations, customer billing, and car auc-
tions. Usually a customer reserves a car, picks it up, and then returns it
after a certain period of time. At the time of pick up, the customer has
the option to buy or waive collision insurance on the car. When the car is
returned, the customer receives a bill and pays the specified amount. In ad-
dition to renting out cars, every six months or so, the auto rental company
auctions the cars that have accumulated over 20,000 miles” (Hoffer et al.,
2002). The class diagram, taken from (Miller, 2002), is shown in Fig. 9.1.

Analysis of Rules We begin by evaluating the class diagram according
to our suggested rules and will then interpret the given real-world situation
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in order to construct an ontologically meaningful model that conforms to
the proposed rules.

The two classes ’Invoice’ and ’Auction Sale’ violate our rule 1 (substantial
objects). Invoices and auction sales are events or interactions, not objects,
even though there may exist documentation about invoices or auction sales.
In our case, we are strictly concerned with the events or interactions. While
the reservation class is a bundle of mutual properties between two things and
thus correctly modelled according to rule 3 (mutual properties as association
classes), it violates corollaries 5, 8 (associations classes have no operations
and no associations) and the method ’createBill’ should be modelled with
the thing that actually does the invoicing, probably an employee or, more
generally, the rental company (rule 4, changes of mutual properties). From
the fact that the attribute ’corpCustomer?’ is modelled, we assume that
reservations for corporate customers are different from reservations for other,
non-corporate, customers. Hence, according to rule 12 (additional behaviour
leads to sub-classes) the corporate customers should be modelled explicitly.
The associations between ’Auction Sale’ and ’Car’ and between ’Invoice’ and
’Reservation’ violate rule 20 (no ordinary associations) because they are not
association classes.

A number of rules concern elements or relationships between elements
that are not shown using the graphical UML notation and are only analyz-
able in terms of the meta-model elements. Adherence to these rules cannot
be evaluated by examining the diagrams.

Ontological Analysis The original case description in (Hoffer et al.,
2002) does not provide much information about the real world situation.
We therefore attempt to make reasonable assumptions as we proceed with
the analysis.

The analysis and modelling of this example will be very much driven by
examining the interactions. Rules 2, 3 and 5 (association classes represent
mutual properties due to interaction) define the nature of mutual properties
as arising out of interaction. Rule 1 (substantial objects) defines the possible
interacting things.

In the real world, a customer interacts, by phone, fax, or computer, with
some sales employee or sales clerk of the car rental company. We abstract
from the medium of this interaction, which, according to rule 33 (message
passing requires association class), should be included in a complete descrip-
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Reservation
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pickupLocation
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Employee
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Take Reservation

Customer

Name
Address

ReserveCar

Figure 9.2: Car rental example: Class diagram, reserving a car

tion. The customer reserves not a specific car, but a type of car for a certain
period. Thus, the event of reservation gives rise to some mutual properties
between the customer and the car rental company, or more specifically, the
sales employee of the car rental company. This is shown in the class dia-
gram in Fig. 9.2. By rules 8 (classes possess an attribute) and 10 (attribute
values identify objects) there must exist uniquely identifying attributes of
the employee and the customer, modelled as name and address or name and
employee number. As all action and interaction that is externally induced
must be modelled as an operation (rules 26, 27, 30) we identify the actions
that the customer and employee carry out as reserving a car and taking a
reservation.

The customer and the employee share a number of mutual properties,
i.e. the pickup date requested, the return date requested and the pick up lo-
cation. These are mutual properties of the customer and the sales employee,
modelled as attributes of an association class. As part of the activities of
taking a reservation, it is now the sales employee’s responsibility to schedule
a car and the customer’s responsibility to pick up the scheduled car.

Next, we assume that the employee of the rental company makes some
arrangements to schedule a car of the proper type to be at the proper pickup
location at the requested pickup time. An instance of class car that is sched-
uled acquires additional properties with respect to other cars, mutual prop-
erties with the employee that scheduled the car. By corollaries 11, 12 (ac-
quisition of properties leads to re-classification) and rule 19 (special classes
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define additional attributes) we must model scheduled cars as instances of a
subclass of cars and model an operation to change the class of instances. In
most cases the pickup date and location of the schedule match the requested
reservation dates and locations by the customer.

The customer next interacts with the same (or some other) sales em-
ployee for the car pick up. This is an event which gives again rise to mutual
properties, this time between the customer, the car that she picks up and an
employee of the company. The car has been picked up on a certain date and
the customer has requested of the sales employee certain insurance coverage
for the car (Fig. 9.3). Cars that are picked up form a sub-class of the sched-
uled cars which can be returned and for which a mileage count per rental is
important.

The next interaction occurs when the customer returns the car to the
rental company. This interaction again gives rise to a number of mutual
properties between the customer, the car and the employee, such as the
date the car was returned, the number of miles travelled, etc. This is shown
in Fig. 9.4. Note that a returned car is a special instance of cars and not of
rented cars. This is because that car cannot be returned again, therefore it
must not inherit that operation from the rented car. At this time, we have
also renamed the renting customer to ’RentalCustomer’ in anticipation of a
purchasing customer later in the analysis.

The next interaction occurs between the customer and the employee of
the rental car company. The employee provides an invoice to the customer.
This interaction gives rise to mutual properties such as ’amount due’ etc,
which are captured by the association class ’Invoice’ as shown in Fig. 9.5.

Cars are also sold at auction to customers. Every such sale gives rise to
mutual properties between the car rental company (or an employee thereof),
the car and the purchasing customer. This is shown in Fig. 9.6. We have
modelled purchasing customers as a different subclass of customers as they
have different (mutual) properties. We also include an operation with all
customers by which change of classification (qualitative change) can occur.
Similarly, an operation is included with all cars that expresses the qualitative
change of a car when it is sold.
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Figure 9.3: Car rental example: Class diagram, scheduling and pick-up
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Figure 9.4: Car rental example: Class diagram, returning a car
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Figure 9.5: Car rental example: Class diagram, billing the customer
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Figure 9.7: Example UML class diagram without ontological semantics
(Fowler and Kendall, 2000)

9.2 Example 2

This section will demonstrate ontological analysis and the proposed rules
using another small example, found in the popular UML introduction by
Fowler and Kendall (2000) (Fig. 9.7). The book provides no case description.
We begin again with an analysis of the rule conformance of the model.

Analysis of Rules There are a number of rules that are violated in various
places of the model. Both the ’Order’ and the ’Order Line’ objects violate
rule 1 (substantial objects) because they are not substantial objects but
either an event (in the case of the order) or information, i.e. properties
that arise because of interaction. Thus by 2 (properties as attributes) they
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should be shown as attributes. Specifically, by rule 3 (mutual properties
as association class attributes) they should be shown as attributes of an
association class. Furthermore, by corollary 5 and rule 4 (changes in mutual
properties by operations of regular classes) the operations currently assigned
to the ’Operation’ object must be re-assigned to the object that actually
does the dispatching and closing of orders. Both the ’Employee’ and the
’Product’ classes violate rule 8 (classes possess attributes) as they possess
no attributes. Moreover, they are not identifiable as they lack identifying
attribute (rule 10). Note also that ’creditRating’ is not something that the
customer does, it does not even seem to be an action in the ontological sense
that it changes the value of some property. Instead, the customer possesses
a property ’CreditRating’ which should be modelled as an attribute.

In order to address these issues, we need to re-analyze the actual real
world situation that this model is intended to represent. Since only the
diagram is given, there is a certain amount of subjective interpretation in-
volved. The following sub-section presents one possible interpretation, in
which a customer orders anonymous things. In another interpretation, the
customer orders specific product instances. The latter interpretation is de-
veloped in appendix D.

Ontological Interpretation A customer orders a product from a com-
pany through an employee of the company. Note that in all cases the cus-
tomer interacts with an employee, even though for personal customers this
interaction is not with a dedicated sales representative. We assume that
the model in Fig. 9.7 does not show the company as a class as employees
are the relevant things. The customer ordering a number of products is an
ontological event and must therefore not be modelled as an object of a class.
Instead, the order event gives rise to a number of different mutual properties
between the customer, the employee (or company) and the products ordered
(rule 3, 5). As indicated in Fig. 9.7 these include ’dateReceived’, ’isPrepaid’
etc.

A naive first model like the one shown in Fig. 9.8 expresses the fact
that a customer can order many products and a product (item) is ordered
by exactly one customer. This is incorrect, because in this model there is
no way to distinguish multiple orders by the same customer. In the real
world, the customer orders a group of products per order, so the model
should reflect this. Fig. 9.9 shows the correct model. With this model,
each customer can order multiple groups of products, one for each ’Order’
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Order
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Products

2..n

Figure 9.9: Order, correct model

interaction. Notice that because of rule 13 we must express the fact that
a single product item can be ordered by modelling the fact that, while a
product group cannot consist of less than two products, a product may be
a product group.

We assume that the purpose of the orderline in the original model
(Fig. 9.7) is to summarize the quantities ordered for different kinds of prod-
ucts. In other words, while an order refers to e.g. a total of 30 items of
different types, there exists an orderline referring e.g. to 10 product items
of type foo and another orderline referring to e.g. 20 product items of type
bar. Product types are not ontologically substantial and cannot be modelled
as classes. However, the 10 product items of a type foo form a composite
thing which can be modelled as a product type group. We therefore refine
the diagram of Fig. 9.9 into the model of Fig. 9.10.

Notice that just like an order pertains to group of products, each order-
line refers to a group of products of a particular type, e.g. 20 items of type
foo.
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Figure 9.10: Product types

The original model in Fig. 9.7 showed the employee participating in an
association with a corporate customer. Our rules suggest that every associ-
ation must be an association class with at least one attribute. We suggest
that sales representatives are specialized kinds of employees which possess
mutual properties with corporate customers and therefore must be mod-
elled as a sub-class of employees. Mutual properties could be e.g. contact
name with the corporate customer, the account volume, account number
etc. This is shown in Fig. 9.11. The diagram in Fig. 9.12 integrates this
into a final class diagram, conforming to the proposed rules and developed
using ontological analysis of the real world.

We are now in a position to fully integrate the model, together will all
attributes and multiplicities. These satisfy the rules developed in Sec. 4.
The final model with ontological semantics is shown in Fig. 9.12.

As indicated in Sec. 4.2.3 these indicate how many other things a thing
shares mutual properties with. The customer may be involved with many
different employees ordering many different product groups. However, the
product group can only be ordered once (recall that we are talking about
identifiable instances). Similarly, the customer can order multiple product
type groups (the items ordered in a single orderline) and the employee can
of course sell multiple of these groups. However, in this case too the product
type group, the aggregate of individual products, can only be sold once.

165



Customer

Personal
Customer

Corporate
Customer

Employee

Sales
Representative

SalesAccount

Account#
AccountVolume
ContactName

1 1..n

Figure 9.11: Customers and employees

Analogous to our reasoning in the first interpretation above, the methods
have moved from the order and customer classes to the employee and sales
representative classes, as it these that carry out the actions.

9.3 Discussion

This chapter has shown the applicability and the process of applying the
proposed rules using two small examples. For both examples, a detailled
analysis of the models showed that they violate a number of fundamental
rules and, because of that, a number of corollaries following from those rules.
Specifically, both examples showed that substantial things (e.g. customers)
as well as events or interactions (e.g. reservations, orders) were modelled as
ordinary classes or objects. This violates the proposed ontological mapping.

Both examples had to be re-interpreted as very little domain descrip-
tion was available. We have attempted to identify the real-world situation
that they are based on and in the process have made a number of assump-
tions. Our proposed ontological semantics have been employed to reduce
these ambiguities and to arrive at two ontologically meaningful models, cor-
responding to different interpretations of the original diagrams.
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Figure 9.12: Final order processing class diagram
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Not only are the initial models ambiguous (for the second example,
an alternative interpretation is given in appendix D), but a comparison
of the initial and re-interpreted models show that there is generally more
detailled information present in the re-interpreted models. The process of
re-interpretation was begun by an analysis of the real-world things and their
interactions, as these interactions require and lead to mutual properties and
thus association classes in the model. Following specific rules during the
modelling process led to information to be included in order for the model
to conform to the proposed semantics. For example, in the car rental ex-
ample, this led to the explicit modelling of reserving, picking-up, returning
and invoicing, while the original model assumed these steps only implicitly
and cannot provide such a rich description of this. An example of additional
detail in the order processing example, is the information about product and
product groupings included in the model. This was implicitly understood
in the initial model but not modelled with rich detail.

Levels of Abstraction Abstraction is the omission of details from a
model or representation which are not relevant to the purpose of modelling.
The intention is to ease the cognitive processing necessary for the interpreter
of the model.

It is not the intention of the modelling rules or the two examples to in-
crease the amount of information shown, even though in these cases that is
the effect of the rules. The models developed in this chapter show more de-
tail than the original models, by virtue of following the suggested rules and
guidelines. It may be argued that not all of the information is relevant to
the purpose of the model. However, no more specific purpose than a faithful
representation of the real world has been suggested for these models. Thus,
it is difficult to argue the relevance of individual model elements. More-
over, any abstraction should be made explicit, as a formal transformation
of models.

For example, Fig. 9.1 and Fig. 9.6 differ in the way that properties
relating to car pickup and car drop-off are modelled. In the original model,
these are collapsed into a single class while the redeveloped model shows
them as two distinct association classes. The distinction may be relevant to
show that invoice numbers are only assigned once the car is dropped off. On
the other hand, it is conceivable that invoice numbers are assigned at the
time of reservation or at the time of pickup, so that this distinction becomes
important. We therefore suggest that in a subsequent, explicit step, models
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may be transformed by collapsing association classes between the same set
of classes.

As another example, Fig. 9.7 and Fig. 9.12 differ in their treatment of
products. The redeveloped model makes a clear distinction between prod-
uct instances and groups of products. It shows clearly that an order line
refers to a particular type of products, which the original model does not
show. Again, an explicit model transformation should be used to collapse
the redeveloped model of Fig. 9.12 to the one in Fig. 9.7 once it has been
determined that, from a business or organizational perspective, it is not
necessary to know that order lines refer to specific types of products.

With respect to the cognitive load on the model interpreter, only an
empirical investigation can show which model is easier to understand or
interpret. This will be examined further in chapter 11 below.

To summarize, the experience with these two small examples shows that
(1) the rules are applicable in practice, (2) they lead to useful information
being included in the model and (3) the rules allow the modeller to question
and explicate assumptions about the real-world and the model. After these
two brief examples, the next chapter provides, as a case-study, an analysis
of a real project.
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Chapter 10

Case Study

The aim of the case study is to provide corroboration of the feasibility of
applying the derived rules and guidelines in practical situations, beyond the
scope of small examples such as those in Chapter 9. This section shows that
the proposed rules are usable for a medium size analysis project. Another
empirical study, a controlled laboratory experiment, will show the specific
beneficial effect of the rules, an increase in analysts understanding of the
domain (Chapter 11).

10.1 Organizational Setting

The organization under study is a large North American university. The uni-
versity is concerned about the image it presents to prospective students and
has undertaken a business process re-engineering (BPR) effort to investigate
streamlining the processes involving current and prospective students. This
BPR led to a number of requirements for individual processes from which
IS requirements were derived and appropriate projects initiated.

One of the identified projects is the provision of an opportunity for
prospective students to assess their likelihood of admittance without having
to initiate the official and lengthy admissions process. This is to be done
by allowing prospective students to enter their educational history into an
IS. The IS will then apply the university admission rules to this data and
report the result to the prospective applicant, at which time the applicant
may be allowed for self-admittance to the chosen program.
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This project was chosen as the basis for the case study for two reasons:
(1) It was a project that was nearing completion. The main stakeholders
and informants of the analysis were still available for interviews. Their
involvement with the project and the analysis was recent so that rich data
could still be gathered. (2) The project team had used UML for system
analysis. It was hoped that additional insight could be gained by comparing
the project team’s UML models with those developed as part of this case
study.

The primary contact person is the co-project manager and lead analyst
(LF). LF explained that, for his project staff, it is the first project to use
UML. The use of UML in the project is restricted to the analysis and mod-
elling of the real world domain using a UML class model. According to LF,
this model is intended primarily for clarification and understanding of the
real-world domain and contains the core classes to represent the organiza-
tion. Subsequent design and implementation will be done with reference to
the analysis model but without re-using it or using it directly for automatic
software design or code generation. When this case study was begun, the
project was almost at the beginning of the coding stage.

10.2 Procedure

As part of this case study, an independent analysis was undertaken in order
to model the domain of student admissions and assessment. Interviews
were conducted with relevant stakeholders and informants (see Appendix
E) and UML models (class and sequence diagrams) were constructed. All
interviews were conducted on-site and were using open-ended questions. The
independent analysis serves two purposes: (1) It shows the applicability of
the proposed modelling rules and (2) produces an ontologically meaningful
alternative model which can be compared to the original one.

The proposed rules were used as guidelines to the analysis and the inter-
views. For example, rule 1 suggests that the analyst determine all physical
things involved in the domain, while rule 2 requires the identification of prop-
erties of these things. For rule 5, the modeller must identify interactions in
the real world in order to properly model association classes and their at-
tributes. Rule 10 suggests that behaviour must change the thing’s states
(corollary 14). Thus, the analyst must identify sufficient attributes which
change, in order to express operations or state transitions (rule 26). Once
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interaction is identified, the modeller must ensure that association classes
are defined according to rule 33 and all objects are involved in interaction
(rule 34).

While the rules mentioned in the above paragraph are only a sample of
all proposed rules, they are fundamental rules that can guide the modeller to
seek required information about the real world system under consideration.
However, this guideline must not be mistaken for a methodology or a pro-
cess of object-oriented analysis of real world domains. Research by Wand
and Woo (1999) provides such a process which also focusses on interaction.
While not strictly followed in this research, it was taken as another guide to
discover the elements of the organizational domain. Wand and Woo (1999)
suggest that analysis begin with objects external to the domain and their in-
teractions or requests. Such requests in turn lead to other interaction among
objects within the analysis scope. The sequence of interactions should be
traced to discover all relevant objects, behaviour and attributes.

The information offered by different project participants during open
ended interviews is available in Appendix E. It was used for analysing and
modelling the real-world domain. This is described in Appendix F. The
following section discusses the experiences gained from the case study and
compares the initial model by the project team with the models that adhere
to the proposed rules, as developed in Appendix F.

10.3 Discussion

This section discusses and summarizes the findings of the case study. It be-
gins by examining the process and the resulting models and then summarizes
the discussion of the resulting models with two of the project team members.
Figure 10.1 shows the class diagram developed by the project team. It is
shown for comparison of the models and their features. The independently
developed models are shown as part of the analysis in Appendix F.

Model Features The process of analyzing the domain and modelling it
according to the suggested ontological semantics for UML shows that the
models produced are valid UML models. All produced diagrams are valid
UML models, and adhere to all regular syntactic rules. The models are not
trivial and do not appear overly complex either. Hence, use of the rules is
at least possible in a practical setting.
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Figure 10.1: Class diagram developed by project team
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The process of analysis and modelling has shown that at various stages
in the process the rules and proposed semantics lead the modeller to include
information in the model that is not necessarily relevant to building an in-
formation system, e.g. the interactions in high schools that give rise to the
grades (e.g. Fig. F.1), but that are important to properly understanding
the domain. It may turn out at a later stage, that information about the
high school teacher becomes data of interest to be included in the informa-
tion system. Another example of additional information in the model is the
differentiation between the actual in-class standing, as defined by the inter-
action between teachers and high school students, and submitted grades, as
reported by the school or the applicant to the school. This separation allows
explicitly for the notion of incomplete or erroneous submission or reporting
of applicant standing to the university.

As argued in Chap. 9, the inclusion of this additional detail is a by-
product, not the intention of the modelling rules. Again, an explicit model
transformation should be used to abstract from irrelevant model elements,
rather than implicit considerations during model construction. For example,
the fact that the re-developed model includes information about high school
teachers and high school counsellors submitting grades to the university, may
be important to not only maintain contact information about them, but also
allows the university to target teachers and counsellors based on the quality
of past students when promoting the university. If this is not currently
relevant, there should be an explicit and justified decision to exclude this
information during a subsequent model transformation step.

The inclusion of information about the admissions officer is another ex-
ample. It allows the university to capture information for example about the
workload of admission officers or to track information about the admission
officers sending and receiving correspondence and making decisions about
applicants. This type of functionality has been requested by some of the
interviewed staff, but is not part of the current information system or the
plans for the next version of the system. This information has been omitted
from the original model without an explicit and well documented decision.

Another difference is the separation of association classes, e.g. between
the applicant and the university. There exist the ”Application” and the ”Ac-
knowledgement” assocation class (Fig. F.3). These mirror the interactions
modelled in the sequence diagram. This specific way of modelling also con-
tains additional information: It becomes clear which attributes belong to an
Application and which attributes belong to an acknowledgement. This may
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be important when only part of the model is relevant for IS development
or different parts of the domain are to represented by different information
systems.

With respect to action and interaction, the general absense of detailled
state charts indicates mostly qualitative interactions. Given also the expe-
rience from the two short examples in the previous chapter (Chap 9), it can
be surmised that non-technical, human organizational systems, generally in-
volve more qualitative than quantitative change. The model shows that a
number of configurations of the applicant are modelled as sub-classes that
allow for qualitative change (e.g. Fig. F.15). This way of modelling intro-
duces a large amount of additional information into class diagrams. One
can almost follow the ”life” of a high school student along the specialization
associations, from student, to applicant, to accepted applicant, etc. This
information is only implicitly contained in the original model. There, it is
encoded in attribute values that are not explicitly shown in the model, and
thus not obvious to the interpreter.

When quantitative change is modelled, e.g. when the state of an ap-
plicant changes due to changes in the admission criteria throughout the
admissions process (Figs. F.12, F.13), application of the rules led to a fun-
damental insight into the domain. Instead of assigning states such as ”on
hold”, ”pending”, ”admitted”, etc. to the student, these rules lead us to
assign such states to the university. Furthermore, for each student, the uni-
versity possesses an independent sub-state machine. The student’s state
cannot change without interaction, and the changes to admisssion criteria
do not affect the student, only the student’s admissability with respect to
the university. Hence, these states must be states of the university. This
confirms the notion that in the real-world, it is the university which man-
ages the state information of the students and which can change the state
information. Thus, modelling the states in this way leads to a much more
realistic model. However, it may not be intuitively obvious to IS designers
or programmers.

There are two interesting things to note when examining operations mod-
elled for various classes. The initial model by the project team does not
provide any operations. Attributes are either publicly visible and directly
changeable or assumed to be provided with accessor methods (Get/Set).
Either approach hides the semantics of the changes inside any method im-
plementations. However, these are not part of the conceptual model. Hence,
this information is lost to the conceptual modelling and understanding pro-
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cess, and only implicitly assumed by the IS designer. The independently
developed model shows operations for all object classes. It therefore be-
comes clear what an object of a certain class is capable of. Moreover, as
these operations are related to external stimuli, modelled as messages in
the sequence diagrams, the ordering of the changes expressed by methods
can be deduced. This is information lacking in the initial model. Making
this information explicit in the conceptual model furthers not only under-
standing, but also allows critique and assessment of the correctness of the
information.

Model Assessment The discussion with two project team members, the
project lead (LF) and the lead developer (CH) of the project, confirms these
observations. They suggested that the alternative, independently developed
model may indeed contain more information about the real world domain
under study. Both team members commented on the fact that the original
model contains many hidden and implicit assumptions. This is exemplified
by the following quotes:

”We relied a lot on assumptions that were never written down
in the model ... yours is more comprehensive.” (CH)

”ours have all sorts of stuff around that is assumed but not mod-
elled” (LF)

This was presumably unproblematic in the project as it was a relatively
close group of analysts and developers, that were co-located and in constant
communication. As the project lead had been involved in the preceeding
BPR project that led to the project and system requirements, he was inti-
mately familiar with the business and organizational domain. Furthermore,
the project team did not undergo any changes throughout the project.

If the project team had undergone any changes during the development
process, both interviewees felt that the alternative models would provide
better understanding to a new team member or somebody unfamiliar with
the domain.

”yours that you have are arguably better as an initial introduc-
tion” (LF)
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”It shows a better big picture view of how it fits together.” (CH)

This may in part be due to the additional information in the model. This
is contextual information, i.e. information about the aspects of the domain
outside that which is to represented by the information system. As such,
this information would be useful in allowing new members to discover why
the requirements for the information system are defined one way or another,
even though they do not themselves form requirements.

The independently developed model was generally felt to be complete
and comprehensive, not only with respect to additional information, but
also with real-world aspects that were modelled in the initial model by the
project team:

”Certainly more comprehenssie there [in the areas outside the
IS scope], but even in the smaller, there’s a somewhat simpler,
more elegant view in a few cases” (CH)

The project lead commented on possible abstractions by sub-classification
and specialization that he identified as missing in the independently devel-
oped model:

”there is a more generic, archetypical diagram...” (LF)

This seems to suggest that the analysis either did not identify potential
sub-classes and specializations, or that such abstractions are only possible
due to the lesser amount of information in the initial model of the project
team. This was the only aspect of the model that was deemed incomplete
by the project staff.

In this context it is interesting that specialization and sub-classification
are interpreted as advanced features and not present in the model developed
by the project team:

”Inheritance also gets shied away from .. This may be because it
is initially confusing to developers, they may not understand it
properly” (CH)

Similarly, more complex associations (of ternary or higher arity) and
association classes are not always to familiar to developers.
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”The large diamond sort of throws me off. Don’t know directly
what we’re implementing there.” (CH)

This may either be due to the inherent complexity of UML in terms of
the large number of constructs of the language, or, more likely, due to the
traditional database background of the developers:

”the fact that people were familiar with the database structure,
this influenced things.” (CH)

”There’s a real danger of seeing object modelling as data mod-
elling or relational modelling, as rows and foreign keys.” (LF)

The second important purpose for a conceptual model besides the rep-
resentation of a real world domain is the starting point for IS design and
software development. The alternative model was not seen as defective in
this way, it could serve this purpose:

”I don’t see any reason why you couldn’t just take these [the
models] and run with them.” (CH)

However, it was commented that it shows complexity and additional ob-
jects beyond what is represented in the original model which would make it
less suitable for software design. Clearly the original model was less complex
and modelled certain entities as attributes rather than object classes which
is easier for software developers to translate to programming code:

”It [the new model] shows a lot of stuff that is not implementation
related” (CH)

During the discussion with the project lead it also became clear that the
use of UML without any guidelines is a big challenge in the project. Some
analysts are aware of the subtle differences between possible interpretation
and models and the difficulties associated with them, exemplified by the
following quotations:

”It’s normally difficult to model a course object, because it is a
relationship ... What do you mean by a course? The curriculum,
the interaction, the grade?” (LF)
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”... presumably needs more thought to distinguish different kinds
of objects.” (LF)

”Modelling of non-substantial objects happens quite easily and
naturally. You don’t have to worry about empirical reality” (LF)

These quotes show the relative difficulty of discerning various features of
the real-world and translating these features into UML models. In contrast,
modelling events and interactions also as UML objects appears to be the easy
way out of this difficulty. The project lead and lead developer agree that
modelling rules are necessary and helpful, both for guiding the modelling
process and for ensuring model quality and consistency:

”Such rules would have helped in our groups. The rules would
tell whether a model is good and can help answer some questions.
They seemed like a lot of valid questions to ask.” (CH)

”Rules can force the modellers to think deeper about what they’re
modelling” (LF)

Another interesting finding is that the extensive use of sequence diagrams
and modelling of interactions, which is a central aspect of the proposed
ontological semantics and rules, is viewed as something that should be done
more often in projects but is not.

”They don’t get done as official project documents. When devel-
opers meet, two thirds of them will use inofficial sequence dia-
grams ... That makes things much clearer.” (CH)

This suggests that the interaction centered perspective enforced by the
proposed guidelines and re-inforced by the chosen approach to modelling
(Wand and Woo, 1999), can make a positive contribution to understand-
ing. Interaction diagrams appear as inofficial tools, yet interactions are not
officially documented. Explicit modelling of interactions, forced by the use
of the proposed rules, can help with understanding of the model and the
domain. This supports the modelling approach used and also confirms the
importance of interactions in analyzing a real-world domain.
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Model Quality Chapter 1 positioned this research in the wider context of
model quality. While this wider issue of model quality is outside the scope
of this thesis, a thorough discussion must be left for further research. How-
ever, this section will highlight a few key issues framed by the three promi-
nent frameworks of model quality which have been suggested by (Krogstie
et al., 1995; Lindland et al., 1994), (Moody and Shanks, 1994, 1998; Moody,
1998) and by (Becker and Schütte, 1995, 1996; Rosemann and Schütte, 1997;
Schütte, 1998; Schütte and Rotthowe, 1998; Rosemann, 1995; Schütte, 1999).
One of these is the adequacy of the language for the modelling task citep-
Schuette:99 which is the focus of this study.

During the course of the case study, three specific model quality di-
mensions could be assessed. The semantic quality (Krogstie et al., 1995)
or correctness (Moody and Shanks, 1994; Becker and Schütte, 1996) of the
model with respect to the domain, appears to have increased. Based on
the interview results, the project participants felt that the models contained
more detail about the domain and thus provide a better picture of it.

The model retains its implementability (Moody and Shanks, 1994) in
software. While the resulting software may be different in terms of time
or space efficiency and other criteria, the lead developer felt that the model
could be used for software design and software implementation. Specific and
well- defined transformation step may be helpful at this stage, for example
to abstract from detail not needed for software implementation, to adapt to
a particular software or database framework, or to enhance the efficiency of
the resultant software system.

Integration citepMoodyShanks:94 or systematic construction (Becker and
Schütte, 1996) is increased because the proposed rules are often inter-diagram
in their nature. Thus, the resulting models are increasingly well-integrated
and coherent.

Possible effects on the cognitive quality dimensions of pragmatic quality
(Krogstie et al., 1995), understandability (Moody and Shanks, 1994) or clar-
ity (Becker and Schütte, 1996) can be drawn from the interviews with the
project lead and lead developer. It was felt that the models are relatively
difficult to interpret, compared to the original model by the project team,
and required some clarification in preparation for discussion. This may be
due to their size and complexity, which is a function of their correctness
viz-a-viz the domain.

Finally the benefits of the model must be discussed with respect to pos-
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sible costs. These include but are not necessarily limited to learning the
modelling rules, applying them in the construction of the model and in-
terpreting the resulting models. The large number of rules and corollaries
increased the amount of time necessary for the modelling process. The
added size and complexity of the models increased the amount of time and
effort needed to fully interpret and comprehend them. More quantitative
measures of costs and benefits are discussed in Chapter 11 which describes
an experimental study.

Conclusions In conclusion, the case study shows clearly that the rules
and semantics are applicable to a practical real world situation. This is
shown by the results of the analysis (Appendix F) as well as the discussion
with the project team members in this section.

The resulting model was deemed more comprehensive, more understand-
able and more exact with respect to it’s role as representation of the real-
world domain. These qualities may make it better suitable also for new
team members to comprehend. This is important as IS development teams
are generally comprised of members from diverse backgrounds and organi-
zational units with potentially very little exposure to the particular problem
domain.

The resulting model is also suitable for software development, although
it is more comprehensive than necessary for this purpose, by reducing the
information in the conceptual model. It may therefore be worthwhile to
develop intermediate transformations which would facilitate this purpose.
Any such transformations should be well defined and explicated.

While the resulting model appeared more comprehensive than the orig-
inal one developed by the project team, quantifiable estimates of effort for
the original model could not be obtained, so that a comparison in terms of
modelling effort or a cost/benefit analysis is not possible.

In summary, the case study supports the use of the proposed rules and
guidelines and confirms their usefulness in understanding the domain and
communicating that understanding through conceptual models.
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Chapter 11

Experimental Corroboration

Chapters 4, 5 and 6 outlined the development of real-world semantics and
rules for using UML for conceptual modelling. Chapters 9 and 10 showed
that the rules can applied and the resultant models are at least sensible. We
showed how the rules allow the modeller to focus on the real-world aspects
and guide the ontological analysis process of the real-world domain.

However, it must not only be shown that the rules are actually applicable
and feasible, but also that the resultant models are better. This chapter
outline our understanding of ’better’ and develops and experimental tests of
the proposed rules show the improvements in quality of conforming models
over non-conforming ones.

One of the main purposes of a conceptual model is to serve as a com-
munication tool among the participants of the ISAD process (Kung and
Solvberg, 1986) to help arrive at a common understanding or agreement on
what constitutes the problem domain (Schütte and Rotthowe, 1998). Hence
communication is successful if the receiver of the communicated information
gains the same domain understanding that the sender of the communicated
information possesses.

Every communication occurs by some medium. In our case the concep-
tual model serves as that medium. The sender encodes the message on the
medium, in this case by formulating or building a model using a certain
language. The receiver must then decode and interpret the model.

Norman (1986) proposed a theory of action for the user interaction with
a technological device such as a computer. This theory suggests that for
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the user to make sense of readouts of the device, the representation must
be in a form that corresponds to the user’s mental model. This allows the
user to bridge the gulf of evaluation more easily than in situations where
the representation does not conform to the user’s mental model. On the
other hand, for the user to act on the device, the interface should again be
in a form that the user is familiar with. This allows bridging of the gulf of
execution, i.e. the user plans to execute some action on or using the device,
hence must translate from his own conceptual schema to the representation
or interface the device presents. Gemino (1999); Gemino and Wand (2001)
suggest that Norman’s theory of action (Norman, 1986) is also applicable in
the context of conceptual modelling, by suggesting that the model in this
case assumes the position of the representation of the device. While this
is a broad interpretation of Norman’s theory, it serves to illustrate the two
aspects involved in modelling.1

A complete test of our theory involves examining the entire ISAD process
from model construction to model interpretation. However, since examining
both of these aspects together introduces confounds into the investigation,
these tasks must be examined separately (Gemino and Wand, 2001). This
study focuses on model interpretation, leaving model construction for future
research.

11.1 Theoretical Model and Hypotheses

We make the assumption that ontology is not only what exists in the world,
but moreover, ontology is expressed by what humans agree exists in the
world. We claim that human cognition reflects ontology, we do not make
the inverse claim that human cognitive constructs are our ontology. I.e. we
do not take an idealist position. The true idealist will find the following
paragraph of justification unnecessary.

As realists, we believe that this is a sensible position to take. Being
situated in the world, human beings are continuous problem solvers (Newell
and Simon, 1972) (either everyday tasks or solving scientific problems) and
hence require mental models and theories of the world. Thus, over time
the mental model will come to correspond with the real world and ontology
becomes what we believe to exist in the world. There is no need to suggest

1One can of course think of the modelling language of the device. This may especially
be true in the case of CASE tools.
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innate ontologies, the notion of feedback suffices for this argument.

A well accepted model of the human memory is that of a semantic net-
work(Collins and Quillian, 1969, 1970; Collins and Loftus, 1975) with con-
cepts as nodes being connected by associations as edges. Recall from such
a network is by spreading activation (Collins and Loftus, 1975; Anderson
and Pirolli, 1984; Anderson, 1995). A semantic network supports reasoning
because the associations among concepts allow inferences to be drawn2. A
specific ontology such as Bunge’s then serves as part of the semantic net-
work. It defines concepts such as thing and property which are associated
with one another.

Learning and understanding is the integration of new concepts or new
associations into such a network3 (Anderson, 1995). The interpreter of a
model must incorporate the mental concepts representing the model ele-
ments into her mental schema. If the model follows ontological semantics it
will exhibit certain features such as things and properties that correspond
to already existing ones in the interpreter’s mental network. Hence, this will
facilitate integration. On the other hand, if the model does not follow such
semantics it will exhibit model elements that contradict or are incompatible
with the existing mental network, thus leading to improper or no integration
at all. When the model is well integrated into the existing semantic network,
it is possible for the interpreter to use pre-existing associations between con-
cepts for reasoning beyond the information contained in the model. If the
model is not integrated into the semantic network, such reasoning will be
more difficult.

Solving problems requires drawing inferences based on existing knowl-
edge, i.e. reasoning (Newell and Simon, 1972; Anderson, 1995). Hence, we
propose that problem solving can be used as a way to measure the amount
of reasoning that a given mental network supports. It is thus a measure of
domain understanding (Gemino and Wand, 2001).

To summarize, we believe that interpreting a model based on the sug-

2This model also accounts for a number of observed cognitive phenomena (Hirsh-Pasek
et al., 1993) and is compatible with new theories of meaning. These are often called
”theory” theories as they posit that the meaning of any concept is determined by a theory
which incorporates this concept (Gopnik, 2001). Such a theory is easily expressed as a
semantic network. Moreover, this model is compatible with ideas of coherence theories of
meanings put forward in the philosophy of language (Quine, 1953). These suggest that
a words meaning is determined by the way it fits into a coherently structured system of
relationships to other words.

3Or the strengthening or weakening of associations.

184



gested semantics leads to better domain understanding as measured by prob-
lem solving ability:

Hypothesis 1 Interpreting a diagram conforming to the suggested real-
world semantics and rules will lead to better performance on problem solving
tasks than interpretation of non-conforming diagrams.

11.2 Prior Research

In order to build on the strenghts of past research and identify previously
used instruments, this section reviews empirical research related to assess-
ment of the relative performance of modelling languages or modelling tech-
niques. Research into both model construction and model interpretation is
examined.

A recent literature survey (Johnson, 2002) reviews a number of empir-
ical studies related to object-oriented systems analysis, lamenting a gen-
eral lack of theoretical foundations and poor experimental designs combined
with small sample sizes. This is exemplified by a number of prior studies.
Wang (1996) uses 44 student subjects and a representation task to assess
advantages of object-oriented versus data flow (DFD) methodologies. No
theoretical model is provided to indicate why such performance differences
should arise. Subjects each had three modelling sessions and the models
were assessed in terms of syntactic correctness and semantic accuracy. Re-
sults show that the method had no impact on syntactic correctness but
semantic accuracy was greater for OO than DFD models.

Earlier work by Yadav et al. (1988) compares the construction of DFD
and IDEF0 models. DFD and IDEF0 are very similarly in their modelling
capability and method. Yadav et al. (1988) compare the product as well
as the process of modelling, but do not suggest an explanation why the
techniques should differ. There were significant differences in the modelling
process (learnability, ease of modelling) but no differences in model correct-
ness, completeness, consistency and appropriateness.

Batra et al. (1990) examined model correctness versus the original tex-
tual representation. The study attempted to rule out possible ambiguities
by pilot testing the experiment until no ambiguities remained in the prob-
lem description of the possible model. It was then possible to assess model
correctness as representational accuracy. The study by Vessey and Conger
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(1994) focuses not on the model or process but instead on the learnability
of techniques. They employ process tracing techniques to compare JSD,
structured analysis and object techniques.

There are two things to note about these early studies. The represen-
tational accuracy is a prominent dependent variable, suggesting that this
research recognizes the importance for a model to be a good representa-
tion. Furthermore, all of the studies recognize that representational accu-
racy cannot be objectively assessed, and so expert panels and expert judges
are employed to rate the models.

More recently, Bodart et al. (2001) argue for the use of sub-typing and
against the use of optional properties. However, their chain of argument
depends on the selected language feature (in this case optional properties)
and is not immediately generalizable to the overall language in terms of
its ontological properties. The important relationship to the present work
is their use of conceptual networks and spreading activation to motivate
differences in language performance. This lends support to our theoretical
basis discussed above.

A study by Kim et al. (2000) suggests that the integration of multiple
diagrams can be facilitated both on the perceptual level and the concep-
tual level through appropriate diagrams. The experimental study confirms
the hypothesis that visual cues and contextual information does indeed im-
prove integration of multiple diagrams. This study is particularly relevant
as it provides support for the idea that contextual information beyond the
diagrams themselves can help diagram integration. The theoretical results
derived in earlier chapters facilitate the integration of different diagrams in a
conceptual whole, by relating them to a single ontological model. One would
expect that diagrams conforming to ontological rules can provide better in-
tegration of the structures not only within a single diagram but also across
multiple diagrams.

Cognitive Fit and the Human Problem Solver One widely used the-
oretical foundation for comparing different languages is the theory of cog-
nitive fit (e.g Vessey, 1991; Agarwal et al., 1999; Sinha and Vessey, 1992).
This model was developed in IS language research beginning with (Vessey,
1991) and is based primarily on the arguments of (Newell and Simon, 1972).
According to it, better task performance results when the representation of
the problem solving task matches the representation of the problem. The
problem solver can use processes that emphasize the same type of informa-
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tion that is predominant in both the problem representation and the task
and can use these processes to operate on the internal (mental) represen-
tations of the task. This has been interpreted as the assumption that a fit
between the modelling language and the problem description can facilitate
modelling performance.

Accordingly, the work by Sinha and Vessey (1992) tests problem solving
behaviour given a task and a representation. Comprehension or under-
standing are not part of the model. Agarwal et al. (1996) examine model
construction within the context of Vessey’s cognitive fit model and later also
examine model comprehension (Agarwal et al., 1999). Both of these stud-
ies compare procedural with object-oriented techniques. In (Agarwal et al.,
1996), modelling performance was operationalized as difference against a
reference solution prepared by the researchers. Results indicate that sub-
jects performed better on the process task given the process tool, but for the
object-oriented task, the tool (whether process oriented or object-oriented)
was not a significant factor. Agarwal et al. (1999) test model interpretation
by assessing comprehensibility of object-oriented and process models.

However, the model proposed by Vessey (1991) actually differs substan-
tial from the proposal by Newell and Simon (1972) and make additional,
implicit assumptions that cast doubt on the validity of the model for IS
language research.

In (Newell and Simon, 1972) the task (external) environment is the one
that the human problem solver is situated in. The problem space is the space
in which problem solving takes place; it is an abstract space consisting of a
goal description and symbols that can be manipulated by operators. ”The
effectiveness of a problem solving scheme depends wholly on its reflecting
aspects of the structure of the task environment” and ”the only aspects of
the task environment that are relevant to solving a problem in a particular
problem space are those that are reflected in the structure of that space.”
(Newell and Simon, 1972, p. 824).

On the other hand, Vessey (1991) introduces the notions of ”problem
representation”, ”problem solving task” which are external and an internal
”mental representation” corresponding to Newell & Simon’s problem space.
Newell & Simon suggest that performance is a function of a match between
the internal problem space and external problem space, while Vessey inter-
prets this as suggesting that performance is a function of a match between
the external problem space and the external goal definition.
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This interpretation matches that of Newell & Simon only when the inter-
nalization of the external problem space is done in a bijective way and the
match between the external space and the external goal remains in the inter-
nal representation. However, this is by no means an obvious conclusion as
any external stimulus is processed and interpreted when internalized. Newell
and Simon (1972) suggest that the problem space structure can be changed
during problem solving, so that the mismatch problem may be solved as part
of ordinary problem solving. A study by Kim and Lerch (1997) examines
this in detail by viewing programming tasks as a search in different problem
spaces. Their results support the idea that mental, internal representations
are important in problem solving.

To summarize, the model by Newell and Simon (1972) cannot uncriti-
cally be assumed to be appropriate for situations where understanding and
integration with pre-existing memory is of interest or where the interest
focuses on match or mismatch between external problem definition and ex-
ternal problem space.

Cognitive fit has another shortcoming with regard to our aims. In the
cognitive fit model, the task performance is the dependent variable that is
of importance. In our suggested approach, the task performance is merely
a measure of the true dependent variable, the domain understanding. Con-
sequently, there is no place for ”understanding” in the cognitive fit model
because the task may or may not require understanding, i.e. the integration
of the description with pre-existing cognitive structures and the ability to
reason about the domain.

This is important since problem solving can be carried out without any
understanding. Newell and Simon (1972) base their approach in computer
science (see also Larkin and Simon, 1987) and draw an analogy from a Turing
machine like their General Problem Solver (GPS) to humans. This problem
solver operates directly on the internal representation without a need for
understanding or integration of domain knowledge. The GPS manipulates
symbols, but does not understand.

11.3 Experimental Design

Both field experiments and laboratory experiments are suitable ways to in-
vestigate the research question. A laboratory experiment has the advantage
of control of the independent and extraneous variables and may thus rule out
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many potential threats to internal validity. It does, however raise potential
problems concerning external validity that a field experiment can address
better. This is a trade-off for which a resolution must be found (Benbasat,
1989). In this case the most important threat to internal validity comes from
subjects themselves and the increased control is more important than exter-
nal validity. Hence, we employ a laboratory experiment. External validity
is gained again through the results of the case study (Chapter 10).

11.3.1 Independent Variables

Since there is a large number of rules and corollaries, empirical verification
of each rule and corollary individually is not feasible. Instead, the effect
of different diagrams wich vary in their conformance to the proposed rules
will be examined. These diagram types include diagrams created without
semantic guidance that violate a large number of rules. A second type will be
a diagram which adheres completely to the proposed rules. A third diagram
type will violate a small number of specific rules. This set of diagram types
covers a large difference in the rules conformance as well as a small difference.

11.3.2 Dependent Variables

We make use of the experimental procedure developed previously by Gemino
(1999). Gemino (1999); Gemino and Wand (2001) use Mayer’s model of
learning (Mayer, 1989). This model suggests that learning outcome is de-
termined by the learning processes, which in turn depends on the learn-
ing material, the instructional method and the learner characteristics. The
learning processes are posited to involve encoding of material from short-
term memory into long-term memory and the organization of material within
short-term memory. Mayer (1989) does not detail how the memory is struc-
tured or how the encoding is done. His model is complementary to the
theory of conceptual networks and spreading activation and explained by
that theory.

Gemino (1999); Gemino and Wand (2001) propose to measure domain
understanding as the dependent variable, not recall or comprehension. This
is in accordance to our understanding of the purpose of conceptual model,
the transfer of knowledge, which is achieved once the interpreter has the
same domain understanding as the model constructor. Gemino (1999) op-
erationalizes domain understanding and learning performance as the ability
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to solve problems in the domain. The instrument to measure this consists of
a model and a set of open ended problem solving questions, questions that
cannot be answered with the information given explicitly in the model but
require deeper domain understanding. This understanding is supposed to
be delivered by the way the domain is modelled. To ensure that subjects
examine all aspects of the model, the instrument includes a set of diagram
comprehension questions. These are also useful to ensure that the infor-
mation content of different diagrams is equal: If there is no difference in
subjects’ diagram comprehension across different diagrams, these are con-
firmed as informationally equivalent. This operationalization has been em-
ployed successfully by Bodart et al. (2001) in the examination of optional
properties in Entity-Relationship Diagrams.

The present research adopts this instrument and modifies it to fit the
specific domains used here. It is expected that the number of correct an-
swers to problem solving questions will be higher (mean) for subjects that
interpreted diagrams conforming to the suggested rules and semantics than
for subjects that interpreted diagrams not conforming to the suggested rules
and semantics.

11.3.3 Control Variables

Additional information in one diagram over that in another can be a serious
confounding variable and mask the effect of the rule conformance of the
different diagrams. This is controlled by a set of comprehension questions
as suggested by Gemino (1999) but also by directly measuring subjects’
perception of useful information content post-test. A new instrument will
be developed for this.

Information is only relevant if it is useful information. Not all additional
information in a diagram is useful for the task and will influence subjects’
performance on problem solving tasks. Hence, the perceived usefulness of
the diagram for the problem solving tasks is assessed post-test. The in-
strument developed by Moore and Benbasat (1991) is used and adapted to
the usefulness of models, instead of usefulness of technology. A similarly
adapted usefulness instrument was adopted by Lim and Benbasat (2000) for
their study of multimedia technologies.

A third possible confound is the ease of interpretation of a diagram.
There may be some graphical variations which makes one diagram easier to
read than others. In other words, for a model which conforms to ontological
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rules, it may not be the rules, but the specific graphical representation and
subsequent ease of interpretation which effects the difference in domain un-
derstanding. To control for this factor, we adopt the ease of use instrument
items from Batra et al. (1990) and Moore and Benbasat (1991). The latter
are adapted to the ease of interpretation of models as used in (Batra et al.,
1990; Gemino and Wand, 2001).

Yet another potential source of confounds and bias is the domain un-
der study. It is conceivable that some domains are inherently simpler or
more familiar to subjects. This can potentially obscure the effect of rule
conformance of the diagram and is controlled for in two ways. First we
measure subjects’ familiarity with the domain as part of the post-test ques-
tionnaire. Second, we employ two different domains. This not only controls
for potential biases but also lends additional external validity to our results.

Finally, the familiarity with and knowledge of UML is a potential con-
founding factor. As the diagrams depict UML models of a certain domain, it
may be easier for subjects with better UML knowledge to interpret the dia-
grams more easily. However, this reduced effort in interpreting the diagrams
should not result in better understanding, as the speed of interpretation and
the quality of interpretation or learning are different aspects. Nonetheless,
this variable is controlled for by using a post-test questionnaire.

Related to the previous influence factor is the effort which subjects ex-
pend on the task. It is conceivable that some subjects spend more effort on
the interpretation and understanding of the diagram. This is in part mit-
igated by the inclusion of diagram comprehension questions which require
the subject to at least visually scan all major areas of the diagram. How-
ever, the effort spent on the actual problem solving task may still differ. We
control for the effort expended by measuring the time that subjects spend
on the different tasks.

The diagram in Fig. 11.1 shows the experimental design with indepen-
dent, dependent and control variables. This diagram should not be confused
with a causal diagram as used in structural equations techniques such as LIS-
REL or PLS. It merely shows independent and dependent variables together
with potential confounds that will be controlled for.
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Figure 11.1: Experimental model showing dependent and independent vari-
ables with control variables

11.4 Instrument Development

Instrument development is done for the independent, dependent and con-
trol variable measurement instruments. For the independent variable, the
diagrammatic models to be varied in the problem solving task have to be
developed and the manipulation checked to ensure that diagrams do indeed
differ in their conformance to the proposed rules.

The dependent variable is measured by a set of problem solving questions
about the domain that is modelled. It must be ensured that these questions
cannot be answered given the information in the model but that they are
sufficiently close to the model so that variations in the model are relevant
to the problem solving task. As there is no pre-determined set of correct
answers, interpretation of the performance scores must be cross-validated
by using multiple raters.

The control variables are assessed using a post-test questionnaire. Items
for this questionnaire must be developed to ensure discriminant and conver-
gent validity for all three control variables (Churchill, 1979; Hufnagel and
Conca, 1994; Moore and Benbasat, 1991; Straub, 1989).
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Independent Variable In this study, we investigate three diagrams which
differ in their rule conformance in two domains. The first diagram (factor
level ”N”) for each domain is taken from textbooks, to ensure that the mod-
eller would use UML in a way that reflects current practice. Models are
selected that are described by their author as reflecting the domain or as
being analysis level models. Specifically, these models are not intended by
their author as products of system or database design. The models selected
are taken from (Fowler and Kendall, 2000) and from (Miller, 2002) and
are discussed in Chapter 9 as Figs. 9.1 and 9.7 respectively. These models
violate a large number of rules.

The models based on an ontological re-analysis of the two domains
(Chapter 9) and constructed according to the proposed rules form the sec-
ond experimental condition for each domain (Figs. 9.6, 9.12). These models
conform to all applicable rules. However, they contain more model elements
and thus their complexity is higher than that of the original models. This
is factor level ”R” of the independent variable.

While the complexity is not considered a direct influence on problem
solving performance, it can influence ease of interpretation and more com-
plex models may require more effort. Even though these influences are being
controlled for, a third experimental condition was designed which is intended
to mitigate the effect of complexity further. The models of Figs. 9.6, 9.12 are
modified to violate a specific rule. All association classes are instead mod-
elled as regular classes with associations to all classes which participated in
the original association class. This violates rule 3 and as a consequence also
rules 1 and 20. The models are shown in Figs. 11.2, 11.3 and form factor
level ”R2”.

A manipulation check ensures that the intended variations of the inde-
pendent variable have indeed the desired effect and that the experimental
treatment conditions are different with respect to the independent variable.
Three graduate students from computer science and MIS departments with
good knowledge of UML were recruited to judge the models. All had used
UML extensively in practical projects before. They were familiarized with
the proposed rules and asked to assess the first two conditions for each do-
main.

The assessments for the initial models (Figs. 9.7, 9.1) (”N”) indicated
between 15 and 20 rule violations in each model. Some discrepancies arose
as some judges disregarded repeated violation in their count while others
did not. Judges were asked to build a list of all violated rules for each model
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element. The lists of violations were found to be in good agreement. A
formal analysis using inter-rater measures such as Cohen’s Kappa was not
performed. The main assessment was that the models violate a large number
of rules and clearly did not conform to ontological semantics.

Similarly, the judges provided lists of violations and a count of violations
for the models in Figs. 9.12 and 9.6 (”R”). The initial assessments showed
some disagreements which were found to be rooted in misunderstandings of
the model or certain rules. Upon further discussion these misunderstandings
were cleared up and all three judges unanimously agreed that these two
models conform to the applicable rules.

The final experimental condition was developed by automatically re-
placing each association class with a regular class that is associated with
the participants of the original class (”R2”). No validation is necessary, as
specific errors are introduced into each model in a tightly controlled way.

Dependent Variable The dependent variable, domain understanding, is
operationalized as problem solving capability within the domain and mea-
sured by a set of open-ended problem solving questions (Bodart et al., 2001;
Gemino, 1999; Gemino and Wand, 2001). The problem solving questions
(see Appendix I) were developed by using (Gemino, 1999) as a guideline.
Care was taken that the questions cannot be answered directly from the
information provided in any of the models. The questions were validated in
two ways.

First, a graduate student in MIS examined the questions and the models
to ensure that the information in the model is insufficient to answer the
questions.

Second, a pilot test was conducted using a limited number of subjects
(17) from the sample pool. Preliminary versions of the models were used.
The task included diagram comprehension as well as problem solving. A
wide variety of answers to the problem solving questions was provided by
the subjects. Subjects provided correct as well as incorrect answers. The
number of answers for a single question ranged from zero to eight and the
answers given varied widely. Together, this indicates that no one correct
answer can be deduced from the models.

While these techniques serve to validate the instrument to measure the
dependent variable, the fact that the problem solving questions are open-
ended questions implies the need to have the responses assessed by multiple
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independent raters and cross-validated. This was done for the pilot-test
and is done for the hypothesis testing using the generally accepted Kappa
measure (Cohen, 1960) which measures inter-rater agreement of categorical
responses (Nyerges et al., 1998) (Sec. 11.8) below. The final set of problem
solving questions used for the hypothesis test can be found in Appendix I.

Control Variables All control variables, except time to perform task, are
measured using a post-test questionnaire. All control variables are measured
by multiple items to ensure convergent validity of the instrument. The post-
test items can be found in Appendix G.

To assess subjects’ UML knowledge, they are asked to rate their UML
knowledge on seven point Likert scale and to estimate the number of months
for which they have used UML in actual projects, outside of the classroom
environment (”UML-A”, ”UML-B”). These two items are not unproblem-
atic (Hufnagel and Conca, 1994). The first measures subjects’ own percep-
tions and interpretation of the extent of their knowledge. The most serious
problem with this measure is the lack of inter-subject comparability. Two
subjects that received the same kind of training in UML may rate their
knowledge different, despite the fact that both would be able to solve the
same problems. The second item can be fraught with recall problems and
interpretation problems. One subject may interpret part-time experience as
full-time experience. The resulting item scores will again lack inter-subject
comparability. To address these shortcomings, an objective method is added.
A set of 19 binary response (yes/no) and multiple choice questions relating
to UML class diagrams are taken from Test Manager (2001), the test man-
ager software to Hoffer et al. (2002), a popular systems analysis textbook
(”UML-1” through ”UML-19”). For purposes of analysis, the scores are
added to form the variable ”UML-TTL”.

Domain knowledge or domain familiarity was also measured using a
multi-item instrument. Subject’s are asked to rate their self-assessed knowl-
edge on a 7-point Likert scale ranging from low to high (”CR-1” for the car
rental domain, ”OP-1” for the order processing domain). Subjects were also
asked whether they had worked in a car-rental company or order processing
department (”CR-2”, ”OP-2”) and so might have gained additional insight
into the processes. While it is safe to assume that everyone would have
ordered an item at one time or another, not everyone may have rented a
car. Therefore we asked subjects whether they had done so previously or
not (”CR-3”), as that can influence their domain familiarity.
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The development of the instrument for measuring ease of interpretation,
usefulness and information content follows the procedure outlined in Moore
and Benbasat (1991). An initial item pool was built in part from exist-
ing instruments. The instruments found in (Moore and Benbasat, 1991;
Gemino and Wand, 2001; Batra et al., 1990) provided items that reflect the
ease of interpretation variable. Items that reflect usefulness are taken from
(Davis, 1989) as employed in (Lim and Benbasat, 2000). Both instruments
are reported as highly reliable. An initial set of items reflecting information
content was developed from discussions with MIS graduate students, as no
previous instrument could be found in the literature. The set of items is
listed in Appendix G.2. Items beginning with EOI are intended to reflect
ease of interpretation, those beginning with USE are intended to reflect use-
fulness and those beginning with INFO are intended to reflect information
content. Items ”EOI-4”, ”EOI-6” and ”EOI-9” are reverse coded items.

In order to ensure reliability, discriminant and convergent validity of the
instrument, two rounds of card-sorting were conducted. The first round used
eight MIS graduate students as judges. These were given the initial item
set printed on 5” x 7” index cards and were asked to sort them into cate-
gories of items that ”go together” and then provide names for the categories
they formed. Judges were instructed not to force items into a category and
instead put it in an ”others” category instead. A researcher was present
to answer any questions about the procedure that the judges might have.
It took judges between 10 and 20 minutes to sort the items. The number
of categories formed varied from two to five and seven out of eight judges
included a category for miscellaneous items they were unable to sort into
other categories but which they explained were unable to form a category
with other items that could not be sorted into an existing category either.

The following list is a list of categories that were named by judges. The
following list has been sorted to make the groupings of similar items more
visible and duplicates have been removed.

• Ease of Use

• User friendliness

• Interpretation and understand-
ing

• Ease of understanding

• Experience with diagram inter-

pretation

• Ease of use of the diagram

• Perceived diagram comprehen-
sibility

• Ease of interpretation and un-
derstanding
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• Diagram interpretation

• Usefulness

• Effect of information on an-
swers

• Helpfulness for answering ques-
tions

• Effectiveness for answering
questions

• Usefulness and Utility

• Helpfulness of diagram

• Usefulness of diagram

• How much the interpretation
helps domain understanding

• Ease of interpretation and use-
fulness

• Representation of Domain

• Objective measurements

• Information provided

• Diagram properties

• Diagram quality

• Descriptions of the diagram

• Quality of information pro-
vided

• Perceived ease of interpretation
of diagram

• How faithfully, closely the dia-
gram represents the domain

• Problems with the diagram

• Personal perceptions of the di-
agram

• Overall evaluation, aesthetics

Moore and Benbasat (1991) recommend assessing inter-rater reliabilities
even at this stage using Cohen’s Kappa (Cohen, 1960). This is problematic
for two reasons. While it provides a statistical measure of agreement, it may
not reflect content validity. Two judges may group the same items together
but these two groups reflect different categories. Only once categories with
a common definition exist, does inter-rater reliability capture common un-
derstanding and therefore content validity. This is not a serious problem as
the list of categories shows that clearly there exists common understanding
as to the domains covered by the instrument. A second reason is the fact
that subjects have varying numbers of categories. On examination of the
results, this is the result of splitting the construct into sub-constructs. E.g.
one judge provided two categories, ”Helpfulness for answering questions”
and ”Effectiveness for answering questions” reflecting the same construct.

Instead of formally assessing inter-rater reliability at this stage, close
examination of the card sorting results reveals that all eight judges created
categories reflecting the intended ease of interpretation, the usefulness or
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helpfulness of the diagram and the information captured in the diagram.
Three categories were formed, ”Ease of Interpretation” (EOI, category 1),
”Usefulness for Task” (USE, category 2) and ”Information Content” (INFO,
category 3). The task relates to the problem solving tasks in the study, the
dependent variable.

In the second round of card-sorting, we presented 15 judges with the
three categories and the same initial set of items. These 15 judges include
seven of the original eight judges and eight additional MIS graduate stu-
dents. Judges were provided with the category labels and were asked to sort
the items, printed on 5” x 7” index cards, into the categories. Judges were
instructed not to force items into categories if they felt the item did not fit.
Instead, judges were asked to put such items aside. For the following analy-
sis of reliabilities, this category was labelled ”Others” (category 4). Pairwise
inter-rater reliabilities were computed using Cohen’s Kappa (Cohen, 1960)
using the procedure in (Baron and Li, 2001)4. The average reliability was
0.6636 with a minimum of .3857 and a maximum of .9371 (Appendix K.1).
Nyerges et al. (1998) give the following interpretation of this parameter:

Kappa Interpretation

< 0.4 poor agreement

0.4 - 0.8 moderate agreement

> 0.8 Good to perfect agreement

Moderate agreement at this stage requires refinement of the items. Two
kinds of items were excluded at this stage:

• Items that showed great variability in the categorization among judges.
These items are ambiguous with respect to the underlying construct
that they reflect. Different judges interpret these items as reflecting
different constructs. Items ”EOI-5”, ”INFO-3”, ”INFO-5” fall into
this class of items.

• Items that were rated as category four, ”others”. These are items
that the judges felt did not reflect any of the given constructs. Items
”USE-1”, ”EOI-4”, and ”EOI-12” fall into this class of items.

Items that were found to be ambiguous with respect to the construct they
reflect by some judges were also rated as not reflecting any construct by other

4All statistical analyses for this research were conducted using the statistical software
R (Version 1.70) (Ihaka and Gentleman, 1996).
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Construct Items

Ease of Interpretation EOI-1, EOI-2, EOI-3, EOI-6, EOI-7, EOI-8,
EOI-9, EOI-10, EOI-11

Usefulness USE-2, USE-3, USE-4, USE-5, USE-6

Information Content INFO-1, INFO-2, INFO-4

Table 11.1: Item categorization after second round of cardsorting

Concept α

Ease of Interpretation .9366

Usefulness .9121

Information Content .5394

Table 11.2: Scale reliabilities determined by Pilot-Test (Cronbach α)

judges, whereas the assessment that items did not reflect any construct was
universal across judges. Table 11.1 shows the categorization of the items
after this step.

All three control variables are satisfactorily reflected by three or more
items (Moore and Benbasat, 1991; Straub, 1989). The Kappa values for this
set of items were assessed across judges and found to average .8294 with a
minimum of .4769 and maximum of 1.000 (Appendix K.2). This shows good
to excellent agreement across judges.

11.5 Pilot Test

In the next step, this instrument was pilot-tested. The primary purpose is to
assess the convergent and discriminant validity of the Ease of Interpretation,
Usefulness and Information Content scales. The pilot test used 14 subjects
from the sample frame and was conducted using preliminary versions of the
UML models. Each subject was presented with two different domains and a
post-test was administered after each domain. For the purposes of assessing
the reliability and validity of the control instrument the two observations for
each subject are treated as independent, yielding a total of 28 observations.
Scale reliability was assessed using Cronbach’s α coefficient (see Appendix
K.3). The results are shown in Table 11.2.
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The reliabilities are excellent for the Ease of Interpretation (α = .9366)
and Usefulness (α = .9121) constructs and adequate to good for the In-
formation Content construct (α = .5394). The result for the Information
Content is likely caused by the fact that the last construct is measured on
a three item scale, which is generally accepted as the lower bound for the
number of items per construct5.

A confirmatory factor analysis (maximum likelihood extraction with
varimax rotation) was conducted to assess the convergent and discriminant
validity of the scales (Appendix K.3). Due to the very small sample size,
the samples of the two domains were combined to yield n = 28 observa-
tions. Hence, the observations are not completely independent, even though
subjects responded to two different diagrams. For this reason, and the fact
that even n = 28 observations is a small sample size, the following analysis
cannot provide firm statistical inferences and are intended to be indicative
only.

The rotated factor loadings are shown in Table 11.3. The variance ex-
plained by all three factors is 0.687. A χ2 test of the number of factors
required showed a non-significant p-value of .518 for a test statistic of 86.81
with 88 degrees of freedom. Following the procedure of Harman (1976), a
two-factor solution was found to have a p-value of .156 while the single-factor
solution had a p-value of .001. Statistically this would indicate a single fac-
tor solution. However, Harman (1976) warns that the χ2 test yields too low
an estimate for the number of factors on small data sets. He also cautions
against the sole use of statistical arguments for the number of factors.

Table 11.3 shows clearly the ”usefulness” construct as the first factor
with good convergent validity (high loadings of items on that factor, > .65)
and discriminant validity (low cross-loadings of items onto other factors,
< .35). The other two constructs are problematic. Items ”EOI-7”, ”EOI-8”
and ”EOI-10” form a clear and distinct factors, but items ”EOI-2”, EOI-
3”, and ”EOI-6” cross-load heavily onto a third factor. Items ”EOI-1” and
”EOI-9” load onto this third factor altogether. This would suggest that
Ease of Interpretation is a multi-dimensional construct. Similarly, the items
intended to reflect Information Content do not clearly form a single factor.

5The α value for the scale reliabilties using the responses for the first domain (the first
set of 14 observations) is .0360 while, when using the responses for the second domain
(the second set of 14 observations, from the same subjects), it is .7286. This seems to
suggest differences in the two domains which affect subjects’ interpretation of the post-test
questionnaire items. This effect will be revisited when analyzing the final data.
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Item Factor1 Factor2 Factor3

USE-2 0.747 0.244 0.142

USE-3 0.634 0.236 0.221

USE-4 0.813 0.164 0.211

USE-5 0.872 0.323

USE-6 0.806 0.281

EOI-7 0.357 0.837 0.130

EOI-8 0.382 0.780 0.403

EOI-10 0.432 0.749 0.397

EOI-3 0.334 0.630 0.649

EOI-2 0.244 0.622 0.690

EOI-6 0.529 0.462

EOI-11 0.481 0.382 0.264

EOI-1 0.406 0.244 0.678

EOI-9 0.220 0.233 0.628

INFO-1 0.505 0.530

INFO-2 0.328 0.720

INFO-4 0.129 -0.598

Table 11.3: Rotated factor loadings, pilot-test (values < .1 omitted)

However, due to the very small sample size, no firm statistical inferences
can be drawn. A final confirmatory factor analysis is performed on the larger
data set from the main study (see Sec. 11.8).

11.6 Subjects

The target population for this study is the set of business analysts partici-
pating in the analysis stage of an IS project. These are distinct from system
analysts in that they attempt to understand the business, not the IS. Typ-
ically business analysts will have knowledge both of the business and the
information systems aspect, although the business knowledge is not usually
as deep as that of end users nor is the IS knowledge as deep as that of system
analysts or system designers.

The sample frame for this study comprises undergraduate students in
their fourth year. The subjects were drawn from three groups of students,
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forming three groups of subjects. This is controlled for by including this
variable (”Group”) as a factor in the following analysis. One group of sub-
jects has been drawn from a course in system analysis offered at the business
school (factor level ”3”) while the others have been drawn from two sections
of a system analysis course offered at the department of computer science.
The latter two groups were enrolled in the spring section (factor level ”C”)
and the summer section (factor level ”C2”) of this course. Both sections
were taught by the same instructor and subjects from both sections partic-
ipated in the study after the same amount of material had been covered in
either section.

All subjects had been exposed to the UML syntax through the systems
analysis course materials and lectures. Student’s knowledge of UML and
experience in applying UML are two control variables in the following anal-
ysis (”UML.TTL”, ”UML.A”). Student’s participation in the study was
voluntary and entirely anonymous. Students did not receive course credit
for participation nor was credit withheld if students chose not to participate.
The rationale for the study, theory and findings were made available to stu-
dents after participating in the study. Subjects performed the experimental
task in small groups of 5 to 6 students each, located in a small conference
room to reduce any distractions.

11.7 Design and Procedure

The experimental design included a within-subjects factor as it was felt
that the number of subjects that could be gained would not be very large.
The factor ”Domain” with the levels ”CR” (car rental) and ”OP” (order
processing) was chosen as the within-subjects factor. This ensures minimal
carry-over and learning effects, which would have been possible had the
factor ”Rules” (rule conformance of diagrams) been chosen as within-factor.

Subjects were randomly assigned to one of three diagram types differ-
ing by rule conformance (factor ”Rules” with levels ”N”, ”R”, and ”R2”).
Each subject was given a questionnaire which included two diagrams and
associated comprehension and problem solving questions. The two diagrams
depicted the two domains (”Domain”) and the order of the diagrams was
varied randomly between subjects to control for and exclude potential biases
from carry-over or learning effects. Subjects were asked to record the current
time on various pages on the questionnaire. A wall clock was provided for
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this purpose. Subjects were instructed not to revisit sections of the ques-
tionnaire once they were completed. For each domain, the questionnaire
included post-test questions measuring the control variables pertaining to
each diagram or domain. At the end of the questionnaire were the questions
measuring UML knowledge.

11.8 Results

Once data was collected, the scale reliabilities for the control variables were
checked again (Sec. 11.8.1) and the inter-rater reliability for the coding of
the problem solving responses was assessed (Sec. 11.8.2). Then, a confir-
matory factor analysis was conducted on the items for the control variables
(Sec. 11.8.3). Finally, an ANCOVA procedure and a Linear Mixed Effects
Model (LME) was used to test the hypotheses (Sec. 11.8.4).

11.8.1 Scale Reliabilities

The scale reliabilities for the control variables Ease of Interpretation, Useful-
ness, and Information Content were assessed using Cronbach’s α measure.
Table 11.4 shows the values for the α coefficient, for n = 53 responses for
each domain. The first columns shows the values for the Car-Rental domain,
the second column shows the values for the Order-Processing domain. This
analysis confirms excellent scale reliabilities for the Ease of Interpretation
and Usefulness measures with α measures greater than .9, while the Informa-
tion Content measures still show adequate to good reliabilities (alpha ≈ .65).
This confirms the reliabilities assessed by the pilot-test (Sec. 11.5). Again,
the lower result for the Information Content is likely a result of it being a
3-item scale. With this full data set, the values for both domains are very
similar. Hence, the differences between the two domains exhibited in the
pilot test (Sec. 11.5) are likely a consequence of small sample size.

11.8.2 Interrater Reliabilities

The problem solving questions measuring the dependent variable (see Ap-
pendix I) were open ended questions; subjects were asked to provide as many
answers as they could think of. Therefore, no a-priori list of correct answers
was available against which to check the given answers. Two graduate stu-
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Domain CR OP

Ease of Interpretation .9456 .9234

Usefulness .9176 .9243

Information Content .6297 .6897

Table 11.4: Scale reliabilities determined by Pilot-Test (Cronbach α)

dents with knowledge of the two domains were asked to rate the answers as
correct or incorrect and to assess the total number of correct answers for
each question for each subject.

Initially, the two raters each received 15 completed questionnaires and
were asked to compile a list of correct answers. These lists were exchanged
between the two raters who then combined their lists of correct answers.
They each revisited the completed questionnaires they had rated to reflect
any differences in assessment due to the combination of correct answer sets.
They then independently rated the remainder of the questionnaires.

The final inter-rater agreement over all subjects was assessed using Co-
hen’s Kappa (Appendix K.4). The agreement was computed for the number
of correct answers that each rater assessed for each problem solving question
(typically ranging from 0 to 5)6. The average Kappa value for 0.9138 with
a minimum of 0.7872 and a maximum of 1.000 showing excellent agreement
between the two raters (Nyerges et al. (1998)). For further analysis, the
average of the two raters’ scores was used (variable ”Prob”).

11.8.3 Convergent and Discriminant Validity

Convergent and discriminant validity was assessed using confirmatory factor
analysis (maximum likelihood extraction with varimax orthogonal rotation)
by computing a 3-factor solution. The rotated factor loadings for each do-
main are shown in tables 11.5 and 11.6.

For the car rental domain, the variance explained by three factors is .686.
The table clearly shows the Usefulness construct as a single factor with very
little cross-loading of items onto other factors. However, neither the Ease

6A more exact method would rate the assessment of both raters for each answer given,
instead of the number of correct answers. While it is possible that by rating the number
of correct answers disagreements between raters could cancel out, the sharing of lists of
correct answers ensures adequate agreement.

206



Item Factor1 Factor2 Factor3

CR-EOI-1 0.792 0.213 0.424

CR-EOI-2 0.755 0.279 0.488

CR-EOI-3 0.767 0.174 0.533

CR-EOI-6 0.680 0.101

CR-EOI-7 0.490 0.206 0.765

CR-EOI-8 0.411 0.199 0.692

CR-EOI-9 0.662 0.168

CR-EOI-10 0.632 0.306 0.575

CR-EOI-11 0.613 0.176 0.372

CR-USE-3 0.343 0.796 0.183

CR-USE-4 0.355 0.810

CR-USE-5 0.121 0.726 0.433

CR-USE-6 0.350 0.795 0.108

CR-USE-2 0.315 0.563 0.586

CR-INFO-2 0.168 0.605 0.657

CR-INFO-1 0.360 0.316 0.201

CR-INFO-4 0.164 0.395

Table 11.5: Rotated factor loadings, car rental domain (values < .1 omitted)

of Interpretation nor the Information Content factor is clearly defined. The
items intended to reflect Ease of Interpretation appear to express two factors,
with items ”CR-EOI-7” and ”CR-EOI-8” heavily cross-loading. The items
intended to reflect Information Content (”CR-INFO-1”, ”CR-INFO-2” and
”CR-INFO-4”) do not appear to show any coherent factor structure.

A very similar result is obtained for the order processing domain. Here,
the Ease of Information items again load heavily and even more clearly
on two distinct factors (”OP-EOI-7”, ”OP-EOI-8”, ”OP-EOI-10”). The
Usefulness items clearly load on a single factor, again with very little cross-
loading, while the Information Content items do not reflect any clear factor
structure.

Generally, the Ease of Interpretation and Usefulness constructs are ad-
equately represented by the developed item set. The main problem is that
the Information Content measure does not show convergent validity. The
Ease of Interpretation construct also exhibits item loadings that are indica-
tive of two sub-factors, with items EOI-1, EOI-2, EOI-3, EOI-6, EOI-9, and
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Factor1 Factor2 Factor3

OP-USE-2 0.720 0.206 0.215

OP-USE-3 0.784 0.335 0.295

OP-USE-4 0.764 0.155

OP-USE-5 0.876 0.185 0.201

OP-USE-6 0.894 0.174

OP-INFO-2 0.587 0.336 0.245

OP-INFO-1 0.411 0.266 0.254

OP-INFO-4 0.382

OP-EOI-1 0.154 0.822 0.299

OP-EOI-2 0.258 0.839 0.286

OP-EOI-3 0.208 0.772 0.381

OP-EOI-6 0.547 0.173

OP-EOI-9 0.111 0.600

OP-EOI-11 0.346 0.522 0.389

OP-EOI-7 0.256 0.384 0.885

OP-EOI-8 0.195 0.448 0.653

OP-EOI-10 0.291 0.443 0.657

Table 11.6: Rotated factor loadings, order processing domain (values < .1
omitted)
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EOI-11 forming one factor while items EOI-7, EOI-8, and EOI-10 forming
another factor. Referring to the items making up this factor, it appears pos-
sible that there is a difference between the ease of understanding a diagram
and the ease of interpreting a diagram.

However, what is of primary interest for this study is to control for
usefulness (Sec. 11.9): While additional information may or may not be
present, it is not relevant if not found useful for the task. Bartlett factor
scores are computed for further use of these factors as covariates for the linear
models used in the next section (variables ”Interpretation”, ”Usefulness”,
and ”Information”).

11.8.4 Hypothesis Testing

Different statistical techniques, such as ANOVA or regresseion analysis, can
be brought to bear on the model shown in Fig. 11.1. Due to the variables rule
conformance and group being 3-level factors, a t-test for difference of means
cannot be used. While a regression analysis would allow the estimation
and significance tests of the continuous control variables, such as ease of
interpretation and usefulness, the aim of this study is to identify possible
differences in problem solving behaviour due to the different levels of rule
conformance. All other variables are considered control variables, and are
not of primary interest in this study. Due to this reason, an analysis of
variance with continuous co-variates is appropriate. As the experimental
model includes a within-subject component, a repeated measures, mixed-
effects ANCOVA is appropriate (Shavelson, 1996). The null-hypothesis of
this study is that the means of problem solving behaviour across all three
levels of rule conformance are identical. Rejection of this hypothesis at
the level of significance generally accepted (.05) then indicates that rule
conformance does indeed lead to differences in problem solving capabilities.
Control variables are included in order to explain variance in the data, but
their parameters are not of interest, so that a regression analysis is not
required. Further, as the means in Tab. 11.7 clearly show the differences,
a Tukey (1977) or Scheffe (1959) post-hoc test for specific means is not
necessary.

While the chosen ANCOVA approach is suitable also for within-subject
experimental designs as in the present case, the more recent linear mixed
effects (LME) approach (Pinheiro and Bates, 2000) can complement this
technique. In contrast to ANOVA and ANCOVA techniques, LME does
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Figure 11.4: Scatterplots by group and domain
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not maximize the explained variance of the model, but instead computes
a maximum likelihood estimate of the model parameters, i.e. the group
means of the factors and regression coefficients fo the covariates. The LME
approach provides ultimately the same information as the ANCOVA, but
uses a different statistical method. Its use in this research serves to provide
additional validation of the results, a multi-method approach to data analyis
intended to increase the robustness of the statistical results.

Further, for models involving a larger number of fixed and random ef-
fects, as is the case in the present model, the linear mixed effects modelling
technique allows more expressive modelling. The advantage of LME mod-
elling is the ability to expressly account for random effects such as experi-
mental subjects in the present within-subjects design, and to model nested
structures of such blocks. LME can also help deal with asphericity of data,
non-uniformity of errors across factor level, as potential sources of aspheric-
ity can be included as random effects. The main text of this thesis provides
the standard ANCOVA approach while the LME approach can be found in
Appendix J.3. Post-hoc validation of model assumptions for both ANCOVA
and LME can be found in Appendix. J.2.
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Rule Conformance Domain Subject Group

No

Rules

(N)

Rules

(R)

Partial

Rules

(R2)

Results Car

Rental

(CR)

Order

Proc.

(OP)

Results Business

Stu-

dents

(3)

Comp.

Science

Stu-

dents 1

(C)

Comp.

Science

Stu-

dents 2

(C2)

Results

Means
(SD)

Means
(SD)

Means
(SD)

F
(sig.)

Means
(SD)

Means
(SD)

F
(sig.)

Means
(SD)

Means
(SD)

Means
(SD)

F
(sig.)

n=16 n=17 n=20 n=53 n=53 n=14 n=26 n=13

Problem

Solving

Perfor-

mance

1.4558
(0.6720)

1.8437
(1.003)

1.3996
(0.6439)

4.0583
(.021)

*

1.6019
(0.8648)

1.5162
(0.7388)

0.4422
(.508)

1.9250
(0.9406)

1.3313
(0.5736)

1.6203
(0.9002)

6.687
(.002)

**

Table 11.7: Main effects of rule conformance, domain and subject group on problem solving performance, measured
in avg. number of correct answers per question
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Before any statistical methods are applied, the data is examined visually
and summarized in Table 11.7. Note that Ease of Interpretation, Usefulness
and Information Content are derived factor scores. These are by definition
zero-centered. Since factor scores were computed independently for each
domain, there is no difference in the mean of these variables between the
two domains.

Fig. 11.4 shows all data points plotted against subjects with indications
of the rule conformance of the diagram (”N”, ”R”, ”R2”). The observa-
tions are grouped by domain and subject group. No general tendencies or
abnormalities can be visually identified.

An initial plot of the data shows the main effects of and interaction
effects between the major factors of the model. Fig. 11.5 shows box and
whisker plots (Tukey, 1977) of the following main effects. In the top dia-
gram, it shows the main effect of rule conformance of the diagram (”Rules”)
on problem solving performance; in the center diagram it shows the main
effect of the domain (”CR” = car rental, ”OP” = order processing) on prob-
lem solving performance; in the bottom diagram it shows the main effect of
the group of subjects (”3” = Business undergraduates, ”C”, ”C2” = first
and second group of computer science students) on problem solving perfor-
mance. The domain does not appear to have an effect. Fig. 11.6 shows the
interaction effect of rule conformance (”Rules”) and the domain on problem
solving performance, while Fig. 11.7 shows the diagram and group interac-
tions.

These plots suggest that the domain may not be relevant in the sta-
tistical model as the two domains follow the same pattern with respect to
problem solving performance by rule conformance. The difference in prob-
lem solving performance between the two domains is very small, compared
to the effect size of rule conformance. However, the second interaction plot
(Fig. 11.7) shows that the first group of computer science subjects did not
follow the general pattern of both the business students and the second
group of computer science students. That pattern indicates an increase in
problem solving performance for the diagram which conforms to all rules,
while the problem solving performance for the two other types of diagram
appears lower.

These visually suggested effects are analyzed statistically by the AN-
COVA procedure and Linear Mixed Effects (LME) modelling7. The fol-

7The statistical analysis is done using the R statistics package with the procedure shown
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Figure 11.5: Box plots showing main effects of Rules (top), Domain (middle)
and Group (bottom) on problem solving performance.
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lowing paragraphs show the ANCOVA analysis. The LME analysis can be
found in Appendix J.2 and confirms the ANCOVA results.

ANCOVA The ANCOVA model is set up to include the factors ”Rules”,
”Group” and ”Domain” as well as their first order interactions and further
includes the following control variables as continuous covariates without in-
teraction effects:

• UML.TTL: Total score on the UML assessment questions

• UML.A: Self-assessed UML knowledge (7-Point Likert)

• SelfAsssess : Self-assessed domain knowledge (7-point Likert)

• Time: Time taken for problem solving

• Comp: Average comprehension score

• Interpretation: Ease of interpretation factor scores

• Usefulness: Usefulness factor scores

• Information: Information content factor scores

Table 11.7 shows the results of the ANOVA for the main effects of ”Rules”,
”Group” and ”Domain”. There is a statistically significant difference in the
means between different levels of rule conformance (p = .21) confirming the
visual identification of the effect. The mean for the fully rule conforming
diagrams was 1.8437 compared to 1.4558 and 1.3996 for the non-conforming
and partially conforming diagram. This indicates a statistically significant
increase in problem solving performance. The domain did not have a sta-
tistically significant effect, with means of 1.60 and 1.51 for the two domains
(p = .51). There was a main effect of group on problem solving performance
(p=.002).

The full results below also indicate a highly significant interaction ef-
fect of ”Rules” and ”Group” (p=.002), which confirms the effect observed
visually in Fig. 11.7. This will be discussed further below.

Error: Subject

in Appendix K.7.
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Df Sum Sq Mean Sq

Rules 1 1.3804 1.3804

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Rules 2 3.574 1.787 4.0583 0.020819 *

Domain 1 0.195 0.195 0.4422 0.507916

Group 2 5.889 2.944 6.6868 0.002030 **

UML.TTL 1 5.002 5.002 11.3609 0.001140 **

UML.A 1 0.006 0.006 0.0145 0.904564

SelfAssess 1 1.040 1.040 2.3624 0.128095

Time 1 1.035 1.035 2.3507 0.129029

Comp 1 1.215 1.215 2.7591 0.100473

Interpretation 1 0.021 0.021 0.0485 0.826308

Usefulness 1 0.352 0.352 0.8000 0.373691

Information 1 1.054 1.054 2.3934 0.125655

Rules:Domain 2 0.355 0.178 0.4032 0.669475

Rules:Group 4 8.157 2.039 4.6314 0.002004 **

Domain:Group 2 1.646 0.823 1.8692 0.160683

Residuals 83 36.546 0.440

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The goodness of fit of the model is assessed as the ratio of explained
versus total variance. This ratio is R2 = .4582 which suggests that the
explanatory power of the model is adequate8. The data also shows that a
number of covariates do not have any explanatory power (low Sum Sq) and
are not statistically significant.

The estimated improvement in problem solving performance for the rule
conforming diagrams is 0.388 (average correct answers per question). This
represents a 26% increase in problem solving performance. The performance
for the similar diagrams violating only one rule decreased by about 0.056
(average correct answers per question) but this effect is not statistically
significant. While the effect of total UML knowledge (UML.TTL) is sta-
tistically significant, the small magnitude of the parameter (.089) makes it
doubtful that it is practically relevant.

8
R

2 ranges from 0 to 1. An R
2

> .7 is considered excellent.
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A further, extended, analysis using ANCOVA techniques and Linear
Mixed Effects Modelling can be found in Appendix J. A more parsimonious
model was derived using step-wise inclusion of variables (Appendix J.1. The
LME analysis is shown in Appendix J.2 and confirms the ANCOVA re-
sults in this chapter. A linear mixed effects allows more explicit modelling
including fixed and random factors, such as occur in this within-subjects
design. Model assumptions of ANOVA and the LME model are tested in
Appendix J.3 and found to hold for the data.

Equivalence of Diagrams One of the main assumptions is that the mod-
els must be informationally equivalent with respect to information relevant
to the task. Otherwise, the additional information could lead to improved
problem solving performance. This assumption is assessed by analyzing the
effect of the different model types on the factors Information Content, Use-
fulness and Ease of Interpretation. This is done using an ANOVA procedure
including ”Domain”, ”Group” and ”Rules” together with second order in-
teractions as independent variables (Appendix K.8). Detailled results are
shown in Appendix J.4.

The results shows that there appears to be an effect of the subject group
on the perceived Information Content. However, this is uncertain due to
the measurement difficulties identified above. In any case, this effect on
Information Content does not appear to have an effect of Usefulness for
problem solving. In fact, none of the three examined factors had any effect
on Usefulness. There was a significant effect of rule conformance of Ease of
Interpretation. The Ease of Interpretation for ”R” diagrams (µ = −.4571,
σ = 1.103) was significantly less than that for ”N” (µ = .3111, σ = 1.008) or
”R2” (µ = .1400, σ = .9517) diagrams. Diagrams conforming to ontological
semantics and rules are harder to interpret. However, ease of interpretation
does not have a significant effect on problem sovling performance. This rules
out an interpretation of Ease of Interpretation as a mediator variable.

In conclusion, the results of the present analysis justify the assumption
of equivalence of the diagrams for the purposes of the problem solving task.

11.9 Discussion

Overall, the results confirm the hypothesis and underline the benefits of
the ontologically derived modelling rules. Both the ANCOVA and LME
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analyses identified the same significant influence variables, which are highly
significant in the ANCOVA analysis and approached significance in the LME
analysis. The detected effect sizes are not only statistically significant but
large enough to be practically significant. The effect of modelling with
ontological rules leads to approximately a 26% increase in problem solving
performance.

Another important aspect indicated by the results is the lack of any
significant difference between the performance on diagrams that completely
lack ontological rules and diagrams that follow all but a few specific such
rules. While this effect was only shown for the specific set of rules vio-
lated in condition R2 in this study (violating the representation of mutual
properties by association class attributes), it can possibly point towards in-
dications that the benefit derived from rule conformance may not be a linear
phenomenon, i.e. that the benefit may only be realizable by a fully confor-
mant model. At the very least, this finding indicates that there may exist
certain threshold levels of rule conformance for certain rules or sets of rules.
In terms of the underlying cognitive network theory, this implies that the
entire model may have to match the mental network in order to be properly
integrated.

It further appears that UML knowledge, as assessed by the compre-
hensive post-test questionnaire (”UML.TTL”) also plays a partial role in
explaining the derived benefits, although the estimated effect size (≈ .09)
does not appear to be practically significant. The self-assessed UML knowl-
edge (”UML.A”) did not appear to have any impact, which suggests that it
differs significantly from the objectively measured UML knowledge.

When examining possible differences in the Ease of Interpretation, Use-
fulness of the diagrams or the Information Content, only an effect on the
Ease of Interpretation could be found. It appears that diagrams conforming
to rules are easier to interpret than diagrams that do not conform to any of
the rules. However, there is also a difference between the fully conformant
diagram (”R”) and the one which violates a few rules only (”R2”). This dif-
ference may stem from the lack of the ternary association symbol (diamond
shape symbol). This reduction in the number of UML constructs used in the
model may have influenced the Ease of Interpretation assessment. However,
the original diagrams (”N”) did not make use of this construct either, so
this explanation does not tell the whole story.

Chapters 9 and 10 showed that following the proposed rules and ad-
hering to the proposed ontological semantics tends to add information to
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the model. It is possible, and indeed the analysis has shown, that this in-
formation makes the resulting models more difficult to interpret. However,
this increased difficulty of interpretation has no impact on the domain un-
derstanding. Any claim that the rules should not be followed as they lead
to more difficult to interpret models, fails to take into account the purpose
of the model, as ultimately it must convey domain understanding, not nec-
essarily be easy to interpret. Hence, the empirical results of this chapter
confirm the argument made in Chaps. 9 and 10 that an initial diagram
should be built which fully conforms to the proposed semantics. Only in a
second, explicit, transformation step, may information be removed or rules
violated to make the model e.g. better suited for database implementation.

The most interesting phenomenon is the interaction of the rule confor-
mance of the diagrams with the group that subjects are drawn from. No
outliers are present in the data which could account for this, suggesting
that a deeper explanation is needed. One could have expected differences
between the computer science subjects and business student subjects, be-
cause of their different educational history. Instead differences arose between
two groups of computer science student subjects. This is all the more sur-
prising as they had received the same instructions in UML and were taught
by the same instructor. Subjects were recruited after the same stage in
their UML instruction. Possible explanations are motivational. The second
set of subjects were taken from a summer semester course and may have
been more motivated to perform in the study. As the university that sub-
jects were drawn from does not generally offer summer courses, it is possible
that these were highly motivated students making use of the offering of that
course.

A test for an influence of subject group on time spent on the task sup-
ports this explanation (Appendix K.8). Subjects in group ”C” spent about
2.5 minutes less on the problems than the average. However, this did not
translate into a significant effect of time on problem solving performance.

The effect of subject group on UML knowledge was also examined in
search for an explanation. Both computer science student subject groups
actually had significantly lower scores on the UML knowledge instrument
than the group of business students. However, there was no significant sta-
tistical difference between the two, ruling out differences in UML knowledge
as a possible explanation.
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11.10 Potential Limitations

Generally, potential limitations of an empirical study can arise out of threats
to internal, external or statistical validity. Internal validity may be compro-
mised due to factors outside the model influencing the dependent variable.
In order to minimize the potential for this, subjects were randomly assigned
to a domain. While the study attempted to control for a number of poten-
tial factors that could influence the problem solving outcome, the model fit,
which is only average, indicates that factors other than those examined here
may play a role.

Another issue is the statistical power of the experiment. (Howell, 1997)
suggests that in order to detect a medium effect size at the 0.05 significance
level requires about 30 subjects. The size of the effect in our study was
practically significant and with 53 subjects clearly detectable, the ANCOVA
model was clearly significant and the same factors approached significance
in the LME model.

A third potential issue is the measurement instrument itself. The in-
strument is derived from previous work (Gemino, 1999; Bodart et al., 2001)
and has been re-validated. One potential problem may stem from the fact
that the convergent and discriminant validity for the Information Content
control variable was marginal. However, the main confounding effect should
not have come from different information content between diagrams but
from differences in the perceived usefulness of the various diagrams. The
usefulness scale on the other hand was derived from Moore and Benbasat
(1991) and re-validation showed excellent validity.

External validity may be threatened by a potential lack of generaliz-
ability from subjects to target population. As outlined above, the target
population profile roughly matches that of the experimental subjects, but
any generalizations beyond this target population should only be made with
great care. The results also clearly show differences in the way that different
groups respond to the different diagrams. This is all the more difficult to
explain as the difference was not between computer science students and
business students but between the two groups of computer science students.
Future research must aim to find a more homogeneous sample set which
is also a better representation of the target population. Subjects should
be participants in actual IS development projects in actual organizations.
However, the resource demand required for such a study may make this
infeasible.
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Chapter 12

Contributions

This thesis has assigned ontological real-world semantics to UML. While it
is not the first work to assign semantics to UML, it is the first to do so not by
translating UML to other, more formal languages. Instead, we have mapped
UML elements to elements of the real world, such as found in business and
organizational domains. For example, things have been mapped to objects
and mutual properties to attributes of association classes. Conversely, UML-
events have been mapped to state transitions, etc.

This mapping can serve as the first step towards a commonly accepted
meaning for UML constructs in business and organizational modelling and
can contribute to a better understanding of conceptual models. As UML is
an evolving language, this result is relevant from a theoretical perspective
as it can guide that evolution of the language. For the practitioner, this
creates a common language that business analysts can employ and with
which IS and software designers are immediately familiar, helping to bridge
the often wide gulf between the two. This enables all participants of an IS
development project to realize the full potential of conceptual models as a
communication medium in reasoning about the problem domain.

Furthermore, this is not the first study to examine UML from the per-
spective of the BWW-ontology. However, it is the first study to do this
constructively. Previous studies such as (Opdahl and Henderson-Sellers,
2002; Dussart et al., 2002) pointed out weaknesses by examining the map-
ping. This research goes beyond pointing out the ontological defects and
instead suggests rules and guidelines for the modeller and analyst which al-
leviate these problems and enable the use of UML for conceptual modelling
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of real-world domains. These rules not only show how certain aspects of the
real-world domain are to be modelled in UML, but also guide the modeller
to seek out and include additional information in the model. This latter
effect is demonstrated by the two examples in Chap. 9 and the case study
in Chap. 10.

For the academic community, this study shows a way to extend the idea
of ontological evaluation in a more constructive way. It provides solutions
to possible ontological defects found during an evaluation. For example, one
could simply argue that operations and methods are ontologically redundant.
Yet, the fact that they play a prominent role in object-oriented techniques
makes it clear that a consistent way of modelling them must be found.

For the practitioner, the rules and guidelines developed are immediately
accessible and can be put to practice. They are operationalizable and specific
to enable their use in real modelling and analysis projects. The analysis of
UML and derivation of rules provides a practical and detailed guide to using
UML in business analysis. This is underscored by the fact that the majority
of the developed rules can be expressed by the OCL language. This adds
support for the modeller by reducing any ambiguitites.

The formal aspect of this research answers the call for more meta-model
based research (Rosemann and Green, 2002; Davies et al., 2003). Formaliza-
tion serves to make the results unambiguous and operationalizable in CASE
tools, so that automated support can be provided to the conceptual mod-
eller. For the practitioner, such tool support may be useful in guiding the
modelling process, rather than applying the rules to the final model and
analyzing the result after the process. The case study shows this processs.
The initial model by the project team was not known to the researcher and
an independent model was developed by following the guidelines provided
by the rules. The size and complexity of the models also shows that CASE
tool support is useful for such models.

Formalization and the use of OCL therefore furthers the practical rele-
vance of this investigation. Potential CASE tools incorporating the proposed
semantics can be used to make this work easily accessible to practitioners
without having to understand the underlying theory.

For the academic community, it shows the value and the usefulness of
language meta-model for ontological analysis and the assignment of seman-
tics. Using the meta-model, our results are also able to better guide the
development of the language syntax to encompass conceptual modelling re-
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quirements. As the official UML standard includes formal constraints in
OCL on meta-model elements, it is possible to add the proposed rules and
constraints to this set.

We have shown that the general process of our analysis is applicable to
other languages. Rules relating e.g. to objects, attributes, and operations
are generalizable to other object-oriented langauges. Some of the more spe-
cific rules and OCL expressions relate to idiosyncrasies of UML, e.g. the
treatment of signal receptions, actions, and events.

However, this clearly shows that other languages cannot only be evalu-
ated ontologically, but that prescriptive modelling rules can be derived from
such an analysis. The methodology involving the transfer of ontological as-
sumptions by virtue of a mapping is universally applicable to all languages.
This study is a demonstration using UML as an example, as it is the most
widely known object-oriented modelling language.

The two examples and the case study provided in this thesis serve to
demonstrate the applicability of the results. The two examples show the
difference between models with and without ontological semantics. It shows
that UML models, even though labelled conceptual or analysis model by
the modeller, in fact do not truthfully represent the real world. They carry
hidden, implicit assumptions, a prime example of this is the alternative
interpretation of the order processing example in Chapter 9. The examples
and the case study show that models constructed with the proposed mapping
and rules include more information than is needed for the IS design stage.
It is this contextual information that can help understanding the domain.
Also, both case study and the examples show that the level of detail is
increased by following the proposed rules. For example, the initial model by
the project team collapses a number of different attributes into a single class,
while the independently developed model separates these and is therefore
able to indicate semantic relationships between them.

While the difference between analysis and design models is widely ac-
knowledged in the research community, the case study can provide an exam-
ple of the differences. It also shows that the process of conceptual modelling
using the provided semantics and rules does lead to useful outcomes. The
developed models were of a size and complexity that is neither trivial nor
beyond the capability of analysts to comprehend. It is a modelling process
that is practicable and usable in real projects. For the practitioner, the two
examples and the case study can show how to ’think ontologically’. They
show a rigorous exclusion of any IS requirements or implementation concern
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and focus strictly on real-world phenomena.

Finally, the experimental corroboration of the results cannot prove the
proposed theoretical results to be true. It does however lend credibility
to the rules and semantics. The results support the hypothesis that rule
conformance leads to better domain understanding, a critical requirement
in any IS project. Rule conformance had a statistically and practically
significant effect on problem solving behaviour, which is used as a measure
of domain understanding.

The experimental study builds on earlier research by Gemino (1999) who
developed the instrument for assessing problem solving behaviour. This
study successfully applied an adapted version of this instrument, thereby
providing further support for the usefulness of this instrument in IS research.
This study also employed an instrument developed by and adapted from
Moore and Benbasat (1991). This instrument was revalidated to measure
potential influences such as Ease of Interpretation, Usefulness and Informa-
tion Content of the models. It provides further support for the usefulness
of the original instrument.

To the practitioner, the experimental study complements the case study
to demonstrate not only the applicability but also the benefit of the pro-
posed rules and semantics. It shows that the purpose of a conceptual model,
i.e. furthering domain understanding, is indeed supported by the devel-
oped theory. Problem solving performance using a rule conforming dia-
gram was about 26% greater than problem solving performance using a
non-conforming diagram.

Finally, this work serves as another pragmatic pillar of support for the
BWW-ontology. As outlined in Chapter 2, as a fundamental philosophical
assumption, the choice of the BWW-ontology cannot be debated or criticized
a-priori and the end justifies the means. In this case, the end result does
indeed justify the choice of ontology, as the empirical results, both case study
and experimental study, indicate the usefulness and beneficial effects of the
theory developed on the basis of the chosen ontology.
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Chapter 13

Future Extensions

Future extensions to this work are possible both in theoretical deductive
research as well as in the empirical research area. In a first step, the obtained
formal results can be operationalized in an actual CASE tool. This can serve
to further demonstrate their immediate applicability. This CASE tool can
serve as the object of empirical evaluation. It must be shown how such an
implementation of our results can benefit the modeller during the process
of analysis and conceptual modelling. The fact that most CASE tools are
based on language meta-models makes should facilitate the inclusion of the
results.

In Chapter 1 the case for the use of UML as exemplar language was mo-
tivated by the fact that it would ease the transition from analysis to design.
While the models developed according to the suggested rules and guidelines
are valid UML models and therefore tranferrable to software and program-
ming code, model transformations may still be necessary for a variety of
reasons. Such transformations may for example increase the computational
efficiency of the resulting softare or adapt the software design to a specific
underlying database technology or programming language. While such im-
plementation driven transformations are outside the scope of this thesis,
they form an interesting area for further research.

While UML is the most widely accepted language for IS design, there
exist other IS design languages, object-oriented and otherwise. The method-
ology of this thesis can be applied to the study of these languages as well.
Besides providing real-world semantics to the target language, it would also
support the suitability of the proposed method. More constructive analysis
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of languages such as ER diagrams, OML and ARIS are needed that not only
point out the incompatibilities with the BWW-ontology but show how these
can be avoided.

The meta-model formalization in this work may be used as the starting
point for a formal analysis. Techniques in the area of schema matching
(Batini and Lenzerini, 1986; Rahm and Bernstein, 2001) appear useful to
formally compare two meta-models. A meta-model of the BWW-ontology
was developed by Rosemann and Green (2002). A similar, more complete,
model can be developed in UML, which makes it comparable to the UML
meta-model. Schema based techniques from schema matching research can
then be applied. This provides a better basis than the mappings made
in this thesis and in prior ontological evaluations. Those mappings, while
intuitive, are based on the researchers understanding and interpretation of
the language and the ontology. In this research, we have attempted to
provide a comprehensive analysis to ensure that ’all the pieces fit’, which at
least to some degree alleviates this problem.

In the empirical research domain, the results of the experimental study
pointed out possible future studies. The generally only adequate fit of the
models with the data shows that there may exist further variables that have
not been investigated. Future research might attempt to be explore these
variables, their influence on problem solving behaviour and their relationship
to the semantics and rules proposed here.

The intriguing differences between groups of subjects also invites further
study. A replication of this study with a different sample population can
shed more light on this phenomenon. A study with practicing systems and
business analysts will be the most informative.

This thesis has examined UML and object-oriented design languages
from the perspective of their suitability for conceptual modelling. However,
this must be put into the broader context of model and modelling quality.
Frameworks by (Krogstie et al., 1995; Lindland et al., 1994), (Moody and
Shanks, 1994, 1998; Moody, 1998) and (Becker and Schütte, 1995, 1996;
Rosemann and Schütte, 1997; Schütte, 1998; Schütte and Rotthowe, 1998;
Rosemann, 1995; Schütte, 1999) provide some further criteria for model and
modelling quality. The adequacy of the language for the task (Schütte,
1999) is but one of them. Likely the most important other criterion is that
of cost and effort of modelling. Cost and effort of modelling arises due
to learning and applying the modelling language and modelling rules, the
construction of the model and the interpretation and comprehension of the
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model. While the experimental study did not show any significant differences
in the time to interpret a model, other costs may stem from learning the
rules or applying the rules during model construction. These costs must be
estimated by further research in order to enable a cost/benefit assessment
of the proposed rules and guidelines.

Future research may also want to examine the effect of the modelling
rules on other quality dimensions such as pragmatic quality with respect
to the interpreter, social quality with respect to the group of interpreters,
flexibility, simplicity and completeness. Implementability is a quality crite-
rion suggested by Moody and Shanks (1998) and partially addressed by the
results of the case study. The effects on comparability, clarity and relevance
as proposed by Becker and Schütte (1996) also remain to be empirically
assessed.
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Chapter 14

Conclusion

This thesis set out to provide a language for conceptual modelling. This lan-
guage is intended to be usable both for conceptual and IS design, in order to
alleviate potential problems when translating from one language to another.
Since object-oriented languages are well accepted for IS design, this led to
the question of whether and how their use can be extended to include con-
ceptual modelling of the business and organization. The Unified Modelling
Language is used as a specific example of object-oriented languages.

This thesis investigated the question from an ontological perspective,
first using theoretical deductive methods. This led to real-world semantics
and ontological rules for conceptual modelling. In a second step, empirical
methods were applied to corroborate the applicability and usefulness of the
theoretical results. We have shown that the rules and semantics are appli-
cable as well as beneficial to real-world modelling. They are generalizable
to other object-oriented languages and enhance the domain understanding
that is imparted by conceptual models and remain valid starting points for
IS design.

The important differences between the BWW-ontology and object-oriented
languages lie in the areas of message passing, which is a concept related to
software design, and in the area of encapsulation, which is incompatible with
the ontological concept of mutual properties. Both of these language areas
have been investigated and interpretation and representation mappings have
been found to provide guidelines to the modeller even in these areas.

In conclusion, based on the results of this research, the answer to the
research question posed in Chapter 1 is a resounding Yes, object-oriented
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languages are usable for conceptual modelling and this research provides
guidelines on how to use them. This research is an encouraging step in
the process of bridging the gulf between conceptual and design modelling.
It provides a well-known language for the conceptual modeller and helps
bridge the gulf between the business analyst and the software designer.
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Becker, J. and Schütte, R. (1995). Grundsätze ordnungsmäßiger Model-
lierung. Wirtschaftsinformatik, 5, 435–445.
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erenzmodellierung. Working paper, University of Muenster, Germany.

Rosemann, M. and zur Mühlen, M. (1998). Evaluation of workflow manage-
ment systems – a meta-model approach. Australian Journal of Informa-
tion Systems, 6(1), 103–116.

Rumbaugh, J. et al. (1991). Object Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs, NJ.

242



Scheer, A.-W. (1999). ARIS – Business Process Modeling. Springer Verlag,
Berlin.

Scheffe, H. (1959). Analysis of Variance. Wiley, New York, NY.

Schrefl, M. and Stumptner, M. (2002). Behavior-consistent specialization
of object life cycles. ACM Transactions of Software Engieneering and
Methodology, 11(1), 92–148.
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Appendix A

The Object Constraint
Language

The object constraint language is a semi-formal language that allows the
modeller to express constraints on the use of other language elements. It
provides ways of referencing elements of a UML model and is widely used
in the specification of the UML meta-model itself.

Any OCL expression must be associated with a context. This context
is usually a model element which can then be referred to with the key-
word self. Within this context, an OCL expression can be used to specify
invariants, expressed with the keyword inv, functions and pre- and post-
conditions1. An invariant is a condition that must always hold for a given
context. An OCL function returns a result of a specified result type. The re-
sult can either be assigned in Pascal like manner by assigning it to a variable
with the name of the function, e.g.

(A.1)
context Foo:

Bar(Foo1 : Foo, Foo2 : Foo) : Boolean

...

Bar = ....

This expression declares a function Bar for the type Foo which returns

1Pre- and post-conditions can be used for the specification of methods or operations.
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a boolean value. Foo is an element declared in a model, such as a class
or attribute, etc. The function is declared to take two parameters, Foo1
and Foo2 both of type Foo. Another way of expressing this is by using the
keyword result:

(A.2)
context Foo:

Bar(Foo1 : Foo, Foo2 : Foo) : Boolean

...

result = ....

OCL provides constructs for conditional evaluation of statements: ’if

... then ... else ... endif’. One key feature of OCL is the built-
in type collection and associated operations on collections. Functions of
collections are referred to using the operator ->, e.g.

(A.3)
context Foo inv:

Foo->size() > 1

The following are the main functions defined for any collection in OCL:

collection1->exists(f : Foo | ...logical expression...)

returns true if collection1 contains an element f of type Foo that satisfies
the logical expression specified. Collection1 must be a collection of elements
of type Foo.

collection1->select(f : Foo | ...logical expression...)

returns the sub-collection of elements f of type Foo that satisfy the logical
expression and are elements of collection1.

collection1->reject(f : Foo | ...logical expression...)

returns the sub-collection of elements f of type Foo that do not satisfy the
logical expression and are elements of collection1.
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collection1->forall(f : Foo | ...logical expression...)

returns true if the logical expression holds for all elements f of type Foo

that are elements of collection1.

collection1->includes(f : Foo | ...logical expression...)

returns true if collection1 includes all the elements f of type Foo for which
the logical expression holds.

collection1->excludes(f : Foo | ...logical expression...)

returns true if collection1 excludes all the elements f of type Foo for which
the logical expression holds.

collection1->union(collection2)

returns the union of elements of collection1 and collection2 where the ele-
ments of the two collections must be of the same type.

collection1->size()

returns the number of elements of collection1.

collection1->isEmpty()

returns true if collection1 does not contain any elements.

Functions can be combined as in the following example:

(A.4)
context Foo inv:
self->select(b : Bar | ...expression1...)->size() > 0

This specifies an invariant that ensures that there is at least on element
b of the collection Foo of elements of type Bar that satisfies expression1.
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Customer Order

Total

OrderLine

Currency
1 *

Purchase          

1 *

VIPCustomer

VIPNumber

Figure A.1: Example class diagram

OCL expressions can refer to UML models and associations between
model elements can be dereferenced by using the ’.’ operator as in the
following example that refers to Fig. A.1.

(A.5)
context Customer inv:
self.purchase.orderline.currency="US$"

Note that for associations with rolenames the opposite element is ref-
erenced through the role name (e.g. ’purchase’) whereas for associations
without rolenames, the opposite element is referenced by its name (e.g. ’or-
derLine’). Note also that the references always begin with a lowercase letter.

Consecutive references to collection typed attributes are ’collapsed’. In
the above example self.purchase.orderline is the set of all orderlines for
all purchases by the specific customer (OMG, 2001, 6.6.2.1).

An OCL expression of some element can refer to any feature of the
supertype by using the keyword parent as in the following example, again
referring to Fig. A.1:
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(A.6)
context VIPCustomer inv:
self.parent.purchase.total > 1000

Since OCL is a typed language, it provides the following functions for
determining and recasting the type of any referenced element.

• Bar.oclIsTypeOf(Foo) returns true if Bar is of type Foo or a subtype
thereof.

• Bar.oclIsKindOf(Foo) returns true if Bar is of type Foo but will
return false if Bar is of a subtype of Foo.

• Bar.oclAsKind(Foo) recasts the type of Bar as type Foo.

As an example consider again the class diagram in Fig. A.1. We can
then specify

(A.7)
context Customer:

VIPNumber() : Integer

if self.oclIsKindOf(VIPCustomer) then
result=self.oclAsKind(VIPCustomer).VIPNumber

else
result=0

endif
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Appendix B

Auxilliary OCL Functions

This appendix defines some useful OCL expressions that are used in various
places in the discussion.

Expression (B.1) defines all those attributes as immediate properties
which are defined with a class and with association classes which the class
participates in.

(B.1)

context Class :

let AllImmediateProperties : Set(Attribute);

AllImmediateProperties =

self.allAttributes()

->union(

self.allAssociations

->select(as | as.oclIsTypeOf(AssociationClass))

.oclAsType(Class).allAttributes())

Expression (B.2) defines all those attributes as PartProperties which are,
recursively, defined for all parts of a class that participates as aggregate in
an aggregation relationship.
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(B.2)

context Class :

let PartProperties : Set(Attribute);

if self.association

->select(as | as.aggregation="aggregate"

.association.connection

->reject(conn | conn=self.association)

->exists()

then
PartProperties =

self.AllImmediateProperties

->union(

self.assocation

->select(as | as.aggregation="aggregate")

.asssocation.connection

->reject(conn | conn=self.association)

.participant.allPartProperties)

else
PartProperties =

self.AllImmediateProperties

Expression (B.3) defines all properties of a class to be the union of the
properties of itself, assocation classes it participates in, and the properties
of direct and indirect parents of generalizations, but not the properties of
its own parts.
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(B.3)

context Class :

let AllNonPartProperties : Set(Attribute);

if self.parent->exists() then
AllInheritedProperties =

self.allImmediateProperties->union(

self.parent.allInheritedProperties)

else
AllNonPartProperties =

self.allImmediateProperties

Expression (B.4) defines all properties of a class to be the union of the
properties of itself, assocation classes it participated in, all direct and indi-
rect parts and the properties of direct and indirect parents of generalizations.
The latter in turn includes properties of parts, association classes etc.

(B.4)

context Class :

let AllInheritedProperties : Set(Attribute);

if self.parent->exists() then
AllInheritedProperties =

self.PartProperties->union(

self.parent.allInheritedProperties)

else
AllInheritedProperties =

self.PartProperties

context Class :

let AllProperties : Set(Attribute);

AllProperties =

self.allInheritedProperties

OCL expression (B.5) returns the set of all direct or indirect parts of an
aggregate, including the class itself.
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(B.5)

context Class :

let AllParts : Set(Class);

if self.association

->select(as | as.aggregation="aggregate"

.association.connection

->reject(conn | conn=self.association)

->exists()

then
AllParts = self

->union(

self.assocation

->select(as | as.aggregation="aggregate")

.asssocation.connection

->reject(conn | conn=self.association)

.participant)

else
AllParts = self

The followin OCL expression defines all direct and indirect generaliza-
tions that a class inherits from:

(B.6)

context Class:

Let AllParents: set(Class);

self.parent->union(self.parent->allParents())

The following OCL expression defines all direct or indirect aggregates
that a certain class is part of, including aggregations that are inherited from
parent classes.

254



(B.7)

context Class:

Let PartOf: set(Class);

self.association

->select(as | as.aggregation="aggregate")

.association.connection

->reject(conn | conn=self.association)

->union(self.allParents())

->union(

self.association

->select(as | as.aggregation="aggregate")

.association.connection

->reject(conn | conn=self.association)

->partOf()

->union(self.allParents()->allParts())

The following OCL expressions (B.8) and (B.9) define an operation on
states and state transitions which yields the associated top-most state ma-
chine, either directly or recursively up a substate hierarchy.

(B.8)

context State

let Machine() : StateMachine

result =

if
self.container->notEmpty()

then
self.container.Machine()

else
self.StateMachine

endif
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(B.9)

context Transition

let Machine() : StateMachine

result = self.state.Machine()

Expression (B.10) yields the class that owns the transition, either as a
top-level transition or as a transition of some class description.

(B.10)

context Transition

Let Transition::Owner() : Class

If
transition.Machine().context.oclIsTypeOf(Class)

then
result=transition.Machine().context

else
result=transition.Machine().context.owner

endif

Expression (B.11) defines a transition to be a transition of a top-level
state chart if it is owned, directly or indirectly, by a state machine that
specifies the behaviour of a class.
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(B.11)

context Transition:

Let Transition::IsTopLevel() : boolean

If
self.Machine().context.oclIsTypeOf(Class)

then
result=true

else
result=false

endif

Expression (B.12) defines a state to be a state of a top-level state chart
if it is owned, directly or indirectly, by a state machine that specifies the
behaviour of a class.

(B.12)

context State:

Let State::IsTopLevel() : boolean

If
self.Machine().context.oclIsTypeOf(Class)

then
result=true

else
result=false

endif

Expression (B.13) define a function that indicates whether a state ma-
chine contains (directly or indirectly) a state transition changing the state
of a thing.

257



(B.13)

context StateMachine::OneTransition() : Boolean

result =

if self.top.internalTransition

->exists(t : Transition |

t.source <> t.target and

t.source.oclIsTypeOf(State) and

t.target.oclIsTypeOf(State) )

or
self.top.submachine

->exists(sm : StateMachine | sm->OneTransition())

then true

else false

endif

Expression (B.14) defines a function of an attribute that yields the set
of owners. If the attribute is owned by a class, this class is the owner. If
the attribute is an association class attribute, the owners are the classes
participating in the association.

(B.14)

context Attribute

Let Attribute::PropertyOf() : Set (Class)

if self.owner.oclIsTypeOf(Class)

then
result=self.owner

else
result=self.connection.participant

endif

The following expression (B.15) returns the value of some attribute in
some state.
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(B.15)

context State:

Let State::AttributeValue(a : Attribute) : value

result = self.attributevalue->select(av : av.attribute=a)

The following expression (B.16) defines a function on transitions that in-
dicates whether a transition changes attributes of association classes, repre-
senting mutual properties. It checks whether the number of those attributes
that do not belong to the owner of the transition (i.e. belong to an associa-
tion class) and that possess a different value in the source state than in the
target state, is greater zero. It makes use of expressions (B.10) and (B.15).

(B.16)

context Transition:

Let Transition::ChangeMutualProperties() : boolean

if
self.target.attributeLink.attribute

->reject(a | a.propertyOf()=self.owner())

->reject(a | self.source.attributeValue(a) =

self.target.attributeValue(a))

->size() > 0

then
result = true

else
result = false

endif
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(B.17)

context Transition:

Let Transition::ChangeEmergentProperties() : boolean

if
self.target.attributeLink.attribute

->reject(a | self.source.attributeValue(a) =

self.target.attributeValue(a))

->reject(a.owner.association

->select(ae | ae.aggregation="aggregate")

->size() > 0 )

->size() > 0

and

then
result = true

else
result = false

endif

The following expressions (B.18) and (B.19) compute the set of inital or
final states of a given state machine.
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(B.18)

context StateMachine:

Let StateMachine::AllInitialStates() : set (State)

if self.top.oclIsTypeOf(CompositeState) and
self.top.isConcurrent

then
result=self.top.subvertex.subvertex->select(sv |

sv.incoming.source.oclIsKindOf(PseudoState)

and
sv.incoming.source.kind="initial")

else
result=self.top.subvertex->select(sv |

sv.incoming.source.oclIsKindOf(PseudoState)

and
sv.incoming.source.kind="initial)

endif

(B.19)

Let StateMachine::AllFinalStates() : set (FinalState)

if self.top.oclIsTypeOf(CompositeState) and
self.top.isConcurrent

then
result=self.top.subvertex.subvertex->select(sv |

sv.oclIsKindOf(FinalState))

else
result=self.top.subvertex->select(sv |

sv.oclIsKindOf(FinalState))

endif
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Appendix C

List of Rules and Corollaries

This appendix contains a summary list of the rules and corollaries developed
in chapters 4, 5 and 6. The rules are listed in the order in which they are
derived in those chapters, to ensure logical continuity.

Rule 1 Only substantial entities in the world are modelled as objects.

Rule 2 Ontological properties of things must be modeled as UML-attributes.

Corollary 1 Attributes in a UML-description of the real world cannot refer
to substantial entities.

Rule 3 Sets of mutual properties must be represented as attributes of asso-
ciation classes.

Corollary 2 An association class cannot represent substantial entities or
composites of substantial entities.

Corollary 3 If an association class of an n-ary association is intended to
represent substantial things, the association should instead be modelled as
one with arity (n+1).

Corollary 4 An association class representing a composite must instead
be modelled as a composite with attributes representing emergent intrinsic
properties.

Corollary 5 An association class cannot possess methods or operations.
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Corollary 6 An association class cannot be associated with a state ma-
chine.

Corollary 7 An association class must possess at least one attribute.

Corollary 8 An association class must not be associated with another class.

Corollary 9 An association class must not participate in generalization re-
lationships.

Rule 4 If mutual properties can change quantitatively, methods and oper-
ations that change the values of attributes of the association class must be
modelled for one or more of the classes participating in the association, ob-
jects of which can effect the change, not for the associations class.

Rule 5 An association class represents a set of mutual properties arising
out of the same interaction.

Rule 6 A composition relation must not be modelled.

Rule 7 Every UML-aggregate must possess at least one attribute which is
not an attribute of its parts or participate in an association.

Rule 8 All UML-classes must possess at least one attribute or participate
in an association.

Rule 9 Object ID’s must not be modelled as attributes.

Rule 10 The set of attribute values (representing mutual and intrinsic prop-
erties) must uniquely identify an object.

Rule 11 Every attribute has a value.

Corollary 10 Attribute multiplicities greater than one imply that the order
of the different individual attribute value components is semantically irrele-
vant.

Rule 12 Classes of objects that exhibit additional behaviour, additional at-
tributes or additional association classes with respect to other objects of the
same class, must be modelled as specialized sub-classes.
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Corollary 11 An object acquiring additional behaviour or properties must
be destroyed as instance of the general class and created as instance of the
specialized class that is modelled with the relevant operations or association
classes.

Corollary 12 Re-classification occurs only within a generalization / spe-
cialization hierarchy.

Rule 13 Every UML-aggregate object must consist of at least two parts.

Rule 14 An instance of a class that by virtue of additional aggregation rela-
tionships acquires emergent properties or emergent behaviour must be mod-
elled as an instance of a specialized class which declares the corresponding
attributes and operations.

Rule 15 Object creation occurs when an entity acquires a property so that
it becomes a member of a different class.

Corollary 13 Object destruction occurs when an entity loses a property
that is necessary for membership in a particular class.

Rule 16 Attributes with class scope should instead be modelled as attributes
of an aggregate representing the objects of the class.

Rule 17 If a class that is specialized is declared as abstract, the specializa-
tion must be declared to be ’complete’.

Rule 18 A class that is not specialized cannot be declared abstract.

Rule 19 A specialized class must define more attributes, more operations
or participate in more associations than the general class.

Rule 20 Every ordinary association must be an association class.

Rule 21 A UML-state represents a specific assignment of values to the at-
tributes and attribute of association classes of the objects for which the state
is defined.

Corollary 14 A UML-transition must change the value of at least one at-
tribute used to define the state space.

264



Rule 22 For every level of refinement of a state C, there must be an addi-
tional set of attributes in the class description or in participating association
classes that change as the object transitions among the sub-states.

Corollary 15 For all immediate substates of a super-state, the values as-
signed to attributes describing the super-state are invariant and are equal to
those defining the super-state.

Corollary 16 Concurrent sub-states require mutually disjunct sets of ad-
ditional attributes in the class description or in participating association
classes.

Rule 23 Guard conditions on transitions from the same state to non-
concurrent sub-states must be mutually disjunct.

Rule 24 Action states are super-states of a set of sub-states. The object
transitions among these while in the action state. State charts must reflect
this fact.

Corollary 17 States must not be associated with any actions. Sub-states
corresponding to different models should be used instead.

Corollary 18 All states in an activity diagram must be states of the same
object.

Corollary 19 If the partitions of an activity diagram represent different
objects, they must be part of a composite which is shown in the class diagram.

Rule 25 The quantitative object behaviour (for each model) is entirely de-
scribable by top-level state chart (SC0)

Rule 26 All UML-transitions in SC0 must correspond to an operation of
the object which SC0 is associated with.

Corollary 20 Every object must have at least one operation.

Corollary 21 States in SC0 are stable.

Corollary 22 All UML-transitions in SC0 must be associated with a UML-
event.

265



Rule 27 An object must exhibit additional operations expressing qualitative
changes, if a super- or sub-class is defined and instances can undergo changes
of class to the super- or sub-class.

Rule 28 Methods may be described by state charts other than top-level state
charts.

Corollary 23 A state chart describing a method must begin and end with
those states in SC0 which the operation that the method implements is a
realization of.

Corollary 24 State transitions out of the first state of a method realizing
an operation must be associated with the same event that is associated with
the transition in SC0 which represents that operation.

Corollary 25 A state chart either expresses the external behaviour of an
object (SC0), a method, a signal reception or is a composite state contained
in another state machine.

Rule 29 An operation is not directly specified by state machines. Instead,
the methods that implement an operation are specified by state machines.

Corollary 26 A state machine that specifies the behaviour of a class or a
method is not contained in other state machines.

Corollary 27 The method corresponding to a state chart must modify the
attribute values of the object corresponding to the values defined for the initial
and final state of the method.

Rule 30 An operation must be associated with the declaration of signal re-
ception.

Rule 31 The event associated with an operation must be identical to the
event associated with the signal associated with the reception.

Corollary 28 The state machines associated with a reception and with a
method specifying the implementation of an operation which is in turn asso-
ciated with that reception, must possess the same initial and final states.

Rule 32 Acquisition (loss) of independent properties leads to expansion
(contraction) of the things top-level state space SC0 by an orthogonal region.
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Corollary 29 Every object must be capable of at least one state transition
or be able to undergo change of class to a super- or sub-class.

Rule 33 For every class of objects between which message passing is de-
clared, there exists an association class.

Rule 34 Every object must be the receiver and sender of some message.

Rule 35 For every attribute there exists a constraint which relates this at-
tribute to some other attribute.

Corollary 30 An association class cannot be sender or receiver of a mes-
sage.

Rule 36 A constraint relates attributes of a single class or attributes of
association classes the class participates in.

Corollary 31 A UML-state transition associated with an action must mod-
ify an association class attribute’s value.

Corollary 32 For every interaction between UML-objects, there must exist
a corresponding UML-state transition in both interacting UML-objects.

Corollary 33 A state transition associated with an event must modify an
association class attribute’s value.

Corollary 34 A signal event may only be associated with a transition in
a top-level state chart and the initial transition of a method implementing
this.

Corollary 35 A call event may only be associated with a transition in a
top-level state chart or the initial transition of a method implementing this.

Corollary 36 Synchronous communication of objects implies transition to
a state which cannot be left except through a state transition associated with
the return signal.

Corollary 37 Asynchronous communication of objects with expected re-
sponse implies the existence of at least one state transition caused by the
object acted upon, signifying the return interaction after the state transition
signifying the original communication.
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Corollary 38 The final state transitions of any method implementing an
operation that may be invoked through a call action must cause a return
action.

Corollary 39 For the state machine of a method to contain a state transi-
tion whose effect is a return action, there must exist a corresponding state
transition in a state machine of some other object whose effect is a corre-
sponding call action.
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Appendix D

Example 2, Alternative
Interpretation

This appendix provides an alternative ontological interpretation for the sec-
ond example, discussed in Section 9.2. In this interpretation, the customer
orders anonymous parts. The interaction of the customer is assumed to
be with an employee of the company (e.g. a salesperson) rather than with
product items directly (as e.g. in a supermarket). In this case, the order-
ing is an interaction between the customer and the employee. Thus, it is
an ontological event in both of them, corresponding to a state transition
(which is not shown here). This interaction gives rise to a number of mutual
properties between the customer and the employee. We can express these
by rules 3 and 5 (mutual properties due to interaction as association class
attributes) as attributes of an association class. Since the interaction does
not yet concern identifiable product things, this is a binary association class.
Fig. D.1 shows a model that expresses this interpretation.

Note that there is no class representing the products in this model. This
is because the products are not relevant in this interpretation. The products
possess as yet no mutual properties either with the customer (since she
ordered anonymous product types), nor with the employee that received the
order. Thus, details about the quantity and the price of each product type to
be supplied are mutual properties between the employee and the customer.
These reflect the agreement that exists between the customer and employee
for the employee to deliver the required quantities at a certain date and the
customer to pay the agreed upon price.

269



Customer

Name
Address
CreditRating

Corporate
Customer

Personal
Customer

creditCard#

Order

dateReceived
isPrepaid
number
price
quantity[1..*]
price[1..*]
ProductType[1..*]

Employee

Name
EmployeeNumber

RateCredit
Dispatch
Close

Sales
Representative

Remind
BillForMonth

1..*

1..*

ContactName
creditRating
creditLimit

Figure D.1: Example class diagram with ontological semantics
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Note that the operations ’Dispatch’ and ’Close’ are modelled with the
employee, and the operations ’Remind’ and ’BillForMonth’ are with the sales
representative. By rule 4 (changes in mutual properties as operations) these
are therefore operations of the employees and the sales representatives, not
of the order, as it is they that do the dispatching, the reminding and the
billing.

At a later stage in the order fulfillment process, e.g. when the employee
takes the required products off the shelf to assemble the shipment, the prod-
uct items become identifiable. When e.g. the employee interacts with the
product to assemble the shipment, this interaction gives rise to mutual prop-
erties between the products, the employee and the customer. As an example,
there exist mutual properties that a particular product item is reserved or
assembled or shipped etc.

This situation is somewhat similar to first interpretation in Section 9.2,
where we assume that not late in the order-fulfillment process, but imme-
diately when ordering, the product items are identifiable, e.g. because the
customer picks out items in a showroom or reserves specific items through
the employee for later delivery etc.
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Appendix E

Case Study Interviews

This chapter contains the transcribed interviews that were conducted as
part of the case study. In the interest of readability, the transcripts have
been cleaned in the sense that sentence structure was made readable and
sentence fragments were joined, etc. The choice of words and the sequence
of expressions remains unchanged. The following sections contain verbatim
responses of the subjects. Notes and questions asked by the interviewer are
shown as emphasized to distinguish them from the interviewee responses.

E.1 Lead Analyst Interview (LF)

The main entities in the analysis domain are high school students. A dis-
tinction is made between local British Columbia (BC) high school students
and other high school students. BC high school students are either students
in grade 10, grade 11 or grade 12. The students attend or have attended BC
high schools. A student takes a number of courses with a BC high school
and receives a mark for each of these courses. The admission rules for the
university are based on course mark averages for grade 12 courses, while
successfully completed grade 11 courses are required for admission but the
mark is not relevant. Students may take the same course more than once,
in which case the highest mark is the one relevant for the admission criteria.

The curriculum for BC high schools is defined by the provincial ministry
of education. However, some schools also offer courses from the interna-
tional baccalaureate (IB) curriculum, which are recognized in the admission
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requirements. There is a mapping between IB courses and BC courses. Stu-
dents must choose one of the programs offered at the university in order to
request an admittance assessment.

How are students identified? What are relevant properties of students?

High school students are assigned a student number and a PIN once they
have applied to a university program. This occurs during the normal course
of any application, before any decisions regarding admissions are made.

Another method which is currently used is that students interact with
the ministry of education through a web site and provide identifying infor-
mation. This information is then forwarded by the ministry to the university,
once students express an interest in a program.

The university itself collects identifying information from students, again
through a website. This is termed prospect tracking. Here, students pro-
vide identifying information and choose a login and password which identifies
them to the university. This system is integrated with another university
identity system, the campus wide login (CWL) project. It is planned that
the CWL will eventually supersede the student number as the primary iden-
tification.

Who maintains the IB to BC translation table?

Course translation tables are maintained and owned by the admissions
committee which reports to the senate. For post-secondary institutions,
transfer credit is assessed through transfer credit tables. For secondary ed-
ucation institutions, this is done through a rule based system. For each
combination of jurisdiction (e.g. Canadian provinces, Internationally recog-
nized programs, etc.) and program there exists a set of rules to determine
the equivalent BC high school course and grade.

What distinguishes grade 10,11,12 students, the number of credits or type
of courses taken?

Regardless of the number of secondary education credits of a student,
a student is determined to be grade 10, 11 or 12 depending on the type of
courses completed successfully.

Who determines the admission requirements for programs?

The admission requirements are established by the admissions commit-
tee, reporting to the university senate. However, actual admissions proce-
dures are based on a competitive average. Based on the number of positions
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available, the university selects the best students, once all applications are
submitted.

How are high schools identified?

High schools are internally identified by numeric codes. However, the
actual identifying information is the name and address of the high school.

How are courses identified?

Courses are identified by the province or jurisdiction where the course
was taken, the course type, a course description and, for IS purposes, an
EDI (electronic data interchange) code.

What different states/status can students be in? E.g. interested, applied,
accepted, admitted, etc. How are these defined?

In the first phase of the project, the university deals with applicants
only. It is planned to extend this to also include prospects, i.e. students
that have expressed an interest. Prospects may become applicants, which,
depending on their grades, may be admissable. Once a student has applied,
an admissions officer makes an admissions decision. Thus, the student may
be admitted, refused, found to be not eligible, or not yet evaluated.

How are mixed students handled, students that e.g. receive grade 11 in
Alberta and grade 12 in BC? Or grade 11 in BC and grade 12 in Alberta?

Currently, these students are processed manually on a per case basis and
it is not planned to apply automatic rule based admissions criteria to these
types of students.

What documents are involved? Does documentation (or grades) have a
status? E.g. provisional, final, documented, official, etc?

Grades are entered through the web-site, these grades are un-official. For
desirable students, the admissions office contacts the high school to confirm
these grades.

For BC, Alberta and Ontario high schools, grades will be electronically
received from the respective ministries of education, while for all other stu-
dents, the grades are received as official transcripts sent by the respective
schools. Since Canadian transcripts are received directly from the High
schools, no certification or other credentials are needed for such grades.

What about TOEFL scores?

For the purpose of collecting TOEFL scores, the university interacts elec-
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tronically with the TOEFL company. The identifying student information
for this purpose is the full name and the birth date of a student. TOEFL
scores are received electronically.

E.2 Admissions Officer (RP)

For purposes of admissions, three distinct groups of students exist, based on
their secondary school location: BC high school students, students at high
schools in other provinces of Canada and international students. Because
all three kinds of students have a different background and require different
amounts of time, a different admissions process is required.

The university receives interim (in May) and final (in July) grades of
students from BC high schools in an electronic form. Early interim grades
can be reported by the student to the university through the university’s
web site. Students would not receive any immediate response from the
university. Formerly, early interim information was reported by student
counsellors in BC high school to the university by mail or fax. Early interim
grades reported by students are verified by the university by contacting by
fax or mail the student counsellors at the corresponding high school. Based
on verified interim grades, the university makes a decision whether to offer
the student early admission to the requested program.

Students in an international baccalaureate (IB) program have their an-
ticipated grades forwarded by the IB co-ordinator at their school to the
university by mail. Based on these grades, the university makes a decision
whether to offer the student early admission to the requested program.

For all other Canadian provinces, students can have their schools supply
their official first term grades by mail. Based on these first term grades, the
university may decide to offer admission. Final results, second term grades,
are also submitted by mail by the student’s school.

Based on a received application, the university determines what further
information and which reports are needed. These are then ordered from the
respective school, which in turn sends them to the university.

TOEFL scores are gathered electronically from the TOEFL company.
Every student who undergoes the TOEFL examination can indicate insti-
tution codes to which their scores should be made available. The university
gathers student scores according to their institution code. These scores are
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then manually matched with student application records at the university,
as not all students indicating the university as possible recipient also apply
to the university. The same process takes place with respect to SAT scores,
which may be available from some students of US high schools. Generally,
US high school students are considered based on their academic record and
the process is similar to that for students of other Canadian provinces.

Early admission decisions are based on admission criteria for each un-
dergraduate program that are expressed as percentage cutoff points. The
grade scales and cutoff points for admission are determined by the individ-
ual faculties offering the programs. These are determined according to the
number of government funded seats. The same criteria are then applied
to international students as well, even though they do not take up funded
seats. For the evaluation of international students, there exist a number
of publications by different companies and associations which are used to
determine the grade equivalencies. The university uses this information ini-
tially, but then, based on past experience, an admissions officer makes the
final determination of the equivalent grade. International students require
their school to supply original documents as well as translations of those
documents. These may either be done directly by the school, by another
government body or a certified translator.

When a student submits early interim grades to the university by mail
or fax, these are sent to an admissions officer for evaluation. When a stu-
dent submits early interim grades to the university by means of a website,
this information becomes available to admissions officers in a database. The
admissions officer then manually selects students from the database to pro-
cess. Students at this stage fall into one of three groups, unconditionally
acceptable, conditionally acceptable or on hold.

Students are not rejected based on their early interim information, but
rather placed in the hold group if their grades do not satisfy the admission
criteria for the program applied to. For the students for which their grades
indicate that they are unconditionally or conditionally acceptable, the ad-
missions officer then contacts the school by fax to verify the grades reported
by the student. The school sends verification by fax back to the admissions
officer.

Students are unconditionally acceptable if they have good final grades
or extremely high interim grades. Students are conditionally accepted if
they possess high interim grades, but the possibility exists that these can
slip below the determined admission cutoff point. For these students, an

276



admissions officer checks subsequent grades as they become available from
the school or the ministry of education. Students who are not condition-
ally or unconditionally accepted remain on hold. These are students whose
current grades indicate they are below the cutoff point, but where the ad-
missions officer determines a possibility that either the grades will increase
or the admissions cutoff will drop to include those students. Students are
only rejected based on final grades once they have formally submitted an
application. Self-reporting bad grades will not result in that student be-
ing rejected. Rejection occurs either based on poor grades or on lacking
prerequisite courses for the particular program applied for.

In May, the provincial ministry of education makes grades available in
electronic format to the university. These grades are still interim grades, not
final grades. The university then calculates the appropriate grade average
based on the courses required for the program applied for by the student.
For students who have previously been unconditionally accepted, the uni-
versity determines whether these students become eligible for scholarships.
Students who have been admitted conditionally, may either be offered un-
conditional acceptance, remain conditionally accepted or be placed on hold.
However, this process can vary depending on the faculty that the student
applied to, as some faculties offer broader based admission (BBA) criteria.
These applications are forwarded to a faculty admissions officer who will
then contact the student’s school for more information. The faculty admis-
sions officer will then make an admission decision based on the BBA criteria
and communicate this decision to the university admissions officer, who will
communicate the decision to the student.

Once final grades become available in July from the ministry of educa-
tion, students in both the hold group and the conditional acceptance group
are again examined by admissions officers. They will either be offered ac-
ceptance or be rejected.

The averages required for admission are based on enrollment and may
change. Generally they drop as students decline offers by the university. To
determine these admission criteria, the admissions department tracks the
number of applicants for each program against the number of offers and
the numbers of registrations by students in that program. The aim is to
exactly fill the number of funded seats. Above target seats are unfunded by
the government and if the target is not reached, the government will adjust
the number of funded seats for the next academic year downwards. The
adjustment of admission criteria is based on past and current statistics and
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estimates by the admissions personnel.

E.3 Student Recruiter (AMJ)

The university’s student recruitment activies fall into two categories: Proac-
tive recruitment and a reactive recruitment and advising side. The proac-
tive side involves student recruiters visiting high schools, colleges and career
fairs. This serves two purposes, to promote and provide information about
the university and second, to identify selected students for targeted recruit-
ment activities. Student recruiters cover about 85% of BC high schools as
well as high schools in Alberta, Saskatchewan, Manitoba, Ontario, Quebec
and Nova Scotia, beginning in September and continuing throughout De-
cember. From January to March the focus is on programs on the university
campus. These are information sessions for high school and college students
and their parents, faculty days, and a number of other programs.

On the reactive side, student recruiters communicate with students that
were met during high school visits. Recruiters give out personal contact
information during these visits and are generally contacted by email and
answer questions related to applications, admissions and housing, among
other areas. Currently the university has no information system for manag-
ing or tracking such contacts.

Recruiters also visit local colleges once a month for a full day of student
advising and recruiting. Emails that are sent to the general student inquiry
address of the university are also forwarded to student advisors. Email
volume is from 60 to 80 messages daily to about 200 to 300 per day during
peak times. Besides email and telephone, recruiters and advisors also offer
drop-in and booked appointments on campus.

The BC secondary school and college liasion program (BCSSCLP) is a
program that is used by all universities and colleges in BC to co-ordinate
their high school visits, in such a way that at least three institutions are at
a given high-school for a recruitment day. Students attending these events
are mainly grade 12 students although, depending on the particular high
school, grade 11 students may attend.

Increasingly, the university understands high school counsellors and par-
ents as their target audience for recruitment activities. Any high school
has generally more than one counsellor. Some schools have counsellors for
a specific grade, other schools rotate cousellors so that a counsellor stays
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with the same group of students from grade 9 through grade 12, yet other
high schools assign students to counsellors alphabetically. It may be difficult
for recruiters to find the appropriate counsellor. In those cases, the BCSS-
CLP maintains an online database for high school counsellors to self-update
current information about their school for the purposes of that program.
Recruiters may also suggest possible dates for visits using this information
system. Contact with out-of-province high schools is generally established
through the school’s secretarial staff who then directs the recruiter to the
appropriate counsellor(s).

There is no accurate data about applicants by geographical area and
by high school to see whether recruiting activities are successful. There is
no information available about housing applicants who may need help or
reminders. Recruiters also need more accurate information about grades to
assess which areas and which individuals to target for scholarships. The
university plans on developing a customer relationship management (CRM)
IS that would help channel, manage and co-ordinate all these activities.
However, currently all communication with students is done by email which
is not shared or centrally managed in the university.

E.4 Students

The recruiting process begins for high school students in November for the
following academic year. At this time, either the student counsellors or the
university recruiters coming to high schools make the students aware of the
university, it’s programs and the application procedure. Both, counsellors
and recruiters, can provide students with paper forms or direct them to the
university’s online application system and other resources at the university,
such as student advisors.

High school students have two ways of applying to the university. The
first is paper-based, by filling out and sending in the required application
forms. The second way is through a government web-based service called
PASBC. This site allows the student to provide personal information and
use this information to fill out electronic applications to all post-secondary
institutions in the province. For either kind of application, the university
charges an application fee, which is due at the time of application. Paper-
based applications are generally accompanied by cheques or credit-card au-
thorizations, while PASBC is able to process credit card payments electron-
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ically. Unless and until the application fee is received by the university, no
processing takes place.

Upon applying, the student is requested to arrange for official transcripts
from the high school to be sent to the university. However, the university
will independently request the transcripts from the high school’s student
counsellor, so that the application process, from the point of view of the ap-
plicant, is over. It is the high school’s obligation to keep sending transcripts
as they become available.

Upon application, the applicant is provided with a student number and
password to enable the use of online services at the university. This infor-
mation is sent either by email or by regular mail, depending on the chosen
preference of the student. The applicant can use this information in or-
der to apply for housing, scholarships, etc., but also to check the status of
the application using a web-based service. The status may be either ”pend-
ing”, ”conditionally accepted” or ”unconditionally accepted”. A conditional
acceptance is based on interim information that the student’s high school
counsellor may have submitted, such as mid-term grades, etc. which are
unofficial. The PASBC system does not support any grade submission, this
must be done manually by the high schools. The university online services
also provide information about required documents that have not been re-
ceived by the university.

The local high school student provides two kinds of grades. The high
school transcripts show information about the standing of students in var-
ious courses. Final grades and transcripts for in-class standings become
available in January and in May. In addition to this, high school students
are required to take province-wide examinations in a number of subjects.
These exams are taken in January, May and August and grades become
available in February, June and August. The August examinations are gen-
erally only for those students wishing to repeat an exam. The Ministry of
Education maintains the grades and transmits them to the university.

Depending on the program applied for, a student may be unconditionally
accepted as early as February, if that program’s entrance requirements are
fulfilled by first term courses and first term provincial examinations. Other-
wise, students may be unconditionally admitted in May. Due to the nature
of a sliding admittance scale based on the grade-point-average (GPA), some
students may not be admitted or rejected until August, when the GPA
requirement has been lowered sufficiently. The admissions process ends in
August, with the final rejection or unconditional acceptance of all applicants.
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The university is currently implementing a web-based information sys-
tem that allows the applicant to submit their own estimated grades and
check whether such grades would fulfill the admissions requirements. For
this, the applicants require the student number and password information
sent as a result of their application. Students have the ability to change
and alter their estimated grades as often as they like and re-check their ad-
missability. The estimated grades may be submitted to the university once,
after which they cannot be altered. At this point, these grades are available
to the university admissions officers.

E.5 Discussion with Project Lead (LF)

This section details the final interview with the project lead LF. The re-
sults of the analysis (Appendix F) were provided to LF with the request to
read and assess with respect to specific criteria such as readability, ease of
understanding, correctness, completeness and clarity.

LF began the interview with the comment that he found the diagrams
interesting and asked about whether any strict rules were applied to it.
The interviewer explained rule 1 and the motivation behind the rule. LF
commented that from personal experience, ”anything is an object, they can
be mathematical objects, syntactic objects, anything”. He commented on
the way that a course was modelled in the class diagrams, as an association
class: ”right, there is something going on. It’s normally difficult to model a
course object, because it is a relationship”. He commented further that one
has to ask ”what do you mean by a course? The curriculum, the interaction,
the grade?”. He agreed that rules may be used to address this problem and
force the modellers to think deeper about what they are modelling.

LF commented that the final exam interaction with the ministry is not
accidental, the course that students take is part of the ministry of educa-
tion curriculum. Similarly the international bacccalaurete program has a
curriculum and there are international baccalaureate final exams.

How would you model a curriculum?

”There is a calendar which prescribes rules for the courses and which also
prescribes content of individual courses.” He brought up the example of the
university where the senate defines the curriculum but the faculties apply
the general guidlines and this then ”becomes the real practical curriculum”.
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LF commented that ”interesting in the description are the different ap-
plicant states. You put in BBA admissable. That brings up the fundamental
question: What are admission rules? In practical terms we tend to model
them as anything else. But presumably needs more thought to distinguish
different kinds of objects. A rule is not the same kind of object as a brick.
BBA is not a state a state of an applicant but is a requirement or more
support for the application, e.g. work experience, community work, etc.”
As an example, LF mentioned the faculty of medicine where all these other
factors are also evaluated numerically while for the MBA program this is
less formal. In summary, LF suggested that BBA is an extension to the core
set of admission rules.

Which set of object models do you think provides a better introduction to
somebody new to the project?

”Yours that you have are arguably better as an initial introduction
whereas ours have all sorts of stuff around that is assumed but not modelled.
Yours presents a much clearer picture for somebody who goes into it as to
the basic relationships. But at what point do you slip from the object to
the programmable model? Your sequence (diagrams) are very good to show
what actually happens. I would call them conceptual models whereas we
use sequence diagrams to show method calls. Your’re right when you say
that sequence diagrams are bad at showing multiple interaction.”

Which do you think would be better suited for database design?

”Ours is closer but we’ve deliberately avoided data modelling. There’s
a real danger seeing object modelling as data modelling or relational mod-
elling, as rows and foreign keys.

I find the modelling of the real world gets quite tricky and problematic.
Modelling of non-substantial objects happens quite easily and naturally be-
cause you don’t have to worry about empirical reality. The real power of
this (the new models) is the progression from describing your buisness to
program is quite seamless.

That diagram (old model) is just punched out, almost reverse engi-
neered.”

”These are definitely states. Are they states of the applicant or the
application? Do you see an application as a paper object?”

You would model an application as an object?

”It’s a problematic one for us. It just doesn’t do anything, it’s a state-
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ment of intention.”

”There is a more generic, archetypical diagram, which should be all about
evaluating requirements of which all, SAT, TOEFL, BC High school are all
specific examples.

This raises a key issue for moving the project ahead: Do we model
TOEFL and SAT as separate objects? Or do we have a single class ’test’
that can be extended by TOEFL and or SAT? Where does one set the
boundary to these real world things, objects? Same with BC high school
students, who is an object. This goes back to an early argument in the
project group.”

E.6 Discussion with Lead Developer (CH)

CH is the lead developer of the project. At the time of this interview, he
had been with the organization for three years. He was not involved in the
Business Process Reegineering (BPR) project that preceded the project under
study, nor was he involved in the organizational analysis of the requirements
of the project. His responsibilities in the project are focussed on design and
implementation aspects, but as lead developer he is aware of the business
and organizational requirements.

CH has extensive UML knowledge and experience from prior projects but
noted that in this project and in this organization, UML has only been intro-
duced about a year previous to the time of the interview, about the beginning
of the particular project.

”The diagrams show a lot of distinction between different classes of stu-
dents, while the project team model employs attributes to make those dis-
tinctions, to flag different types of students. The model was developed as an
analysis model, but the modellers may have unconsciously seen the model’s
purpose in terms of guidance for IS design, therefore choosing a way of
modelling which makes implementation easier by requiring less coding.

”Inheritance also gets shied away from in the project team model. This
may be because it is initially confusing to developers, they may not under-
stand it or use it properly.”

What model would be better for comprehension for a new project team
member?
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”Yours (the independent model) is more comprehensive, for example in
the relationships. It shows a better ”big picture view” of how it fits together.
It would undoubtedly have benefits when bringing on different staff. For our
model, we relied a lot on assumptions that were never written down in the
model.

It [the independently developed model] shows a lot of stuff that is not
implementation related, e.g. the ministry of education. That is needed
but not we don’t need to do anything with it, we only need to know of its
existence. ”

Do you think the models could serve as starting points for design?

”There are more requirements needed. Assuming that the operations are
modelled, it would be easy to start coding and start on your development
process, whatever that process is. I don’t see any reason why you couldn’t
just take these and run with them. The sequence diagrams are very use-
ful. The class diagram in and by itself does not explain much. One thing
that the tools we use don’t allow is they cannot generate methods from se-
quence diagrams. You have the call stack from the sequence diagram and
the messages, you should be able to put them into methods automatically.”

LF suggests that sequence diagrams are very unusual in the analysis
phase.

”There are times when we do use them. There was time when we mapped
it all out. That included the infrastructure level as part of the design.”

Do you think the sequecne diagrams are helpful in understanding the
organization?

”They don’t get done as official project documents. When developers
meet, two thirds of them will use inofficial sequence diagrams that never get
written down, especially for the infrastructure aspects. That makes things
much clearer.

One of the reasons why they’re not used for domain modelling in this
project is the small group size. We’re only four people involved, so everybody
was aware what was happening. If people weren’t deeply involved it would
be very helpful for the designers.

The sequence diagram shows what the process is, but it also shows parts
that we do not inherently do, e.g. the admissions officer would not have
to manually send aceptance notices anymore, that is something that we’re
trying to automate.”
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Are there any constructs in the model that are too complex or too com-
plicated?

”The large diamond sort of throws me off. Don’t know directly what
we’re implementing there. That could be a function of the tools that we’re
using, that they’re not implementing the full UML spec.

When you start getting a variety of lines crossing, it becomes tough to
package it up, to really understand the relationships quickly. It then takes
a while to understand and pull them apart.”

Your domain model has no association classes and fewer classes with
more attributes.

”That is probably based implicitly on the existing database. Mapping
to relational databases is easier with flatter classes, easier than taking apart
object structures.

Our model wasn’t explicitly based on the databasse but the fact that
people were familiar with the database structure, this influenced things.
The fact that there are not many inherent business rules makes it easy to
model this as a flat database. Implementation wise it is of course faster,
too.

The lack of association classes is probably just a poor use of tool, really.”

Do you think it would have made a difference to model association classes
as associations instead?

”Visually, this shows better the association. It gives you a better sense
of the relationships.

Your model is a different view on the problem space from that what we
implemented, but there’s no obvious flaw. From a pure OO sense, encapsu-
lation point, yours is probably more correct, certainly more comprehensive.”

Is it comprehensive because it contains parts not implemented or is it
also comprehensive in the parts that are implemented?

”Certainly more comprehensive there, but even in the smaller, there’s a
somewhat simpler, more elegant view in a few cases.

Your class names are clearer, more descriptive.

In our project, the requirements are pretty fluid, so there’s not that much
time spent on analysis documentation.”
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The interviewer explained the background of the case study to CH.

”The rules seem to force rigorous design and force you to ask the ques-
tions, if not necessarily to follow them. They are certainly the right questions
to ask.

Such rules would hve helped in our group. The rules would tell whether
a model is good and can help answer some questions. They seemed like a
lot of valid questions to ask. ”
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Appendix F

Case Study Analysis

This appendix provides the details of the business and organizational anal-
ysis and conceptual modelling carried out as part of the case study (Chap-
ter 10). It begins by developing the static structure model and the interac-
tion model. In a second step, operations for the various classes are added
to the model.

F.1 Static Structure and Interactions

As described in Chapter 10, the approach taken is largely based on an anal-
ysis of the interactions. Thus, the two main diagram types are sequence
diagrams and class diagrams, with supporting state charts when applicable.
These diagrams cover both structural and behavioural aspects of the domain
and can be compared to the original class diagram developed by the project
team.

The analysis begins with a focus on local high school students and is then
widened to include out-of-province students, US students and international
students, followed by an abstraction of common features. We abstract from
communication media unless they are relevant to the case. They should
be modelled as they are things which interact through mutual properties
with the communicating things. E.g. a phone line between two people has
properties with both people and serves as intermediate object. However,
neither phone lines, nor email or postal mail is modelled explicitly (see rule
33 in Sec. 6.1.1).
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In−Province
Student

Name
DOB

Teacher

Name

High School

Name

Course

Name
Type
Semester
Standing

1..*

Figure F.1: Student and teacher classes

Local high school students are substantial things in the ontological sense
and should be modelled as objects and represented by a class in the class di-
agram. Students interact with teachers of a high school throughout a course.
As a result of this interaction, the students acquire mutual properties, their
in-class standing for that particular course. A course is not a substantial
thing in the sense of rule 1 and can therefore not be represented by a class
in the class diagram. Instead, a course is an interaction (strictly: a set of
interactions) that gives rise to a bundle of properties (rules 2, 3, 5). Fig-
ure F.1 shows the class diagram and figure F.2 shows the sequence diagram
depicting the interaction.

By rules 8 and 10 there must exist uniquely identifying attributes. For
high school students, these are the name and date of birth (DOB), while
high school teachers are identified by their name and their high school. High
schools in turn are identified by their name. The current class diagram may
possibly violate rule 13, according to which each aggregate must have at
least two parts. As the diagram develops, this will be addressed.

In the next step of the process, students apply to the university. The
university is interpreted as a composite thing, made up of faculties, which in
turn are composed of staff etc. Since we are concerned with a single specific
university, it is represented as an object instead of a class. As a result of the
application interaction and the university’s response (either by mail or e-
mail), students and the university gain mutual properties represented by an
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: Student : Teacher

AttendClass

University :
University

Apply

AcknowledgeApplication

Figure F.2: Student and teacher interaction

association class. These properties include the program applied to, and also
the student number and password issued by the university. Importantly,
upon application students acquire the property of a fee balance with the
university which represents such items as application fees, tuition fees, etc.
Since at that point some students will possess these additional properties
and others will not, rules 12, 11 and 19 suggest that these students should
be modelled as a subclass, that of applicants (see Fig. F.3).

Students and applicants also interact with the Ministry of Education
(MoE), by writing provincial examinations. This interaction leads to sets
of mutual properties of the ministry and the student. We allow for the
possibility that a student takes more than one provincial examination and
also attends more than one course with the same high school teacher. As
UML, in our ontological interpretation, is very limited in providing ways to
define complex data structures, we assume that the i-th subject has been
taken in the i-th semester with the i-th standing. Similarly, the student has
taken the j-th subject provincial examination in the j-th semester with the
j-th grade. The interaction and the resulting changes to the class diagram
are depicted in Figs. F.5 and F.6. The sequence diagram also indicates that
the stimuli corresponding to the two messages with actions ”AttendClass”
and ”ProvincialExamination” may occur more than once.
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Figure F.3: Applicant and university classes
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: Student : Teacher

AttendClass

University :
University

Apply

AcknowledgeApplication

Figure F.4: Applying to the university
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Figure F.5: Ministry of Education class
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: Student : Teacher

*[1..n]:AttendClass

University :
University

Apply

: Ministry of  
Education

*[1..n]ProvincialExamination
AcknowledgeApplication

Figure F.6: Writing provincial examinations
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The applicants may then request their high school counsellors to send
interim grades as well as final transcripts to the university. Information
about provincial examinations is forwarded by the Ministry of Education
to the university automatically, without request. Both interactions lead to
mutual properties between the applicant, the university and the student
counsellor or the Ministry of Education. The resulting properties are repre-
sented as attributes of association classes. They represent the grades that
are reported and may, but should not, differ from the grades represented
by mutual properties between students and teachers or students and the
Ministry of Education. When a high school does not submit transcripts for
a student, an admissions officer will request them from the high school’s
counsellor. Note that the reported grades are mutual properties also of
the student. The students should not be represented as attributes because
of corollary 1, therefore students must be participants in the associations.
Three of the described interactions, the submitted transcripts, submitted
interim grades and reported provincial grades, lead to mutual properties
between the student, the university and the high school’s counsellors or the
ministry. Two others, the request to submit transcripts and the requests to
submit interim grades, do not lead to such mutual properties. Provincial
grades are submitted up to three times (corresponding to January, May and
August grades) while transcripts are submitted twice (for the first and sec-
ond term). Interim grades may be sent by the high school student counsellor
multiple times. When students self-report grades through the online service,
the grades become mutual properties of the university and the applicant. A
university admissions officer then requests the high school student counsel-
lor to verify the grades. The verification message sent by the counsellor
gives rise to verified reported grades, which are treated as interim grades,
as opposed to final transcripts.

These interactions are shown in the sequence diagram in Fig. F.7. UML
requires sequence information for both sequence diagrams as well as collab-
oration diagrams. Therefore, there exists no way to indicate in the diagram
that the sequence of the messages/stimuli is not relevant and may vary.
Hence, Fig. F.7 shows only one possible sequence of messages. Figures F.8,
F.9 and F.10 show class diagrams with the associations and classes partici-
pating and arising out of the interactions.
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: Student : Teacher

*[1..n]:AttendClass

University :
University

Apply

: Ministry of  
Education

*[1..n]:ProvincialExamination

: Admissions
Officer

: Student
Counsellor

*[1..3]:ReportProvincialGrades
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*[2]:SubmitTranscripts
*[1..n]:RequestSendingInterimGrades

*[1..n]:SubmitInterimGrades

Self-report Grades
VerifyGrades

AcknowledgeApplication

Figure F.7: Submitting grades
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Once the marks are received and the payment has been received (shown
by the value of the outstanding balance, a mutual property of the applicant
and the university), the applications are assessed and their status deter-
mined. This is done repeatedly by an admissions officer, when new informa-
tion becomes available. The admission standards are set by the faculty which
offers the program and are therefore properties of the particular faculty. Re-
quirements are sliding requirements in the sense that they depend on the
number of available places for a particular program. Thus, initial require-
ments are specified by the faculty, but actual requirements are determined
as the admissions process continues, based on the number of applicants, the
number of accepted offers, the number of withdrawals of applications, etc.
The faculties are modelled as a composite object which is part of the uni-
versity in Fig. F.11. An applicant’s states change when she is re-evaluated
based on the current requirements.

It may appear correct to assign a state to students, based on their out-
standing balance, their grades etc., e.g (see Fig. F.12)

• Pending (Fee not paid)

• Hold (Incomplete grades, some grades below the requirements)

• Conditionally accepted (Incomplete grades, current grades meeting re-
quirements, some required grades not known)

• Unconditionally accepted (Complete grades, all grades meet all re-
quirements)

• Not Admissible (Complete grades, some grades below the require-
ments)

• BBA Admissible (For faculties with programs with broader based ad-
mission requirements)

As a result of rules 21 (states are defined in terms of attributes of the
object), 25 (quantitative behaviour is represented in a state chart), 26 (state
transitions correspond to operations of the object) and corollary 14 (all oper-
ations change the value of an attribute or association class attribute), these
states cannot be states of the applicant. Rule 21 prevents defining those
states with respect to the admission requirements, which are not properties
of the applicant. Rules 25 and 26 would require operations of the applicant
to change the state. However, it is clear that the applicant does nothing
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Figure F.8: Submitted transcripts
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Figure F.9: Submitted provincial grades
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Figure F.10: Self-reported grades
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Figure F.11: Faculties
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Figure F.12: States of an applicant, incorrect
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to change the state, it is the university or parts of the university that take
action.

Instead, these states are states of the university, or one of its parts. It
is the university (and its parts, the faculties) that possesses all required
attributes by rule 21 and it is the admissions officers (parts of the univer-
sity) that carry out the actions required by rules 25, 26 and corollary 14.
Therefore, these states must be modelled as states of the university. More-
over, since the states for each applicant to the university are independent of
one another, rule 22 and corollary 16 require that sufficient attributes and
association-class attributes are defined. This is here trivially the case, as
the university possesses the same independent set of mutual properties with
each applicant. Fig. F.13 shows a state chart depicting this interpretation.

Assuming that state chart Fig. F.13 shows (part of) the top-level state
chart implies that by rules 25, 26 and corollaries 21, 22 the states are stable
and the state transitions between them must be associated with an external
event and correspond to an operation of the object/class. In each of the
concurrent regions, the second state is a composite state with four sub-
states. In the UML meta-model, this corresponds to an embedded state
machine, so that these sub-states are not directly part of the top-level state
chart. Thus, there does not need to be an external event or an operation
of the university (or its parts) associated with the state transitions in that
composite state. As a consequence, there exists only one state transition
expressing a quantitative change initiated by an external object: ’PayFee’
is an event caused by the student object when the FeeBalance, a mutual
property, is changed to zero, indicating no outstanding balance. Rules 22
and 15 are satisfied as the two outer states are defined based on the attribute
’FeeBalance’ while the sub-states are defined based on the attributes of the
association classes representing transcript grades and exam marks.

Other changes to the student and the university are of qualitative nature,
when the student applies and becomes an applicant, the university gains a
set of state variables which span another orthogonal region in the top-level
state chart (rules 22, 32, corollaries 15, 16). Any state transitions that
are not associated with external events must be part of a method which
realizes an operation which is in turn caused by external events. The method
that encompasses the state changes within the sub-state machines is the
application procedure that is carried out by the university and its parts, i.e.
the faculties and the admissions officer. It is externally induced when the
university receives an application from a student accompanied or followed
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Figure F.13: States of the university
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by fee payment.

Once a student is unconditionally accepted, an admissions officer will
send an offer of acceptance to the applicant. We again suggest sub-classing
such an applicant, for similar reasons that we sub-classed students: Only
some of them possess the new properties and only some of them possess new
behavioural possibilities (e.g. accepting or rejecting an offer). Once all final
transcripts and final provincial ministry grades are received, all applicants
on hold and all conditionally accepted students are evaluated and become
either unconditionally admissible or must be rejected. In the first case, an
admissions officer sends out offers of acceptance, in the second case, a notice
of rejection is sent. The amended sequence diagram in Fig. F.14 shows
these interactions and Fig. F.15 shows the sub-classification of applicants.
Note that rejected applicants are not subclassed, as they possess neither
additional properties nor additional behaviour.
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Figure F.14: Acceptance and rejection notices
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If the applicant cannot be unconditionally accepted, but the faculty and
program applied to has broader based admission (BBA) requirements, the
application is referred to faculty admissions officers for evaluations who will
then pass a recommendation to a university admission officer who will in
turn notify the applicant. BBA requirements are optional properties for
faculties. However, if a faculty possesses BBA requirements, it must also
have faculty admissions officers. This suggests a subclassification of faculties
with such properties and parts, as shown in Fig. F.16.
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Figure F.15: Accepted and rejected applicants
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Figure F.16: Faculties with BBA Requirements
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Figure F.17: Faculties with BBA requirements, sequence diagram
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The corresponding interactions are shown in Fig. F.17. An admissions
officer issues a request to another admissions officer (part of a faculty) and
this officer issues a BBA assessment advice back to the first admissions
officer.

We next turn to applicants which do not follow the standard process
modelled above. The university has agreements with the Ministries of Ed-
ucation of the provinces Ontario and Alberta so that students from these
provinces may be treated as in-province students for the purpose of applica-
tion process. Another group of students are those of the US. These students
require an SAT examination in order to gain admission. This is achieved
through an interaction with the company administering the SAT tests, ETS,
which will electronically transfer the scores to all universities requested by
the examinee. This is depicted in Figs. F.18 and F.19.
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Figure F.18: SAT scores and US applicants
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Figure F.19: US applicants interaction
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As the university is not able to receive grades in an automated electronic
way from the respective ministry of education, the transcripts must be pro-
vided directly from the high school, by a high school official. Other aspects
of the process and the steps involved in it are identical to the process for
local, in-province applicants.

Another group of applicants that is involved in a different set of in-
teractions, resulting in a different set of properties, are international ap-
plicants. Such applicants must undergo a test of their English language
capabilities with the company administering the standardized TOEFL test
(ETS). Results are automatically forwarded to all universities requested by
the examinee. They must also submit transcripts translated by a recognized
translator or translation service. The interactions are shown in sequence di-
agram Fig. F.20 and the resulting mutual properties are shown in the class
diagram in Fig. F.21.
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Figure F.20: International applicants interactions
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Having defined the three types of applicants separately, we can abstract
common features. International students, US students and in-province stu-
dents are all students which take courses with teachers at high schools. We
therefore suggest the generalization structure shown in Fig. F.22. Interna-
tional students and US students are not distinguished based on their proper-
ties. Only after they apply, once they are applicants, do they gain different
properties, i.e. SAT scores and TOEFL scores etc. As students, all attend
high schools and take courses leading to course grades. In-province students
on the other hand are different, as they take exams with the Ministry of
Education.

There exist two more classes of students, out-of-province students and
students in International Baccalaureate (IB) programs. All of their tran-
scripts are submitted by their high school, but they do not require an SAT
exam like US applicants do. These applicants form the remainder of the
class ’Applicants’ which are not instances of the sub-classes ’in-province ap-
plicant’, ’US applicant’ or ’International applicant’. Therefore, no sub-class
is necessary to represent these applicants.

Based on this discussion and the generalizations shown in Fig. F.22
we can simplify the previous class diagrams by making use of inheritance
(Figs. F.23, F.24, F.25, F.26). The state chart in Fig. F.12 is applicable to
all applicants (class ’Applicant’).

F.2 Interactions and Operations

The class diagrams developed in the previous paragraphs outline mostly the
static structure and represent the things and their (mutual) properties, but
neglect to show operations and methods of the objects and classes. Most
properties are mutual properties which arise out of and consequently rep-
resent interaction. Most of the changes are qualitative changes, expressed
through acquisition or loss of properties. As an example, a student becomes
an international applicant who becomes an accepted applicant. Only one
class, the university, has states defined for it (Fig. F.12). These are based
on the values of intrinsic and mutual properties (represented as attributes)
and changes of state represent changes to the values of attributes. These
quantitative changes and all qualitative changes must be expressed by oper-
ations of attributes in the object-oriented paradigm (rules 26, 27). Rule 30
suggests that externally caused events cause an operation to be performed.
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Figure F.21: International applicants
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Figure F.22: Generalization of applicants

We can therefore define operations based on external interaction.

A general guidelines that is applicable is based on corollary 5 and rules
4 and 5 require that operations are not modelled on association classes but
instead on the participating classes representing the interacting objects.

Some operations and interactions are outside the scope of this analysis,
such as the interactions within high schools that lead to the set of properties
labelled ’Course’.

As there is very little quantitative change in the analysed domain, rules
25 and 26, stating that the quantitative changes are expressible in state
charts and that the transitions of a state chart correspond to operation
are not applicable. Moreover, Chapter 6 deals with interactions due to
quantitative change only and is therefore to a large degree not applicable.
Instead, section 4.2.4 provides us with rules 13 and 15, which, together
with corollary 11, govern the creation and destruction of objects due to
re-classification based on loss or acquisition of (mutual) properties.

The initial interaction is that between a student and the university: The
student applies to the university. Once the university has acknowledged the
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application, the student becomes an applicant. Thus, an instance of class
student needs to be destroyed and an instance of class applicant created with
the requisite mutual properties. The interaction ’apply’ is not caused by an
external event to the student within the scope of this analysis, there must
not be an operation. However, the university as receiver of the stimulus
must possess an operation which is caused by the event that is caused by
reception of the stimulus. We call this operation ’Process Application’. As
the changes are of qualitative nature, we do not provide a state chart for a
method implementing this method.

As part of the processing of an application, the university sends a mes-
sage to the student with a student ID and password for services. For the
student, this is an external event, and we provide an operation for it. As
the student becomes an applicant once all required mutual properties are
established, we call the operation ’BecomeApplicant’. Any method imple-
menting this operation must create an instance of applicants and destroy
an instance of student as per rules 15 and 13. Students also initiate, as
part of their school attendance, interaction with the ministry of interaction.
For the ministry, this is an external event requiring an operation. We call
this operation ’AdministerExam’. These operations are shown in the class
diagram of Fig. F.27.

As part of an internal or ongoing process, the Ministry provides the
grades to the university (Figs. F.7, F.9). This therefore does not require an
operation for the MoE, but instead must be handled by the university in
operation ’AcceptMinistryGrades’ (Fig. F.28).

The university, as part of the operation ’ProcessApplication’ will also
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send requests for transcripts to the high school officials. For the latter, this
is an external event and must be processed by an operation, ’SupplyTran-
scripts’. Student counsellors may also be asked to provide interim grades,
requiring operation ’SupplyInterimGrades’ (Fig. F.29). Finally, the appli-
cant and student counsellors can report grades or transcripts to the univer-
sity or the admissions officers. In both cases, internal activity is caused,
that of evaluating or re-evaluation an applicant with respect to the require-
ments. We call these operations of the university and the admissions officers
’evaluate’ (Figs. F.28, F.29).

Once the university assesses the admissibility of an applicant and decides
whether to issue an offer or rejection notice, it sends one such message to
the applicant. This is part of the operation of processing an application or
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evaluating an applicant, it is therefore not necessary to provide a method for
this. For the applicant, this is an initial external event leading to a number
of internal changes, such as accepting or rejecting an offer, etc. However,
this is outside the scope of the application process under study here, so will
not be modelled.

Internal communication between different parts of the university, e.g.
admissions officers of the university and admissions officers of the faculties
for BBA admissions (see Fig. F.17), are captured by the already defined
methods. An admissions officer requesting a BBA evaluation from a faculty
admissions officer triggers the operation ’evaluate’. Conversely, once a fac-
ulty admissions officer has performed the evaluation, that officer will request
an evaluation and notification of the student from the university admissions
officer, again triggering the operation ’evaluate’.

The class diagram in Fig. F.30 shows the properties required for the uni-
versity and ETS to account for external requests from US and international
applicants (see sequence diagrams in Figs. F.19 and F.20). Applicants, by
taking a SAT or TOEFL exam, cause an external event in the ETS object,
which eventually leads to the sending of a message to the university, caus-
ing an external event in that object. This causes the behaviour specified in
operation ’ReceiveSATScores’ and ’ReceiveTOEFLScores’.
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Appendix G

Post-Test Questionnaire

G.1 UML Knowledge

UML-A

On a scale of 1 (low) to 7 (high) how do you rate your
knowledge of UML?

UML-B

For how many months have you used UML in practice
(outside classes or courses)?

UML-1

An aggregation expresses a Part-Of relationship be-
tween a component object and an aggregate object.
(True/False)

UML-2

A subclasss inherits all the features from its superclass.
(True/False)

UML-3

On a class diagram, a ternary relationship is repre-
sented by a rounded rectangle. (True/False)

UML-4

Abstracting the common features among multiple
classes, as well as the relationships they participate
in, is called generalization. (True/False)
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UML-5

An object class is a set of objects that share a common
structure and a common behavior. (True/False)

UML-6

On a class diagram, an exclamation point repre-
sents a multiplicity with an infinite upper bound.
(True/False)

UML-7

On a class diagram, an asocation is signified by a
douple-ended arrow that connects the participating
object classes. (True/False)

UML-8

An object is an entity that has a well-defined role in
the application domain, and has state, behaviour, and
identity. (True/False)

UML-9

When indicating the multiplicity for a role, an infinite
upper bound is denoted by a

1. Dash

2. Diamond

3. Hollow point arrow

4. Star

UML-10

In UML, a class is represented by

1. A rectangle with three compartments separated
by horizontal lines.

2. A circle in which the activity name is recorded.

3. A double-lined ellipse in which the activity name
is recorded.

4. A diamond in which the activity is recorded.
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UML-11

Changes in the attributes of an object or in the links
an object has with other objects best defines:

1. Events

2. Operation

3. State Transition

4. Method

UML-12

A function or a service that is provided by all the
instances of class best defines

1. Encapsulation

2. Task Set

3. Operation

4. Multiplicity

UML-13

A relationship among instances of object classes best
defines

1. Encapsulation

2. Scope

3. Association

4. Composition

UML-14

Which of the following indicates how many objects
participate in a given relationship?

1. Assocation role

2. Object count

3. Multiplicity

4. Association class
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UML-15

The degree of an association relationship can be:

1. Unary

2. Binary

3. Ternary

4. All of the above

UML-16

The end of an association where it connects to a class
best describes:

1. Encapsulation

2. Scope

3. Association role

4. Composition

UML-17

Which of the following encompasses an object’s prop-
erties and the values those properties have?

1. Behaviour

2. Class

3. State

4. Encapsulation

UML-18

Which of the following indicates a minimum of 0 and
a maximum of 1?

1. 1 . . . 0

2. 0 . . . 1

3. 1 – 0

4. 1:M

327



UML-19

Which of the following is not a true statement?

1. An object’s behaviour depends on its state and
the operation being performed.

2. An object’s state is determined by its attribute
values and links to other objects.

3. An operation is simply an action that one ob-
ject performs upon another in order to get a re-
sponse.

4. Object class refers to an entity that has a well-
defined role in the application domain, and has
state, behaviour and identity.

G.2 Ease of Interpretation, Usefulness and Infor-
mation Content

EOI-1 The class diagram was easy to read.
EOI-2 The class diagram was clear and understandable.
EOI-3 The class diagram was easy to understand.
EOI-4 (R) (*) Interpreting the class diagram was frustrating.
EOI-5 (*) The class diagram was simple.

EOI-6 (R)
I believe that the class diagram was cumbersome to
interpret.

EOI-7 I feel comfortable with interpreting the class diagram.
EOI-8 I believe that it is easy to interpret the class diagram.

EOI-9 (R)
Interpreting the class diagram required a lot of mental
effort.

EOI-10 Overall, I found the class diagram easy to interpret.

EOI-11
It was easy for me to understand what the diagram
was trying to model.

EOI-12 (*) Overall, I found the class diagram was easy to use.
USE-1 (*) I feel confident that my answers are correct.

USE-2
The information in the class diagram was helpful for
answering the questions.

USE-3
Interpreting the class diagram increased my effective-
ness in answering the questions.
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USE-4
Interpreting the class diagram improved the quality of
my answers to the questions.

USE-5
Understanding the class diagram made answering the
questions easier.

USE-6
Interpreting the diagram enhanced the quality of my
answers.

INFO-1
I believe the diagram was an accurate representation
of order processing1.

INFO-2
The class diagram provided all the information re-
quired to answer the questions.

INFO-3 (*)
Interpreting the class diagram has provided knowledge
about order processing2.

INFO-4 I believe the diagram showed a lot of detail.
INFO-5 (*) The diagram was a good diagram.

Note 1: EOI : Ease of Interpretation; USE : Usefulness; INFO : Informa-
tion content

Note 2: (R) indicates reverse coded items.

Note 3: (*) indicates the item was not included in the final instrument.

Note 4: The item names may be prefixed according to whether they refer
to the order processing domain or the car rental domain, e.g. CR-EOI-1
refers to the first item on the Ease of Interpretation scale for the car rental
domain.

G.3 Domain Familiarity

OP-1
On a scale of 1 (low) to 7 (high) how do you rate your
knowledge of order processing procedures?

OP-2
Have you ever worked in an order processing depart-
ment? (yes/no)

1Car Rental, depending on the domain.
2Car Rental, depending on the domain.
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CR-1
On a scale of 1 (low) to 7 (high) how do you rate your
knowledge of car rental procedures?

CR-2 Have you ever rented a car before? (yes/no)

CR-3
Have you ever worked for a car rental agency?
(yes/no)
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Appendix H

Diagram Comprehension
Questions

Order Processing Domain

OPComp-1 Is the corporate customer billed on a monthly basis?
OPComp-2 Do all customers have a sales representative ?
OPComp-3 Does the order show taxes paid on items?
OPComp-4 Can an order contain products of different types?

OPComp-5
Is a sales representative responsible for a product
type?

OPComp-6 Can customers pay for their orders by credit card?
OPComp-7 Does the order total show discounts?
OPComp-8 Do corporate customers receive payment reminders?

OPComp-9
Can a customer order the same products multiple
times?

OPComp-10 Can orders be prepaid?

OPComp-11
Can a corporate customer have multiple sales repre-
sentatives?

Car Rental Domain

CRComp-1
Can the pick-up location for cars be different from the
drop-off location?
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CRComp-2 Can customers reserve multiple cars?

CRComp-3
Are the license plate numbers of rented vehicles
recorded?

CRComp-4 Can a reservation be billed multiple times?

CRComp-5
Is there a minimum age for customers to rent a vehi-
cle?

CRComp-6
Can customers purchase insurance for the vehicle they
rent?

CRComp-7
Does the company charge freight and inspection for
sold cars?

CRComp-8 Does the invoice show taxes?
CRComp-9 Can an invoice be produced without renting a car?
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Appendix I

Problem Solving Questions

Order Processing Domain

OPProb-1
Suppose that an important customer needs to order
products urgently? What problems could he/she face?

OPProb-2
Suppose that a shipment does not contain all ordered
products. What could have happened?

OPProb-3
Suppose the warehouse has run out of items and an
order cannot be fulfilled. How could this have hap-
pened?

OPProb-4
Suppose two customer’s orders are mixed up. What
could have happened?

OPProb-5
Suppose that a customer wants to change their order.
What problems could this pose?

OPProb-6
Suppose the customer wannts to know the expected
delivery date of his order? What problems might be
experienced when replying to the customer?

OPProb-7
Suppose a customer is not billed for some products.
What could have happened?

Car Rental Domain

CRProb-1
Suppose that a customer arrives for pick-up but no car
is available. What could have happened?
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CRProb-2
Suppose a customer receives two invoices. What could
have happened?

CRProb-3
Suppose a car which is reserved for a customer is being
sold at auction. How could this have happened?

CRProb-4
Suppose a customer is not billed for a reservation?
What could have happened?

CRProb-5
Suppose that a customer wants to extend his rental
period. What could go wrong?
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Appendix J

Experimental Results
(Extended Analysis)

J.1 ANCOVA (Step-wise Inclusion of Variables)

In order to arrive at a more parsimonious explanatory model than the full
ANCOVA model presented in Section 11.8.4, non-significant factors and co-
variates were omitted from the model and interaction effects of UML knowl-
edge were considered. This supplementary analysis reveals that only the
variables ”Rules”, ”Group” and ”UML.TTL” need to be considered.

Error: Subject

Df Sum Sq Mean Sq

Rules 1 1.3804 1.3804

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Rules 2 3.574 1.787 4.0133 0.0212222 *

Group 2 5.889 2.944 6.6126 0.0020477 **

UML.TTL 1 5.002 5.002 11.2348 0.0011535 **

Rules:Group 4 9.324 2.331 5.2352 0.0007447 ***

Residuals 95 42.299 0.445

---

Signif. codes: 0 ***’ 0.001 **’ 0.01 *’ 0.05 .’ 0.1 ’ 1
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Overall, the fit of this reduced model is R2 = .3731 which is only
marginally smaller than the goodness of fit of the complete model, sug-
gesting that this more parsimonious model offers as good an explanation for
the observed data.

To further assess the results and confirm the more parsimonious model,
it was decided to successively include factors and covariates in the model
while the model quality increases. The statistical package R provides a
procedure for doing this, based on the Akaike Information Criterion (AIC)
which assesses model fit and is a function of the number of model parameters
to be fitted so as to avoid overfitting. With this interpretation, a smaller AIC
is better (Pinheiro and Bates, 2000). Factors and covariates are included as
long as the AIC of the resulting model can be lowered.

Start: AIC= -45.89

Prob ~ 1

Df Sum of Sq RSS AIC

+ UML.TTL 1 7.215 60.253 -55.878

+ Group 2 6.544 60.924 -52.704

+ Rules 2 4.112 63.356 -48.555

+ UML.A 1 2.517 64.952 -47.919

+ Information 1 2.417 65.051 -47.756

<none> 67.468 -45.889

+ Time 1 0.952 66.516 -45.396

+ Usefulness 1 0.730 66.739 -45.041

+ SelfAssess 1 0.265 67.203 -44.306

+ Domain 1 0.195 67.274 -44.195

+ Comp 1 0.095 67.373 -44.038

+ Interpretation 1 5.326e-05 67.468 -43.889

Step: AIC= -55.88

Prob ~ UML.TTL

Df Sum of Sq RSS AIC

+ Group 2 4.386 55.868 -59.888

+ Rules 2 3.556 56.697 -58.327

+ Time 1 1.342 58.911 -56.265

<none> 60.253 -55.878

+ Information 1 1.066 59.187 -55.770
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+ Usefulness 1 0.615 59.638 -54.966

+ SelfAssess 1 0.383 59.870 -54.554

+ UML.A 1 0.318 59.935 -54.439

+ Domain 1 0.195 60.058 -54.221

+ Comp 1 0.036 60.217 -53.941

+ Interpretation 1 0.001 60.252 -53.879

- UML.TTL 1 7.215 67.468 -45.889

Step: AIC= -59.89

Prob ~ UML.TTL + Group

Df Sum of Sq RSS AIC

+ Rules 2 4.071 51.797 -63.907

<none> 55.868 -59.888

+ SelfAssess 1 0.709 55.159 -59.242

+ Usefulness 1 0.570 55.297 -58.976

+ Information 1 0.530 55.337 -58.899

+ Time 1 0.455 55.413 -58.754

+ Domain 1 0.195 55.673 -58.258

+ UML.A 1 0.147 55.721 -58.167

+ Interpretation 1 0.070 55.798 -58.021

+ Comp 1 0.008 55.859 -57.904

- Group 2 4.386 60.253 -55.878

- UML.TTL 1 5.056 60.924 -52.704

Step: AIC= -63.91

Prob ~ UML.TTL + Group + Rules

Df Sum of Sq RSS AIC

<none> 51.797 -63.907

+ SelfAssess 1 0.949 50.848 -63.868

+ Comp 1 0.776 51.021 -63.507

+ Time 1 0.663 51.134 -63.273

+ Information 1 0.519 51.278 -62.975

+ Usefulness 1 0.229 51.568 -62.378

+ Domain 1 0.195 51.602 -62.307

+ Interpretation 1 0.063 51.734 -62.036

+ UML.A 1 0.002 51.795 -61.912

- Rules 2 4.071 55.868 -59.888

- Group 2 4.900 56.697 -58.327
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- UML.TTL 1 4.829 56.626 -56.460

Call:

lm(formula = Prob ~ UML.TTL + Group + Rules, data = gData)

Coefficients:

(Intercept) UML.TTL GroupC GroupC2

0.01521 0.11382 -0.46989 -0.07550

RulesR RulesR2

0.32309 -0.15017

This procedure produces a model with the same factors and covariates
as the reduced model assessed with ANCOVA in Sec. 11.8.4. The algorithm
adds that element to the model which increases the model quality (decreases
the AIC) most. Thus, in the first step, ”UML.TTL” is included, followed
by ”Group” and ”Rules”. No interaction effects are considered.

J.2 Linear Mixed Effects Modelling (Analysis of
Results)

Linear mixed effect (LME) models (Pinheiro and Bates, 2000) work by (re-
stricted) maximum likelihood fitting of parameters to the data and allow
modelling of nested random and nested fixed effects within the same model.
Similar to the ANCOVA methodology employed in Sec. 11.8.4, the analysis
begins with a complete model including all factors and covariates, includ-
ing second order factor interaction terms. Goodness of the model is again
assessed using the AIC criterion discussed above.

Linear mixed-effects model fit by REML

Data: gData

AIC BIC logLik

271.7827 330.1223 -111.8913

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 0.4966753 0.4682717
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Fixed effects: Prob ~ (Rules + Domain + Group)^2 + UML.TTL

+ UML.A + Time + Information + Interpretation + Usefulness

+ Comp + SelfAssess

Value Std.Error DF t-value p-value

(Intercept) -1.1069428 1.0469954 42 -1.0572566 0.2964

RulesR 1.1662674 0.4235645 42 2.7534588 0.0087

RulesR2 0.3790730 0.4280563 42 0.8855682 0.3809

DomainOP -0.2521666 0.2335060 42 -1.0799148 0.2863

GroupC -0.0355587 0.3822908 42 -0.0930149 0.9263

GroupC2 0.7427533 0.5323224 42 1.3953073 0.1703

UML.TTL 0.0805366 0.0513957 42 1.5669925 0.1246

UML.A 0.0110384 0.1432621 42 0.0770506 0.9389

Time 0.0256997 0.0109856 42 2.3393879 0.0241

Information 0.1183118 0.0662602 42 1.7855623 0.0814

Interpretation -0.0231100 0.0643543 42 -0.3591066 0.7213

Usefulness 0.0978097 0.0692240 42 1.4129444 0.1650

Comp 0.8690636 0.5968795 42 1.4560119 0.1528

SelfAssess 0.0571151 0.0556054 42 1.0271512 0.3102

RulesR:DomainOP -0.2128368 0.2530314 42 -0.8411479 0.4050

RulesR2:DomainOP 0.1705046 0.2387212 42 0.7142416 0.4790

RulesR:GroupC -1.1101774 0.4913256 42 -2.2595555 0.0291

RulesR2:GroupC -0.6597350 0.5103743 42 -1.2926494 0.2032

RulesR:GroupC2 -0.6972327 0.6766675 42 -1.0303920 0.3087

RulesR2:GroupC2 -1.3747285 0.6325665 42 -2.1732553 0.0355

DomainOP:GroupC 0.3668574 0.2344418 42 1.5648118 0.1251

DomainOP:GroupC2 -0.2240988 0.2677295 42 -0.8370344 0.4073

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.73759604 -0.50887871 -0.04269248 0.42715819 1.93127490

Number of Observations: 106

Number of Groups: 53

The results above indicate similar effects as shown in the ANCOVA re-
sults. The above table shows the estimated value of the effect size and the
t-statistic and p-value for significance. The t-statistics and t-test shown
is a test for marginal significance of a particular estimated parameter, not
a model term. It shows whether this particular model parameter is sig-
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nificantly different than the baseline of the factor. The results show that
diagrams conforming to rules (”R”) have a significantly (p=.0087) different
effect on problem solving performance than the other two types of diagrams
(”N” and ”R2”). Also, the subjects in group ”C” interpreting diagrams of
type ”R” behave differently (p=.0291) than other combinations of subject
groups and diagram types. Pinheiro and Bates (2000) suggest that an F-test
for inclusion of model elements provides a better criterion:

numDF denDF F-value p-value

(Intercept) 1 42 361.5242 <.0001

Rules 2 42 2.8853 0.0670

Domain 1 42 0.8879 0.3514

Group 2 42 4.7220 0.0141

UML.TTL 1 42 6.7755 0.0127

UML.A 1 42 0.0032 0.9549

Time 1 42 2.1374 0.1512

Information 1 42 3.0173 0.0897

Interpretation 1 42 0.0335 0.8556

Usefulness 1 42 2.2705 0.1393

Comp 1 42 0.5162 0.4764

SelfAssess 1 42 0.6216 0.4349

Rules:Domain 2 42 0.6873 0.5085

Rules:Group 4 42 2.8122 0.0372

Domain:Group 2 42 3.2396 0.0492

These results indicate that the factor ”Rules” tends towards significance
while confirming that ”Group” and ”UML.TTL” are significant model ele-
ments. Similarly, the domain is not significant but the interaction of Rules
and Group is. These results are in accord with those obtained by the full
ANCOVA model in Sec. 11.8.4.

In order to find the most parsimonious model to explain the data, one can
follow a similar procedure as in the ANCOVA based analysis in Appendix
J.1. Model elements can be included and the resulting change in goodness
of fit as per the AIC criterion is assessed. Following this procedure leads to
the same reduced model that was arrived at in the ANCOVA case.
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J.3 Verification of Assumptions

Pinheiro and Bates (2000) point out two main assumptions for LME models:
(1) The within group errors (here: within subject errors) are IID1 with zero
mean and are homoscedastic2. They must also be independent of the random
effects. (2) The random effects are normally distributed and independent
for different groups. These two assumptions must also hold for an ANOVA
procedure to produce valid results. The following paragraphs follow the
procedure outlined in (Pinheiro and Bates, 2000).

The first assumption can be assessed by examining the within-subject
residuals as they provide surrogates for the error terms. The boxplot in
Fig. J.1 shows that the residuals are independent for different subjects and
appear to be centered around a mean of zero. Figures J.2 through J.4 plot
the residuals against the fitted values for different factor levels of ”Group”,
”Domain”, and ”Rules” respectively.

None of these plots indicate different residuals within different sub-
samples. Heteroscedasticity is also formally evaluated by comparing dif-
ferent models. The base model analyzed above is compared against models
which allow for heteroscedasticity between different sample subgroups:

> fitted1a <-

update (fitted1, weights=varIdent(form = ~ 1 | Group))

> anova(fitted1, fitted1a)

Model df AIC logLik Test L.Ratio p-value

fitted1 1 24 271.7827 -111.8914

fitted1a 2 26 270.7511 -109.3756 1 vs 2 5.03157 0.0808

> #

> fitted1b <-

update (fitted1, weights=varIdent(form = ~ 1 | Domain))

> anova(fitted1, fitted1b)

Model df AIC logLik Test L.Ratio p-value

fitted1 1 24 271.7827 -111.8914

fitted1b 2 25 273.4269 -111.7135 1 vs 2 0.3557705 0.5509

> #

> fitted1c <-

update (fitted1, weights=varIdent(form = ~ 1 | Rules))

1Independent and identically distributed.
2Equal variance
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Figure J.1: Box plot of residuals of LME fit
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Figure J.2: Residuals against fitted values by group
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Figure J.4: Residuals against fitted values by type of diagram
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> anova(fitted1, fitted1c)

Model df AIC logLik Test L.Ratio p-value

fitted1 1 24 271.7827 -111.8914

fitted1c 2 26 275.0048 -111.5024 1 vs 2 0.7778486 0.6778

None of the differences are statistically significant. While there ap-
pear to be indications for different variances between the groups of subjects
(p=.0808), the differences in model quality as measured by the AIC crite-
rion do not suggest any practical significance of such differences. Overall,
the residuals appear small which indicates a good fit of the fitted with the
observed values as shown in Fig. J.5.

Normality of the residuals is assessed by plotting them against the quan-
tiles of the normal standard distribution, as shown in Figures J.6 through
J.9, for the total sample and again for sub-samples by factor levels. The
resulting plots show that the normality assumption is justified, indicated
by the relatively straight and symmetric pattern and clustering towards the
center.

A similar plot can be done for the random effects of each subject, shown
in Fig. J.10. This shows that the normality assumption for random effects
is justified.

J.4 Equivalence of Diagrams

One of the main assumptions was that our models should be informationally
equivalent with respect to information relevant to the task. This is assessed
by analyzing the effect of the different model types on the factors Information
Content, Usability and Ease of Interpretation. This is done using a standard
ANOVA procedure including ”Domain”, ”Group” and ”Rules” together with
second order interactions as independent variables (Appendix K.8).

• Information Content

Error: Subject

Df Sum Sq Mean Sq

Rules 1 0.85165 0.85165

Error: Within

346



Fitted values

P
ro

b

1

2

3

4

1 2 3

Figure J.5: Fitted values against observed values

347



Residuals

Q
ua

nt
ile

s 
of

 s
ta

nd
ar

d 
no

rm
al

43

8

49

−2

−1

0

1

2

−0.5 0 0.5 1
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Figure J.7: Residuals against standard normal by group
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Figure J.8: Residuals against standard normal by domain
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Figure J.9: Residuals against standard normal by type of diagram
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Figure J.10: Random effects against standard normal
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Df Sum Sq Mean Sq F value Pr(>F)

Rules 2 0.264 0.132 0.1242 0.883324

Domain 1 1.053e-31 1.053e-31 9.923e-32 1.000000

Group 2 10.629 5.315 5.0064 0.008655 **

Rules:Domain 2 0.787 0.394 0.3708 0.691208

Rules:Group 4 6.428 1.607 1.5139 0.204723

Domain:Group 2 0.741 0.370 0.3489 0.706374

Residuals 91 96.604 1.062

• Usefulness

Error: Subject

Df Sum Sq Mean Sq

Rules 1 0.72032 0.72032

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Rules 2 2.460 1.230 1.1406 0.3241

Domain 1 9.434e-11 9.434e-11 8.750e-11 1.0000

Group 2 0.414 0.207 0.1921 0.8256

Rules:Domain 2 4.682 2.341 2.1710 0.1199

Rules:Group 4 5.628 1.407 1.3049 0.2742

Domain:Group 2 1.504 0.752 0.6976 0.5004

Residuals 91 98.116 1.078

• Ease of Interpretation

Error: Subject

Df Sum Sq Mean Sq

Rules 1 0.28487 0.28487

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Rules 2 10.801 5.400 5.1047 0.007922 **

Domain 1 9.434e-11 9.434e-11 8.917e-11 0.999992

Group 2 2.624 1.312 1.2402 0.294167

Rules:Domain 2 1.675 0.837 0.7915 0.456275

Rules:Group 4 5.840 1.460 1.3801 0.247065

Domain:Group 2 0.500 0.250 0.2362 0.790094

Residuals 91 96.272 1.058
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Appendix K

Scripts for Statistical
Analysis

This appendix contains the S-programs (scripts in the S language for use in
the R statistics package) used for the statistical analyses in this thesis.

K.1 Card sorting, Round 2, Initial

# ###############################################

# Joerg Evermann, 2003

#

# S program for cardsorting analysis

# ###############################################

#

# ##########################

# Define the function for Cohen’s Kappa

#

kappaFor2 <- function(r1, r2, na.method = "na.rm")

{

f1 <- ordered(r1)

f2 <- ordered(r2)

levels(f1) <- levels(ordered(c(r1, r2)))

levels(f2) <- levels(ordered(c(r1, r2)))

if (na.method == "na.rm")

na.rm <- T
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else na.rm <- F

ttab <- xtabs( ~ f1+f2, cbind(r1, r2),

drop.unused.levels=FALSE)

tsum <- sum(ttab, na.rm = na.rm)

ttab <- ttab/tsum

tm1 <- apply(ttab, 1, sum, na.rm = na.rm)

tm2 <- apply(ttab, 2, sum, na.rm = na.rm)

agreeP <- sum(diag(ttab), na.rm = na.rm)

chanceP <- sum(tm1 * tm2, na.rm = na.rm)

kappa2 <- (agreeP - chanceP)/(1 - chanceP)

kappaSE <- 1/((1 - chanceP) * sqrt(tsum))

* sqrt(chanceP + chanceP^2

- sum(tm1 * tm2 * (tm1 + tm2), na.rm = na.rm))

kz <- kappa2/kappaSE

kp <- 2 * (1 - pnorm(kz))

ans <- c(kappa2, kappaSE, kz, kp)

names(ans) <- c("kappa", "S.E.", "z.stat", "p.value")

return(ans)

}

#

# ###########################

# Read the data file

#

data0 <- read.csv("cardsorting_round2.csv",

header=TRUE, row.names=1)

data <- as.matrix(data0[,c(1:23)])

#

kappas <- c(1:105)*0

count <- 1

#

# ###########################

# Compute all pairwise agreements

#

for(i in 1:14){

for(j in (i+1):15){

kappas[count] <- kappaFor2(data[i,], data[j,])

print(kappas[count])

print(c(count, i, j, kappas[count]))

count <- count + 1

}
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}

#

# ###########################

# Compute max, mean and min of

# the pairwise agreements

#

kappamax <- max(kappas)

kappaavg <- mean(kappas)

kappamin <- min(kappas)

#

print(c(kappamin, kappamax, kappaavg))

K.2 Card sorting, Round 2, After refinement

# ################################################

# Joerg Evermann, 2003

#

# S Program for analysis of second round

# cardsorting data

# ################################################

#

# Define function for Cohen’s Kappa

#

kappaFor2 <- function(r1, r2, na.method = "na.rm")

{

f1 <- ordered(r1)

f2 <- ordered(r2)

levels(f1) <- levels(ordered(c(r1, r2)))

levels(f2) <- levels(ordered(c(r1, r2)))

if (na.method == "na.rm")

na.rm <- T

else na.rm <- F

ttab <- xtabs( ~ f1+f2, cbind(r1, r2),

drop.unused.levels=FALSE)

tsum <- sum(ttab, na.rm = na.rm)

ttab <- ttab/tsum

tm1 <- apply(ttab, 1, sum, na.rm = na.rm)

tm2 <- apply(ttab, 2, sum, na.rm = na.rm)
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agreeP <- sum(diag(ttab), na.rm = na.rm)

chanceP <- sum(tm1 * tm2, na.rm = na.rm)

kappa2 <- (agreeP - chanceP)/(1 - chanceP)

kappaSE <- 1/((1 - chanceP) * sqrt(tsum))

* sqrt(chanceP + chanceP^2

- sum(tm1 * tm2 * (tm1 + tm2), na.rm = na.rm))

kz <- kappa2/kappaSE

kp <- 2 * (1 - pnorm(kz))

ans <- c(kappa2, kappaSE, kz, kp)

names(ans) <- c("kappa", "S.E.", "z.stat"

, "p.value")

return(ans)

}

#

# #######################

# Read data file

#

data0 <- read.csv("cardsorting_round2.csv",

header=TRUE, row.names=1)

i <- c(1, 2, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16,

17, 19, 20, 21, 23)

data <- as.matrix(data0[,i])

#

# #######################

# Compute all pairwise agreements

#

kappas <- c(1:105)*0

count <- 1

for(i in 1:14){

for(j in (i+1):15){

print(kappas[count])

kappas[count] <- kappaFor2(data[i,], data[j,])

print(c(count, i, j, kappas[count]))

count <- count + 1

}

}

# #######################

# Compute max, mean and min

#
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kappamax <- max(kappas)

kappaavg <- mean(kappas)

kappamin <- min(kappas)

#

print(c(kappamin, kappamax, kappaavg))

K.3 Pilot Test

# ###############################################

# Joerg Evermann, 2003

#

# Compute scale reliabilities from pilot test data

# ###############################################

#

# Read data from file

#

data0 <- read.csv("results_fall02.csv", header=TRUE,

row.names=1)

#

# ######################

# Select different proposed

# scales, for two diagrams

# separately

#

i1 <- c("Q1.1", "Q1.2", "Q1.4", "Q1.9", "Q1.10",

"Q1.11", "Q1.13", "Q1.14", "Q1.16")

j1 <- c("Q1.15", "Q1.17", "Q1.19", "Q1.21", "Q1.23")

k1 <- c("Q1.5", "Q1.7", "Q1.20")

#

i2 <- c("Q2.1", "Q2.2", "Q2.4", "Q2.9", "Q2.10",

"Q2.11", "Q2.13", "Q2.14", "Q2.16")

j2 <- c("Q2.15", "Q2.17", "Q2.19", "Q2.21", "Q2.23")

k2 <- c("Q2.5", "Q2.7", "Q2.20")

#

# ######################

# Compute reliabilities

# for each of the six

# scales
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#

data <- as.matrix(data0[,i1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Diagram 1, Ease of Interpretation:", alpha))

print(cor(data))

data <- as.matrix(data0[,j1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Diagram 1, Usefulness:", alpha))

print(cor(data))

data <- as.matrix(data0[,k1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Diagram 1, Information Content:", alpha))

print(cor(data))

data <- as.matrix(data0[,i2])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Diagram 2, Ease of Interpretation:", alpha))

print(cor(data))

data <- as.matrix(data0[,j2])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Diagram 2, Usefulness:", alpha))

print(cor(data))

data <- as.matrix(data0[,k2])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))
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print(c("Diagram 2, Information Content:", alpha))

print(cor(data))

# ######################

# Combine the data from the two diagrams for

# each scale, then compute reliabilites

# from the combined data set

#

data1 <- as.matrix(data0[, i1])

data2 <- as.matrix(data0[, i2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Ease of Interpretation:", alpha))

print(cor(data3))

data1 <- as.matrix(data0[, j1])

data2 <- as.matrix(data0[, j2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Usefulness:", alpha))

print(cor(data3))

data1 <- as.matrix(data0[, k1])

data2 <- as.matrix(data0[, k2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Information Content:", alpha))

print(cor(data3))

library(mva)

#
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# ######################

# Arrange data for factor analysis

#

i1 <- c("Q1.1", "Q1.2", "Q1.4", "Q1.9", "Q1.10",

"Q1.11", "Q1.13", "Q1.14", "Q1.16", "Q1.15", "Q1.17",

"Q1.19", "Q1.21", "Q1.23", "Q1.5", "Q1.7", "Q1.20")

i2 <- c("Q2.1", "Q2.2", "Q2.4", "Q2.9", "Q2.10",

"Q2.11", "Q2.13", "Q2.14", "Q2.16", "Q2.15", "Q2.17",

"Q2.19", "Q2.21", "Q2.23", "Q2.5", "Q2.7", "Q2.20")

data1 <- data0[, i1]

data2 <- data0[, i2]

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

colnames(data3) <- i1

# ########################

# Perform factor extraction with varimax

# rotation for the data for first and

# second diagram and for the combined

# data set

#

fa <- factanal(data3, factors=1, rotation="varimax")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

fa <- factanal(data3, factors=2, rotation="varimax")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

fa <- factanal(data3, factors=3, rotation="varimax")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

K.4 Interrater Reliabilities

# ################################################

# Joerg Evermann, 2003

#

# Anlysis of interrater agreement for problem

# solving questions
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# ################################################

#

# Define function for Cohen’s Kappa

#

kappaFor2 <- function(r1, r2, na.method = "na.rm")

{

f1 <- ordered(r1)

f2 <- ordered(r2)

levels(f1) <- levels(ordered(c(r1, r2)))

levels(f2) <- levels(ordered(c(r1, r2)))

if (na.method == "na.rm")

na.rm <- T

else na.rm <- F

ttab <- xtabs( ~ f1+f2, cbind(r1, r2),

drop.unused.levels=FALSE)

tsum <- sum(ttab, na.rm = na.rm)

ttab <- ttab/tsum

tm1 <- apply(ttab, 1, sum, na.rm = na.rm)

tm2 <- apply(ttab, 2, sum, na.rm = na.rm)

agreeP <- sum(diag(ttab), na.rm = na.rm)

chanceP <- sum(tm1 * tm2, na.rm = na.rm)

kappa2 <- (agreeP - chanceP)/(1 - chanceP)

kappaSE <- 1/((1 - chanceP) * sqrt(tsum))

* sqrt(chanceP + chanceP^2

- sum(tm1 * tm2 * (tm1 + tm2), na.rm = na.rm))

kz <- kappa2/kappaSE

kp <- 2 * (1 - pnorm(kz))

ans <- c(kappa2, kappaSE, kz, kp)

names(ans) <- c("kappa", "S.E.", "z.stat",

"p.value")

return(ans)

}

#

# #########################

# Read the data file

#

data0 <- read.csv("results_for_interrater.csv", header=TRUE)

data <- as.matrix(data0)

#

# #########################
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# Compute kappa for each question

#

kappa1 <- kappaFor2(data[,"CRProb.1.1"], data[,"CRProb.1.2"])

kappa2 <- kappaFor2(data[,"CRProb.2.1"], data[,"CRProb.2.2"])

kappa3 <- kappaFor2(data[,"CRProb.3.1"], data[,"CRProb.3.2"])

kappa4 <- kappaFor2(data[,"CRProb.4.1"], data[,"CRProb.4.2"])

kappa5 <- kappaFor2(data[,"CRProb.5.1"], data[,"CRProb.5.2"])

kappa6 <- kappaFor2(data[,"OPProb.1.1"], data[,"OPProb.1.2"])

kappa7 <- kappaFor2(data[,"OPProb.2.1"], data[,"OPProb.2.2"])

kappa8 <- kappaFor2(data[,"OPProb.3.1"], data[,"OPProb.3.2"])

kappa9 <- kappaFor2(data[,"OPProb.4.1"], data[,"OPProb.4.2"])

kappa10 <- kappaFor2(data[,"OPProb.5.1"], data[,"OPProb.5.2"])

kappa11 <- kappaFor2(data[,"OPProb.6.1"], data[,"OPProb.6.2"])

kappa12 <- kappaFor2(data[,"OPProb.7.1"], data[,"OPProb.7.2"])

#

# ##########################

# Print the kappa values

#

print(kappa1)

print(kappa2)

print(kappa3)

print(kappa4)

print(kappa5)

print(kappa6)

print(kappa7)

print(kappa8)

print(kappa9)

print(kappa10)

print(kappa11)

print(kappa12)

K.5 Scale Reliabilities

labelapp:scales.R

# ################################################

# Joerg Evermann, 2003

#
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# Scale reliabilities from the final data set

# ################################################

#

# Read data from file and separate the scales

#

data0 <- read.csv("results_for_scales.csv",

header=TRUE)

i1 <- c("CRC.1", "CRC.2", "CRC.4", "CRC.9", "CRC.10",

"CRC.11", "CRC.13", "CRC.14", "CRC.16")

j1 <- c("CRC.15", "CRC.17", "CRC.19", "CRC.21", "CRC.23")

k1 <- c("CRC.5", "CRC.7", "CRC.20")

i2 <- c("OPC.1", "OPC.2", "OPC.4", "OPC.9", "OPC.10",

"OPC.11", "OPC.13", "OPC.14", "OPC.16")

j2 <- c("OPC.15", "OPC.17", "OPC.19", "OPC.21", "OPC.23")

k2 <- c("OPC.5", "OPC.7", "OPC.20")

#

# ########################

# Compute Cronbach’s alpha for the six scales

#

data <- as.matrix(data0[,i1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Car Rental, Ease of Interpretation:", alpha))

#

data <- as.matrix(data0[,j1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Car Rental, Usefulness:", alpha))

#

data <- as.matrix(data0[,k1])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Car Rental, Information Content:", alpha))

#

data <- as.matrix(data0[,i2])

nv1 <- ncol(data)
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alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Order Processing, Ease of Interpretation:",

alpha))

#

data <- as.matrix(data0[,j2])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Order Processing, Usefulness:", alpha))

#

data <- as.matrix(data0[,k2])

nv1 <- ncol(data)

alpha <- (nv1/(nv1-1))*(1 - sum(apply(data,2,var))

/var(apply(data,1,sum)))

print(c("Order Processing, Information Content:",

alpha))

#

# #######################

# Combine data across domains

# Compute reliabilities across complete data set

#

data1 <- as.matrix(data0[, i1])

data2 <- as.matrix(data0[, i2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Ease of Interpretation:", alpha))

#

data1 <- as.matrix(data0[, j1])

data2 <- as.matrix(data0[, j2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Usefulness:", alpha))

#
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data1 <- as.matrix(data0[, k1])

data2 <- as.matrix(data0[, k2])

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

alpha <- (nc/(nc-1))*(1 - sum(apply(data3,2,var))

/var(apply(data3,1,sum)))

print(c("Total, Information Content:", alpha))

#

library(mva)

#

# ###########################

# Combine the item sets from the three scales

# for factor extraction

#

i1 <- c("CRC.1", "CRC.2", "CRC.4", "CRC.9", "CRC.10",

"CRC.11", "CRC.13", "CRC.14", "CRC.16", "CRC.15", "CRC.17",

"CRC.19", "CRC.21", "CRC.23", "CRC.5", "CRC.7", "CRC.20")

i2 <- c("OPC.1", "OPC.2", "OPC.4", "OPC.9", "OPC.10",

"OPC.11", "OPC.13", "OPC.14", "OPC.16", "OPC.15", "OPC.17",

"OPC.19", "OPC.21", "OPC.23", "OPC.5", "OPC.7", "OPC.20")

#

data1 <- data0[, i1]

data2 <- data0[, i2]

nc <- ncol(data1)

nr <- nrow(data1)+nrow(data2)

data3 <- t(array(c(t(data1), t(data2)), dim=c(nc, nr)))

#

colnames(data3) <- i1

#

# ###########################

# Extract the Bartlett factor scores for each domain

#

#

print("Factor Analysis Car Rental")

#

fa <- factanal(data1, factors=3, rotation="varimax",

scores="Bartlett")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

print(fa$scores)
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#

print ("Factor Analysis Order Processing")

#

fa <- factanal(data2, factors=3, rotation="varimax",

scores="Bartlett")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

print(fa$scores)

#

print ("Factor Analysis Combined")

#

fa <- factanal(data3, factors=3, rotation="varimax",

scores="Bartlett")

print.factanal(fa, digits=3, cutoff=.1, sort=TRUE)

print(fa$scores)

K.6 Descriptive Statistics

# ###############################################

# Joerg Evermann, 2003

#

# S program for factor level means

#

# ###############################################

#

# ######################

# Read the data from file

#

data0 <- read.csv(file="results_for_anova2.csv",

header=TRUE)

attach(data0)

#

# ###############################################

# ANOVA First

#

# #####################

# Some data plots

#
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tapply(Prob, factor(data0$Rules), mean)

tapply(Prob, factor(data0$Domain), mean)

tapply(Prob, factor(data0$Group), mean)

tapply(Prob, factor(data0$Rules), sd)

tapply(Prob, factor(data0$Domain), sd)

tapply(Prob, factor(data0$Group), sd)

tapply(Comp, factor(data0$Rules), mean)

tapply(Comp, factor(data0$Domain), mean)

tapply(Comp, factor(data0$Group), mean)

tapply(Comp, factor(data0$Rules), sd)

tapply(Comp, factor(data0$Domain), sd)

tapply(Comp, factor(data0$Group), sd)

tapply(Interpretation, factor(data0$Rules), mean)

tapply(Interpretation, factor(data0$Domain), mean)

tapply(Interpretation, factor(data0$Group), mean)

tapply(Interpretation, factor(data0$Rules), sd)

tapply(Interpretation, factor(data0$Domain), sd)

tapply(Interpretation, factor(data0$Group), sd)

tapply(Usefulness, factor(data0$Rules), mean)

tapply(Usefulness, factor(data0$Domain), mean)

tapply(Usefulness, factor(data0$Group), mean)

tapply(Usefulness, factor(data0$Rules), sd)

tapply(Usefulness, factor(data0$Domain), sd)

tapply(Usefulness, factor(data0$Group), sd)

tapply(Information, factor(data0$Rules), mean)

tapply(Information, factor(data0$Domain), mean)

tapply(Information, factor(data0$Group), mean)

tapply(Information, factor(data0$Rules), sd)

tapply(Information, factor(data0$Domain), sd)

tapply(Information, factor(data0$Group), sd)

K.7 Hypothesis Testing

# ###############################################
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# Joerg Evermann, 2003

#

# S program for hypothesis testing

#

# ###############################################

#

# ######################

# Load NLME library

#

library(nlme)

#

# ######################

# Read the data from file

#

data0 <- read.csv(file="results_for_anova2.csv",

header=TRUE)

attach(data0)

#

# ###############################################

# ANOVA First

#

# #####################

# Some data plots

#

postscript("aov1b.eps", width=6, onefile=FALSE)

par ( mfrow=c(3,1) )

plot.factor(data0$Rules, Prob)

plot.factor(data0$Domain, Prob)

plot.factor(data0$Group, Prob)

par ( mfrow=c(1,1) )

dev.off()

#

# #####################

# Now the model fit

#

fitted.ao1 <- aov(Prob ~ (Rules + Domain + Group)^2 +

UML.TTL + UML.A + SelfAssess + Time + Comp +

Interpretation + Usefulness + Information +

Error(Subject), data0)

#
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summary(fitted.ao1)

coef(fitted.ao1)

resid(fitted.ao1)

#

# #####################

# Interaction plots

#

postscript("aov1c.eps", width=6, onefile=FALSE)

interaction.plot(Rules, Group, Prob)

dev.off()

postscript("aov1d.eps", width=6, onefile=FALSE)

interaction.plot(Rules, Domain, Prob)

dev.off()

#

#

#

# ###############

# Smaller model

#

fitted.ao2 <- aov(Prob ~ (Rules + Group)^2 +

UML.TTL + Error(Subject), data0)

#

summary(fitted.ao2)

coef(fitted.ao2)

resid(fitted.ao2)

#

#

# ###############################################

# Linear Models

#

# Build the groupedData object

#

gdform = Prob ~ Rules | Subject

outer = ~ UML.A * UML.TTL * Rules * Group

inner = ~ Interpration * Usefulness * Information

* Comp * Time * Domain

gData = groupedData(formula = gdform, data = data0,

outer = outer, inner = inner)

#

# #################################################
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# Analysis using linear models

#

# #######################

# Plot the data

#

postscript("data1.eps", width=6, onefile=FALSE)

plot(gData)

dev.off()

postscript("data2.eps", width=6, onefile=FALSE)

plot(gData, outer = ~ Domain * Group)

dev.off()

#

# #################################################

# Try a regular linear model first

#

fitted.lm0 <- lm(Prob ~ (Rules + Domain + Group)^2 +

UML.TTL + UML.A + Time + Information +

Interpretation + Usefulness + Comp + SelfAssess, gData)

summary(fitted.lm0)

#

# ######################

# Diagnostic plots

#

par( mfrow=c(3,2) )

postscript("diaglm0.eps", width=6, onefile=FALSE)

plot (fitted.lm0)

dev.off()

#

#

# ####################

# Use the auto step function to add one factor at

# a time until the model does not improve anymore

#

fitted.lm.base <- lm(Prob ~ 1, gData)

#

step(fitted.lm.base, Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + UML.A + Time + Information + Interpretation

+ Usefulness + Comp + SelfAssess)

#

# #####################
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# Try a smaller model

#

fitted.lm1 <- lm(Prob ~ (Rules + Group)^2 + UML.TTL, gData)

summary(fitted.lm1)

#

par( mfrow=c(3,2) )

postscript("diaglm1.eps", width=6, onefile=FALSE)

plot (fitted.lm1)

dev.off()

#

#

# ################################################

# Fit the model using linear mixed effects modelling

#

fitted1 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + UML.A + Time + Information

+ Interpretation + Usefulness + Comp + SelfAssess,

gData, random = ~ 1 | Subject)

summary(fitted1)

anova(fitted1)

intervals(fitted1)

#

#

# ######################

# Plot diagnositics

#

postscript("observed1.eps", width=6, onefile=FALSE)

plot(fitted1, Prob ~ fitted(.))

dev.off()

postscript("resid1a.eps", width=6, onefile=FALSE)

plot(fitted1, Subject~resid(.), abline= 0)

dev.off()

postscript("resid1b.eps", width=6, onefile=FALSE)

plot(fitted1, resid(.) ~ fitted(.) | Group)

dev.off()

postscript("resid1c.eps", width=6, onefile=FALSE)

plot(fitted1, resid(.) ~ fitted(.) | Domain)

dev.off()

postscript("resdi1d.eps", width=6, onefile=FALSE)

plot(fitted1, resid(.) ~ fitted(.) | Rules)
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dev.off()

#

#

# ########################

# Test for heteroscedasticity:

#

# Model different error variances between the

# different factor stratums, e.g. Group,

# Domain and Rules

#

# Test with ANOVA Model

#

fitted1a <- update (fitted1,

weights=varIdent(form = ~ 1 | Group))

anova(fitted1, fitted1a)

#

fitted1b <- update (fitted1,

weights=varIdent(form = ~ 1 | Domain))

anova(fitted1, fitted1b)

#

fitted1c <- update (fitted1,

weights=varIdent(form = ~ 1 | Rules))

anova(fitted1, fitted1c)

#

# #########################

# Plot diagnostics for standard errors/residuals

#

postscript("qqnorm1a.eps", width=6, onefile=FALSE)

qqnorm(fitted1, ~resid(.), id = 0.1)

dev.off()

postscript("qqnorm1b.eps", width=6, onefile=FALSE)

qqnorm(fitted1, ~ resid(.) | Group, id = 0.1)

dev.off()

postscript("qqnorm1c.eps", width=6, onefile=FALSE)

qqnorm(fitted1, ~ resid(.) | Domain, id = 0.1)

dev.off()

postscript("qqnorm1d.eps", width=6, onefile=FALSE)

qqnorm(fitted1, ~ resid(.) | Rules, id = 0.1)

dev.off()

#
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###########################

# Test for independence of random effects

#

# Random effects are normally distributed and

# have zero mean

#

postscript("ranef1.eps", width = 6, onefile=FALSE)

qqnorm(fitted1, ~ranef(.), id = 0.10, cex = 0.7)

dev.off()

#

#

# ##########################

# Try to find the best, most parsimonious model

# by adding in terms

#

# Start with a simple model

#

fitted2 <- lme(Prob ~ (Rules + Group)^2, gData,

random = ~ 1 | Subject)

summary(fitted2)

anova(fitted2)

intervals(fitted2)

#

############################

# Plot diagnostics

#

postscript("observed2.eps", width=6, onefile=FALSE)

plot(fitted2, Prob ~ fitted(.))

dev.off()

#

# ##########################

# Test again for heteroscedasticity:

#

# Model different error variances between the different

# factor stratums, e.g. Group, Domain and Rules

#

# Test with ANOVA Model

#

fitted2a <- update (fitted2,

weights=varIdent(form = ~ 1 | Group))
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anova(fitted2, fitted2a)

#

fitted2b <- update (fitted2,

weights=varIdent(form = ~ 1 | Rules))

anova(fitted2, fitted2b)

#

#

postscript("resid2a.eps", width=6, onefile=FALSE)

plot(fitted1, Subject~resid(.), abline= 0)

dev.off()

postscript("resid2b.eps", width=6, onefile=FALSE)

plot(fitted1, resid(.) ~ fitted(.) | Group)

dev.off()

postscript("resid2c.eps", width=6, onefile=FALSE)

plot(fitted1, resid(.) ~ fitted(.) | Rules)

dev.off()

#

postscript("qqnorm2a.eps", width=6, onefile=FALSE)

qqnorm(fitted2, ~resid(.))

dev.off()

postscript("qqnorm2b.eps", width=6, onefile=FALSE)

qqnorm(fitted2, ~ resid(.) | Group)

dev.off()

postscript("qqnorm2c.eps", width=6, onefile=FALSE)

qqnorm(fitted2, ~ resid(.) | Rules)

dev.off()

#

# ###########################

# Test again for independence of random effects

#

# Random effects are normally distributed and

# have zero mean

#

postscript("ranef2.eps", width = 6, onefile=FALSE)

qqnorm(fitted2, ~ranef(.), id = 0.10, cex = 0.7)

dev.off()

#

# ###########################

# Add some more variables to see...

#
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fitted3 <- lme(Prob ~ (Rules + Domain + Group)^2,

gData, random = ~ 1 | Subject)

summary(fitted3)

anova(fitted3)

#

fitted4 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL, gData,random = ~ 1 | Subject)

summary(fitted4)

anova(fitted4)

#

fitted5 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + Time, gData, random = ~ 1 | Subject)

summary(fitted5)

anova(fitted5)

#

fitted6 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + Time + Comp, gData, random = ~ 1 | Subject)

summary(fitted6)

anova(fitted6)

#

fitted7 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + Time + Comp + SelfAssess, gData,

random = ~ 1 | Subject)

summary(fitted7)

anova(fitted7)

#

fitted8 <- lme(Prob ~ (Rules + Domain + Group)^2

+ UML.TTL + Time + Comp + SelfAssess + UML.A

+ Information + Usefulness + Interpretation,

gData, random = ~ 1 | Subject)

summary(fitted8)

anova(fitted8)

#

K.8 Diagram Properties

# ##############################################

# Joerg Evermann, 2003
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#

# Anova procedure for analyzing the effect of

# Rules, Domain and Group on Information content,

# Usefulness and Ease of interpretation

# ##############################################

#

# #######################

# Read the data from file

#

data0 <- read.csv(file="results_for_anova2.csv",

header=TRUE)

attach(data0)

#

# #######################

# ANOVA models for each

# of the perceived control

# variables

#

fitted.me1 <-

aov(Information ~ (Rules + Domain + Group)^2

+ Error(Subject), data0)

fitted.me2 <-

aov(Usefulness ~ (Rules + Domain + Group)^2

+ Error(Subject), data0)

fitted.me3 <-

aov(Interpretation ~ (Rules + Domain + Group)^2

+ Error(Subject), data0)

#

summary(fitted.me1)

tapply(Information, factor(data0$Rules), mean)

tapply(Information, factor(data0$Domain), mean)

tapply(Information, factor(data0$Group), mean)

tapply(Information, factor(data0$Rules), sd)

tapply(Information, factor(data0$Domain), sd)

tapply(Information, factor(data0$Group), sd)

#

summary(fitted.me2)
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tapply(Usefulness, factor(data0$Rules), mean)

tapply(Usefulness, factor(data0$Domain), mean)

tapply(Usefulness, factor(data0$Group), mean)

tapply(Usefulness, factor(data0$Rules), sd)

tapply(Usefulness, factor(data0$Domain), sd)

tapply(Usefulness, factor(data0$Group), sd)

#

summary(fitted.me3)

tapply(Interpretation, factor(data0$Rules), mean)

tapply(Interpretation, factor(data0$Domain), mean)

tapply(Interpretation, factor(data0$Group), mean)

tapply(Interpretation, factor(data0$Rules), sd)

tapply(Interpretation, factor(data0$Domain), sd)

tapply(Interpretation, factor(data0$Group), sd)

#

# ###########################

# Determine effect of group on time and

# UML knowledge

#

fitted.me4 <- aov(Time ~ Group + Error(Subject),

data0)

summary(fitted.me4)

tapply(Time, factor(data0$Rules), mean)

tapply(Time, factor(data0$Domain), mean)

tapply(Time, factor(data0$Group), mean)

tapply(Time, factor(data0$Rules), sd)

tapply(Time, factor(data0$Domain), sd)

tapply(Time, factor(data0$Group), sd)

#

fitted.me5 <- aov(UML.TTL ~ Group + Error(Subject),

data0)

summary(fitted.me5)

tapply(UML.TTL, factor(data0$Rules), mean)

tapply(UML.TTL, factor(data0$Domain), mean)
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tapply(UML.TTL, factor(data0$Group), mean)

tapply(UML.TTL, factor(data0$Rules), sd)

tapply(UML.TTL, factor(data0$Domain), sd)

tapply(UML.TTL, factor(data0$Group), sd)
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