
XES Tensorflow – Process Prediction using the
Tensorflow Deep-Learning Framework

Demo Paper

Joerg Evermann1, Jana-Rebecca Rehse2,3, and Peter Fettke2,3

1 Memorial University of Newfoundland
2 German Research Center for Artificial Intelligence

3 Saarland University

Abstract. Predicting the next activity of a running process is an impor-
tant aspect of process management. Recently, artificial neural networks,
so called deep-learning approaches, have been proposed to address this
challenge. This demo paper describes a software application that ap-
plies the Tensorflow deep-learning framework to process prediction. The
software application reads industry-standard XES files for training and
presents the user with an easy-to-use graphical user interface for both
training and prediction. The system provides several improvements over
earlier work. This demo paper focuses on the software implementation
and describes the architecture and user interface.

Keywords: Process management, Process intelligence, Process predic-
tion, Deep learning, Neural networks

1 Introduction

The prediction of the future development of a running case, given information
about past cases and the current state of the case, i.e. predicting trace suffixes
from trace prefixes, is a core problem in business process intelligence (BPI).
Recently, deep learning [4, 5] with artificial neural networks has become an im-
port predictive method due to innovations in neural network architectures, the
availability of high-performance GPU and cluster-based systems, and the open-
sourcing of of multiple software frameworks at a high level of abstraction.

Because of the sequential nature of process traces, recurrent neural networks
are a natural fit to the problem of process prediction. An initial application of
RNN to BPI [1] used the executing activity of each trace event as both pre-
dictor and predicted variable. Evaluation on the BPI 2012 and 2013 challenge
datasets showed training performance of up to 90%, but that study did not per-
form cross-validation. A more systematic study [2], including cross validation,
showed significant overfitting of the earlier results, i.e. the neural network capi-
talizes on idiosyncrasies of the training sample that do not generalize. The later
work also showed that the size of the neural network has a significant effect on
predictive performance. Further, predictive performance can be improved when

organizational data is included as predictor. Both [2] and [1] use approaches in
which each “word” (e.g. the name of the executing activity of each event) is em-
bedded in a k-dimensional vector space (details in Sec. 4.2 below), which forms
the input to the neural network. In contrast, an independent, parallel effort [6]
eschews the use of embeddings, encoding event information as numbered cat-
egories in one-hot form. That approach also adds time-of-day and day-of-week
as additional predictors. Both approaches compare the predicted suffix to the
target suffix by means of a string edit distance, showing similar performance.
Additionally, [2] demonstrates that predicted suffixes are similar to targets by
showing similar replay fitness on a model mined from the target traces.

The software application described here extends the previous approaches
in a number of ways. Primarily, it is more general and flexible with respect
to the case and event attributes that can be used as predictor or predicted
variables. Whereas [2, 6] use only the activity name and lifecycle transition of
an event, and [2] also includes resource information of an event as predictor, our
application can use any case- or event-level attribute as predictor. We can also
predict any and multiple event attributes of subsequent events. These advantages
are due to differences in input encoding. Whereas [2] concatenates activity name,
lifecycle transition and resource information into an input string, which is then
assigned a category number and embedded in a vector space for input to the
neural network, our approach assigns category numbers to each input attribute
separately, then embeds them into their own vector spaces and concatenates the
embedding vectors to form the input vector. Details are presented in Sec. 4.2. The
advantage is much smaller input “vocabularies” (sets of unique inputs) which
can be adequately represented by much smaller input vectors. It also allows easy
mixing of categorical predictors with embedding inputs and numerical predictors
which are directly passed to the neural net, simply by concatenating these inputs.

Additionally, our approach can predict multiple variables, for example the
activity as well as the resource information of the next event. We use either
shared or separate RNN layers for each predicted attribute.

Finally, the software tool presented in this demo paper includes a graphical
user interface that guides novice users and avoids the need for specialized coding,
it provides integration with a graphical dashboard, and a stand-alone prediction
application with an easy-to-use prediction API.

As a demo paper, this paper focuses on the software implementation, archi-
tecture and user interface with only a short exposition of the neural network
background. In particular, we describe the input and output handling of the
neural network (Sections 4.2, 4.4), as this is where our approach differs from [2,
6]. More details on neural networks in general can be found in [4, 5], and, applied
to process prediction, in [2, 6]. Our software is open-source and available from
the authors4.

4 http://joerg.evermann.ca/software.html

2 Recurrent Neural Networks Overview

A recurrent neural network (RNN) is one in which network cells can maintain
state information by feeding the state output back to themselves, often using
a form of long short term memory (LSTM) cells [3]. To make this feedback
tractable within the context of backpropagation, network cells are copied, or
“unrolled”, for a number of steps. Fig. 1 shows an example RNN with LSTM
cells; detailed descriptions can be found in [2, 6].

Initial
State 1 LSTM LSTM

state

LSTM

LSTM
state

LSTM

LSTM
state

LSTM

LSTM
state

LSTM

Final
State 1

LSTMInitial
State 2

state

b x k

output

state

b x k

output

state

b x k

output

state

b x k

output

Final
State 2

b x k

output

b x k

input

b x k

input

b x k

input

b x k

input

b x k

input

Fig. 1. An RNN with 5 unrolled steps, 2 layers, batch size b and input length k

3 Tensorflow

Our software implementation is based on the open-source Tensorflow deep learn-
ing framework5. Tensors are generalizations of matrices to more than two dimen-
sions, i.e. n-dimensional arrays. A Tensorflow application builds a computational
graph using tensor operations. A loss function is a graph node that is to be mini-
mized. It compares computed outputs to target outputs in some way, for example
as cross-entropy for categorical variables, or root mean squared error for numeric
variables. Tensorflow computes gradients of all tensors in the graph with respect
to the loss function and provides various gradient descent optimizers. Training
proceeds by iteratively feeding the Tensorflor computational graph with inputs
and targets and optimizing the loss function using back-propagated errors.

4 Training

Our software system consists of two separate applications, one for training a
deep-learning model, and another one for predicting from a trained model. This
section describes the training application.

5 https://www.tensorflow.org

4.1 XES Parser

Training data is read from XES log files [7], beginning with global attribute
and event classifier definitions. Using these, the traces and their events are read.
While the XES standard allows traces and events to omit globally declared at-
tributes, it does not allow specification of default values for missing attributes.
Hence, the XES parser omits any incomplete or empty traces. String-typed at-
tributes are treated as categorical variables. Their unique values (categories) are
numbered consecutively, encoding each as an integer in 0 . . . li, where li is the
number of unique values for attribute i. Datetime-typed attributes are converted
to relative time differences from the previous event. The user can choose whether
to standardize or to scale them to days, hours, minutes or seconds for meaningful
loss functions. Numerical attributes are standardized. For multi-attribute event
classifiers, the parser constructs joint attributes by concatenating the string-
typed attributes or by multiplying the numerically-typed attributes specified in
the classifier definition. End-of-case markers are inserted after each trace.

4.2 Inputs

RNN training proceeds in “epochs”. In each epoch, the entire training dataset
is used. Before each epoch, the state of the RNN is reset to zero while trained
network parameter values are retained. Within each epoch, training proceeds in
batches of size b with averaged gradients to avoid overly large fluctuations of
gradients. The batch size b can be freely chosen by the user.

For each unrolled step s, the RNN accepts a floating point input tensor
Is ∈ Rb×p, where b is the batch size and p can be freely chosen. Numerical and
datetime predictors are encoded directly, each yielding a floating point tensor
Is,i ∈ Rb×1 for predictor attribute i. Categorical attributes, encoded as integer
category numbers, are transformed using an embedding matrix Ei ∈ Rli×ki . This
is a lookup matrix of size li×ki, where li is the number of categories for predictor
attribute i and ki can be freely chosen. Embedding lookup transforms an integer
category number js,i to a floating point vector of size ki. The larger the value of
ki, the better the attribute values are separated in the ki-dimensional space. At
the same time, larger ki lead to increased computational demands. The output
of the embedding lookup E(.) is a tensor Is,i ∈ Rb×ki = E(js,i). The tensors
for all predictor attributes are concatenated, yielding a tensor Cs ∈ Rb×m where
m is the sum of the second dimensions of the concatenated tensors. An input
projection P I

s ∈ Rm×p can be applied so that the input to each unrolled step of
the RNN is Is = Cs × P I

s .

4.3 Model

In our approach, the user can train a model on multiple predicted event at-
tributes (“target variables”) concurrently, for example predicting the activity as
well as the resource of the next event. For this, the user can choose to share the
RNN layers across the different target variables, or to construct a separate RNN
for each target variable. The input embeddings are shared in all cases.

4.4 Outputs

The output of the RNN for each unrolled step is a tensor Os ∈ Rb×p. For a
categorical predicted variable i, this is multiplied by an output projection PO

s,i ∈
Rp×li to yield Os,i ∈ Rb×li = Os × PO

s,i. A softmax function is applied to gener-

ate probabilities over the li different categories Ss,i ∈ Rb×li = softmaxli(Os,i).
A cross-entropy loss function Li = HSs,i

(Ts,i) is then applied, comparing the
output probabilities against “one-hot” encoded targets T . One-hot encoding is
a vector with the element indicating the target category number equal to one
and the remainder set to zero. For numerical attributes, the output Os is multi-
plied by a PO

s,i ∈ Rp×1 output projection, yielding Os,i ∈ Rb×1 = Os × PO
s,i.

This is compared to target values Ts,i using the mean square error (MSE)

Li = (Os,i − Ts,i)2, the root mean square error (RMSE) Li =
√

(Os,i − Ts,i)2,

or the mean absolute error (MAE) loss function Li = |Os,i − Ts,i|2.

4.5 Logging and TensorBoard Integration

Our software logs summary information about the proportion of correct predic-
tions and the loss function value for each training step. The embedding matrices

Fig. 2. Tensorboard dashboard showing training performance for 10 folds

for all categorical predictor variables are saved at the end of training, together
with the computational graph. This information can be read by the Tensorboard
tool (Fig. 2) to visualize the training performance, the graph structure, and to
analyze the embedding matrices using t-SNE or principal components projection
into two or three dimensions. Finally, the entire trained network is saved in a
“frozen”, compacted form to be loaded into the prediction application.

5 Prediction

The prediction application loads a trained model, saved by the training appli-
cation, as well as the corresponding training configuration, and predicts trace
suffixes from trace prefixes. Trace prefixes are read from XES files. Because the
trained model expects batches of size b, at most b trace prefixes are loaded at
a time. The network state is initialized to zero and the trace prefixes are input
to the trained network, encoded as described in Sec. 4.2. The network outputs
for the last element of a trace prefix are the predictions for the attributes of the
next event. For categorical attributes, the integer output indicating the category
number is translated back to the character string value. For datetime-typed at-
tributes, the attribute value is computed by adding the predicted value to the
attribute value of the prior event. The predicted event is then added to the
trace prefix and the prediction process can be repeated. In this way, suffixes of
arbitrary length can be predicted. The user can stop prediction when an end-of-
case marker has been predicted, or after a specified number of events have been
predicted. The predicted suffixes are written back to an XES file.

6 Software Implementation

Our software is implemented in Python 2.7 and uses Tensorflow 0.12 and Tkin-
ter for the user interface. Figure 3 shows the main screen that guides the user
through the selection of an XES file, the configuration of the RNN and training
parameters, to the training of the model.

Fig. 3. Main screen of the training application

Figure 4 shows the main configuration screen with sections for multi-attribute
classifiers, global event and case attributes, RNN and training parameters and
a choice of optimizer. Any classifier, global event and case attribute may be in-
cluded as predictor, and classifiers and global event attributes may be chosen as
predicted attributes (targets). The user can specify embedding dimensions for
categorical attributes; the default values are the square root of the number of
categories. The RNN configuration allows the user to specify batch size, number
of unrolled steps, number of RNN layers, number of training epochs, etc. Users
can specify an optional input mapping and the desired size of the RNN input
vector. Finally, users have a choice of different gradient descent optimizers of-
fered by Tensorflow and can adjust their hyperparameters. Configurations are
automatically saved and the user can load saved configurations.

Fig. 4. Configuration screen. User can choose multiple predictors and targets, set gen-
eral training parameters, and choose an optimizer.

Figure 5 shows the dialog indicating training progress. The current operation
is shown, as well as the training rate (events/second) and the global learning
rate for the gradient descent optimizer. For each predicted attribute, the latest
training performance (proportion of correct prediction and loss function value)
is shown.

Our focus is on providing a research tool for experimentation, rather than a
production tool. Therefore, we have not made use of distributed Tensorflow and
Tensorflow Serving. Tensorflow automatically allocates the compute operations
to available CPUs and GPUs on a single machine. This provides adequate per-

Fig. 5. Progress screen of the training process

formance for the small size of typical event logs (megabyte rather than terabyte).
We use our own prediction application with a simple API.

7 Conclusion

We presented a flexible deep-learning software application to predict business
processes from industry-standard XES event logs. The software provides an easy-
to-use graphical user interface for configuring predictors, targets, and parameters
of the deep-learning prediction method.

We have performed initial validation of the software to verify the correct
operation of the software tool. Using the BPIC 2012 and 2013 datasets with
the model and training parameters reported in [2], this software tool replicates
their training results in [2]. Current work with this software tool is ongoing, and
focuses on using different combinations of predictors and targets, made possible
by our flexible approach to handling predictors and constructing RNN inputs,
to improve upon the state-of-the-art prediction performance.

References

1. Evermann, J., Rehse, J.R., Fettke, P.: A deep learning approach for predicting
process behaviour at runtime. In: PRAISE Workshop at the 14th International
Conference on BPM (2016)

2. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learn-
ing. Decision Support Systems (2017), (in press)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
5. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks

61, 85–117 (2015)
6. Tax, N., Verenich, I., Rosa, M.L., Dumas, M.: Predictive business process monitoring

with LSTM neural networks. CoRR abs/1612.02130 (2016)
7. XES Working Group: IEEE standard for eXtensible Event Stream (XES) for achiev-

ing interoperability in event logs and event streams. IEEE Std 1849-2016 (2016)

