
An Interface from YAWL to OpenERP

Joerg Evermann

Faculty of Business Administration, Memorial University of Newfoundland, Canada

jevermann@mun.ca

Abstract. The paper describes an interface from the YAWL workflow man-

agement system to the OpenERP enterprise system. The interface is implement-

ed as a codelet, and provides access to the full range of OpenERP information

and functions. The paper provides an overview of the design of the codelet, the

data types for its use, and an example application.

Keywords. YAWL, OpenERP, workflow management, enterprise system

1 Introduction

The YAWL (Yet Another Workflow Language) workflow management system,

through its modular architecture that is based on web-services and other standards,

provides multiple ways to extend the system for use with both SOA (service-oriented

architecture) and legacy applications. One important interface requirement in many

usage scenarios is to an ERP (enterprise resource planning) system. While many ERP

systems provide their own best-practice processes and workflow engines, these en-

gines and their workflow description languages are rarely complete with respect to

workflow patterns, based on a formal foundation like the YAWL language (which

provides design-time analysis capabilities), or as easy to configure and use as the

YAWL language and system.

The OpenERP system is an open-source ERP system that provides core modules

such as sales, purchasing, accounting, production management, as well as extensions

for point-of-sales, project management, etc. Among open-source ERP systems, it is

one of the most mature and feature complete systems. OpenERP provides its own

process model and workflow engine. However, the configuration language is XML

based and there is no recognizable formal underpinning for the workflow description

language.

This suggested the development of an interface from YAWL to OpenERP, so that

OpenERP functionality can be used in a YAWL workflow. The remainder of the pa-

per describes the implementation of this interface as a YAWL codelet. The next sec-

tion provides an introduction to the OpenERP system, followed by design choices for

the interface codelet. This is followed by a description of the codelet parameters and

data types, and an example workflow.

The codelet, associated XML Schema data type definitions, and YAWL example

workflow definitions are available under the GPL v2 license.

mailto:jevermann@mun.ca

2 The OpenERP System from the YAWL perspective

OpenERP is developed using the Python language and provides a business object

model that abstracts, through an object-relational mapping layer, from the underlying

physical data structures and functions. On top of this object model, OpenERP defines

a process model and workflow mechanism for many of the business objects. Open-

ERP provides an XML-RPC based web-services interface to both its business objects

and its workflow mechanism. This interface provides the following generic operations

on all business objects:

 Create (returns the new business object ID)

 Search (returns a set of business object IDs that match a query)

 Read (returns a set of attribute values for a given list of business object IDs and a

given list of attribute names)

 Write (updates the provided attributes of business objects with a given list of IDs

with the provided new value)

 Delete (“Unlink”)

OpenERP also provides a means to call methods defined on the business objects.

However, calling the methods directly (outside the built-in, intended workflow) may

lead to issues such as the (implicit) pre-conditions (as per the built-in workflow) not

being met, or the consequent actions (as per the built-in workflow) not being execut-

ed. Thus, calling the business object methods directly is not recommended. Instead,

OpenERP provides a mechanism to send “signals” to its workflows. These signals can

be used to advance the built-in workflow for a business object. For example, a signal

may be sent to confirm a draft sales quotation and transform it to a sales order. The

OpenERP workflow mechanism then calls the appropriate methods on the business

object. While this is a “safe” mechanism to interact with the OpenERP system, it also

entails the following constraints:

 The externally defined and externally controlled workflow must be essentially

isomorphic to the internally configured workflow

 Developing an external workflow requires a thorough understanding of the built-in

workflow, the states of the business objects, and the business object methods that

are called for state transitions.

The OpenERP workflow model is based on object states and transitions between

them. Each object state is associated with a method, whereas transitions are either

triggered by signals, or triggered by changes in attribute values. The workflow model

is described in XML language but can be depicted graphically, as in Figure 1 for the

sales workflow. Transitions are annotated by pre-conditions on top of the horizontal

bar, and signals below. Transitions with pre-conditions only are data triggered,

whereas transitions with signals are triggered when OpenERP receives that signal.

Fig. 1. OpenERP sales workflow (adapted from http://doc.openerp.com/)

3 Design

YAWL provides different ways to integrate external systems, the three most prom-

inent being the web-services invoker service, the codelet mechanism, and the external

data gateway. Any of these can in principle be used to develop the interface.

As the YAWL web-service invoker service requires a valid WSDL file and uses

SOAP rather than XML-RPC, this would have required a translation server that ac-

cepts SOAP requests and issues XML-RPC requests in turn. Alternatively, a new

XML-RPC web-service invoker service could have been built as an alternative to the

http://doc.openerp.com/

existing SOAP based one. Either of these alternatives was considered to be too tech-

nically complex for the limited time-frame of the project.

An external data gateway could be constructed to access either the business object

information in OpenERP, or directly access the underlying relational data. Technical-

ly, one could also imagine that this might be used to access methods or send work-

flow signals, but this would not be conceptually sensible, as the data gateway is in-

tended primarily for data access.

Instead, a simple codelet was developed that accepts input and provides output us-

ing pre-specified data types. Two options were investigated:

 Offer access to specific OpenERP business objects, their data, methods, and work-

flow signals. In this scenario, XML data types would need to be developed that re-

flect the OpenERP business object model, e.g. a data type for the “sales order” ob-

ject, a data type for “sales order line” object, etc. This would remove the burden of

data type development from the YAWL process designer, but would at the same

time limit the flexibility of the codelet to a fixed set of business objects, their data

and methods as determined by the codelet design.

 Offer access to generic OpenERP operations (see Section 2) using general-purpose

data types. This requires the codelet user, i.e. the YAWL process designer, to de-

velop appropriate business object data types and deal with the specifics of data

transformation on the YAWL side, e.g. as part of the input and output mappings

for tasks. The benefit is that the codelet does not prescribe specific data types, and

it can access any OpenERP business object or workflow. The codelet was devel-

oped based on this, second model.

The codelet itself is stateless and establishes a new connection to the OpenERP

system for every call, thus requiring the OpenERP connection information with every

call. While this may not be as efficient as returning a connection handle to the YAWL

workflow, the fact that the YAWL workflow may be long-running means that a con-

nection handle in the YAWL workflow data might expire. Further, as tasks in the

YAWL workflow may be assigned to different (human) resources, maintaining a

quasi-persistent connection handle would also force the same OpenERP user account

for the entire workflow, which may not be desirable in practice.

4 Parameters and Data Types

Table 1 below lists the input parameters for the codelet for every OpenERP call.

The codelet returns a result named Result of type ResultType, described below.

Parameter Type Description

URL xsd:String Hostname for OpenERP

Port xsd:Integer Network port for OpenERP

Database xsd:String OpenERP database to select

Username xsd:String Username for OpenERP

Password xsd:String Password for OpenERP

Object xsd:String Type of OpenERP business object on which

method or action is to be called

Method xsd:String OpenERP method name

Parameters ParameterType Parameters appropriate for the called method

Table 1. OpenERP codelet input parameters

The content of the method parameter is limited to the five generic methods for

OpenERP business objects: search, write, read, delete, create, and the

additional action, which is used for sending signals to OpenERP workflows. The

ParameterType data type for the input parameters is defined as follows:

<xsd:complexType name="ParameterType">

 <xsd:choice>

 <xsd:element name="SearchParameters" type="SearchParamsType"/>

 <xsd:element name="CreateParameters" type="CreateParamsType"/>

 <xsd:element name="ReadParameters" type="ReadParamsType"/>

 <xsd:element name="WriteParameters" type="WriteParamsType"/>

 <xsd:element name="DeleteParameters" type="DeleteParamsType"/>

 <xsd:element name="ActionParameters" type="ActionParamsType"/>

 </xsd:choice>

</xsd:complexType>

The ActionParamsType allows the codelet user to send a signal to an

OpenERP business object with a certain ID:

<xsd:complexType name="ActionParamsType">

 <xsd:sequence>

 <xsd:element name="Action" type="xsd:string"/>

 <xsd:element name="ID" type="xsd:integer"/>

 </xsd:sequence>

</xsd:complexType>

Another example, the WriteParamsType, is defined in Listing 1 in the

appendix and allows the codelet user to write a set of values to a set of fields for

business objects whose ID is specified in the provided list.

One of the challenges in the codelet design is the fact that fields in OpenERP

business objects that refer to other business objects may be of cardinality one-to-one,

many-to-one, or many-to-many. This is reflected in the typeEnumerationType

in Listing 1 and the fact that the cardinality of the <value> element of the

fieldValuePairType (Listing 1) is unbounded. The types many2one and

one2many are only supported for reading of values, not writing or creating. When

the codelet reads fields of this type, OpenERP returns a serialization of a Java array

that contains the IDs and names of the referred to business object. The codelet

decodes this information and encodes the list of IDs and names in the appropriate

XML datatypes. When used for writing or creating business objects, only the first

<value> element is read, and assumed to be of type string.

The results that the codelet returns depend on the invoked method. Alternatively,

the codelet returns an error, either passed back from OpenERP, or an exception in the

codelet, or an error encountered by the codelet, e.g. when the input paramters do not

match the invoked method type.

<xsd:complexType name="ResultType">

 <xsd:choice>

 <xsd:element name="Error" type="xsd:string"/>

 <xsd:choice>

 <xsd:element name="SearchResults" type="SearchResultsType" />

 <xsd:element name="CreateResults" type="CreateResultsType" />

 <xsd:element name="ReadResults" type="ReadResultsType" />

 <xsd:element name="WriteResults" type="xsd:boolean" />

 <xsd:element name="DeleteResults" type="xsd:boolean" />

 <xsd:element name="ActionResults" type="xsd:boolean" />

 </xsd:choice>

 </xsd:choice>

</xsd:complexType>

As an example, the results of reading a set of fields for a set of business objects are

encoded in the following ReadResultsType:

<xsd:complexType name="ReadResultsType">

 <xsd:sequence>

 <xsd:element name="FieldValuePairList"

 type="FieldValuePairListType"

 maxOccurs="unbounded" />

 </xsd:sequence>

</xsd:complexType>

Listing 2 in the appendix shows the complete XML that is sent from YAWL as input

to the codelet (for a work item of task „ReadSalesOrders“). It reads details, specified

in <FieldList>, from the sales orders (<Object>) whose ID is given in

<IDList>. The (abbreviated) response document that is passed back from the

codelet is shown in Listing 3 in the appendix. It contains a <FieldValuePair-

List> for each sales order. Within this list are the <FieldValuePair> elements

that indicate the field name, value and field type.

5 Use and Examples

This section illustrates the use of the codelet for managing sales orders in Open-

ERP. Figure 1 above shows the sales order workflow from the OpenERP perspective,

Figure 2 below shows the YAWL workflow for creating and processing sales order.

Fig. 2. Sales order process

The codelet design decisions have an impact on the usage of the codelet in two im-

portant ways. First, the direct representation of the basic OpenERP method calls

(search, read, etc.) leads to typical combinations of search-read sequences as two

automated tasks in the YAWL workflow. Second, the relatively low degree of ab-

straction of the codelet parameters suggests that the data transformations in the

YAWL task input-/output-mappings are not trivial. For example, a data type for a

sales order needs to be transformed to and from a FieldValuePairList when

invoking the codelet. Thus, the use of the codelet requires considerable XQuery ex-

pertise.

The following is an example XQuery used to convert the results of a read operation

for OpenERP “shops” to a data structure that represents a shop in YAWL and is used

for presentation to the user. Note the selection of the second Value element in the

field value pair list. This results from a one-to-many cardinality between shops and

warehouses, pricelists, and companies in OpenERP. As explained above, in these

cases, OpenERP returns an array of values, the first of which is the ID, which is not

informative for the user, while the second is the name of the business object.

{ for $x in Create-

SalesOrder/Result/ReadResults/FieldValuePairList

 return

 <Shop>

 <ID>{$x/FieldValuePair[Field='id']/Value/text()}</ID>

 <Name>{$x/FieldValuePair[Field='name']/Value/text()}</Name>

 <PaymentDefaultID>

{$x/FieldValuePair[Field='payment_default_id']/Value[2]/text()}

 </PaymentDefaultID>

 <WarehouseID>

{$x/FieldValuePair[Field='warehouse_id']/Value[2]/text()}

 </WarehouseID>

 <PricelistID>

{$x/FieldValuePair[Field='pricelist_id']/Value[2]/text()}

 </PricelistID>

 <CompanyID>

{$x/FieldValuePair[Field='company_id']/Value[2]/text()}

 </CompanyID>

 </Shop> }

6 Conclusion

This paper presented a YAWL codelet to access the OpenERP system. The codelet

exposes low-level access functionality, rather than business-level objects or methods.

This low level of abstraction requires the codelet user to have a thorough understand-

ing of the OpenERP data model, methods and workflows. At the same time, this de-

sign makes the codelet useful for the widest range of applications. Codelet users and

workflow designers may also use YAWL features to build additional layers of ab-

straction on top of this foundation. For example, YAWL worklets could be defined

that aggregate some of the codelet functions, e.g. the search-read combinations, into

assemblies that are meaningful at the business level.

7 Bibliography

Instead of a formal bibliography, this section provides an annotated list of web ad-

dresses for relevant information on OpenERP.

http://doc.openerp.com/v6.0/developer/6_22_XML-RPC_web_services/index.html

This page provides information on the XML-RPCS architecture of the OpenERP web-

services and includes sample code to access these services from various languages.

http://doc.openerp.com/v6.0/developer/6_21_web_services/index.html

This page provides information on the basic methods exposed by OpenERP business

objects, and the parameters they require.

http://doc.openerp.com/v6.0/developer/2_5_Objects_Fields_Methods/index.html

This page provides an overview over the business object model in OpenERP, the

different types of fields and the basic methods for all OpenERP business objects.

http://doc.openerp.com/v6.0/developer/3_9_Workflow_Business_Process/index.html

http://doc.openerp.com/v6.0/developer/6_22_XML-RPC_web_services/index.html
http://doc.openerp.com/v6.0/developer/6_21_web_services/index.html
http://doc.openerp.com/v6.0/developer/2_5_Objects_Fields_Methods/index.html
http://doc.openerp.com/v6.0/developer/3_9_Workflow_Business_Process/index.html

This page provides information on the workflow concept used by OpenERP, how

workflows are defined in OpenERP and their connection with business object states

and methods.

Information on specific business objects and workflows must be discerned from

the OpenERP source code (written in Python). In an OpenERP installation, these are

found in the /server/openerp/addons directory and subdirectories of those.

8 Appendix

Listing 1.

<xsd:complexType name="WriteParamsType">

 <xsd:sequence>

 <xsd:element name="IDList" type="IDListType"/>

 <xsd:element name="FieldValuePairList"

 type="FieldValuePairListType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="FieldValuePairListType">

 <xsd:sequence>

 <xsd:element name="FieldValuePair" type="FieldValuePairType"

 minOccurs="1" maxOccurs="unbounded" />

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="FieldValuePairType">

 <xsd:sequence>

 <xsd:element name="Field" type="xsd:string" />

 <xsd:element name="Value" type="xsd:string"

 maxOccurs="unbounded"/>

 <xsd:element name="Type" type="typeEnumerationType"

 minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="typeEnumerationType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="string"/>

 <xsd:enumeration value="integer"/>

 <xsd:enumeration value="long"/>

 <xsd:enumeration value="boolean"/>

 <xsd:enumeration value="float"/>

 <xsd:enumeration value="double"/>

 <xsd:enumeration value="many2one"/>

 <xsd:enumeration value="one2many"/>

 </xsd:restriction>

</xsd:simpleType>

Listing 2

<ReadSalesOrders>

 <URL>ec2-175-139-127-88.compute-1.amazonaws.com</URL>

 <Port>8069</Port>

 <Database>BicycleShop</Database>

 <Username>admin</Username>

 <Password>password</Password>

 <Object>sale.order</Object>

 <Method>read</Method>

 <Parameters>

 <ReadParameters>

 <IDList>

 <ID>21</ID>

 <ID>20</ID>

 <ID>19</ID>

 <ID>27</ID>

 <ID>25</ID>

 <ID>24</ID>

 </IDList>

 <FieldList>

 <Field>id</Field>

 <Field>state</Field>

 <Field>name</Field>

 <Field>client_order_ref</Field>

 <Field>order_policy</Field>

 <Field>picking_policy</Field>

 <Field>shipped</Field>

 <Field>invoiced</Field>

 <Field>amount_total</Field>

 <Field>picking_ids</Field>

 <Field>invoice_ids</Field>

 <Field>order_line</Field>

 </FieldList>

 </ReadParameters>

 </Parameters>

</ReadSalesOrders>

Listing 3.

<codelet_output>

 <Result>

 <ReadResults>

 <FieldValuePairList>

 <FieldValuePair>

 <Field>id</Field>

 <Value>21</Value>

 <Type>integer</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>order_policy</Field>

 <Value>manual</Value>

 <Type>string</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>picking_policy</Field>

 <Value>direct</Value>

 <Type>string</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>shipped</Field>

 <Value>true</Value>

 <Type>boolean</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>amount_total</Field>

 <Value>565.0</Value>

 <Type>double</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>name</Field>

 <Value>SO012</Value>

 <Type>string</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>state</Field>

 <Value>progress</Value>

 <Type>string</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>order_line</Field>

 <Value>13</Value>

 <Type>one2many</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>invoice_ids</Field>

 <Value>2</Value>

 <Type>one2many</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>client_order_ref</Field>

 <Value>false</Value>

 <Type>boolean</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>picking_ids</Field>

 <Value>3</Value>

 <Type>one2many</Type>

 </FieldValuePair>

 <FieldValuePair>

 <Field>invoiced</Field>

 <Value>false</Value>

 <Type>boolean</Type>

 </FieldValuePair>

 </FieldValuePairList>

<!-- more FieldValuePairList elements go in here ... -->

 </ReadResults>

 </Result>

</codelet_output>

