
Business Analytics

Joerg Evermann
Memorial University of Newfoundland

ii

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Contents

Preface xix

About the Author xxiii

1 Introduction 1
1.1 Introduction . 1
1.2 Methods, Techniques, and Tools . 3
1.3 Types of Analytics . 3
1.4 Machine Learning . 4
1.5 Analytics is not Statistics . 5
1.6 Tools used in this Course . 5
1.7 Ubuntu Linux . 12
1.8 Virtual Machines . 13
1.9 The Ubuntu Command Line (also for Mac Users) 14
1.10 Review Questions . 19
1.11 Hands-On Exercises . 20

2 Data, Data Types, Data Quality 23
2.1 Introduction . 23
2.2 Data Types . 24

2.2.1 Primitive Types . 24
2.2.2 Structured Data . 31
2.2.3 Unstructured Data . 48

2.3 Metadata . 55
2.4 Data Quality and Data Provenance 56
2.5 Data Cleaning and Validation . 59
2.6 Data Sources . 61
2.7 Review Questions . 64
2.8 Hands-On Exercises . 68

3 Managing Tabular Data with Relational Databases 73
3.1 Introduction . 73
3.2 Constraints and Data Types . 74

iii

iv CONTENTS

3.3 Introduction to SQL and PostgreSQL 76
3.4 Data Definition in SQL . 79
3.5 SQL Queries . 85
3.6 Review Questions . 94
3.7 Additional SQL Exercises . 95

4 Managing Graph Data with Graph Databases 99
4.1 Introduction . 99
4.2 Use Cases . 101
4.3 Graph Database Languages . 102
4.4 The Neo4j Graph Database Management System 103
4.5 Introduction to Cypher . 104
4.6 Defining Graphs in Cypher . 106
4.7 Graph Data Modeling . 109
4.8 Graph Queries with Cypher . 117
4.9 Review Questions . 122

5 Introduction to Data Management with R 125
5.1 Introduction . 125
5.2 Using R . 126
5.3 R Basics . 127
5.4 The R Environment . 131
5.5 Arrays, Matrices, Lists, and DataFrames 133
5.6 Tidyverse . 136
5.7 SQL and R . 144

6 Introduction to Data Management with Python 147
6.1 Introduction . 147
6.2 Python versus R . 148
6.3 Using Python . 149
6.4 Python Basics . 152
6.5 NumPy . 158
6.6 Data management with Pandas . 163
6.7 The Pagila Database in Pandas . 169

7 Data Visualization in R and Python 177
7.1 Introduction . 177
7.2 Honesty in Visualization . 180
7.3 Special Types of Data and Visual Analytics 183
7.4 Color Palettes . 190
7.5 Common Types of Plots . 195
7.6 Graphics Libraries and Frameworks 196
7.7 Mapping Data to Plot Elements . 199
7.8 Visualization in R using ggplot2 . 199
7.9 Visualization in Python using Plotly Express 226
7.10 Review Questions . 240

CONTENTS v

8 Business Process Analytics 243
8.1 Introduction . 243
8.2 Business Processes and Business Process Models 244
8.3 Business Process Event Logs . 245
8.4 Types and Goals of Process Analytics 248
8.5 Process Analytics Tools . 250
8.6 Process Mining in Python with PM4Py 252
8.7 Performance Mining . 263
8.8 Organizational Mining . 268
8.9 Review Questions . 270

9 Introduction to Supervised Machine Learning 275
9.1 Introduction . 277
9.2 Explanation and Prediction . 279
9.3 Bias and Variance in Regression Analysis 280
9.4 Model Quality in Classification . 286
9.5 Multinomial Classification . 295
9.6 Crossvalidation Methods . 298
9.7 Review Questions . 300

10 Regression and Classification Models 303
10.1 Introduction . 304
10.2 Linear Regression . 305
10.3 Linear Regression in R . 311
10.4 Cross-Validation in R . 314
10.5 Shrinkage Methods . 317

10.5.1 Ridge Regression . 317
10.5.2 LASSO . 318
10.5.3 Elastic Net . 321

10.6 Shrinkage Methods in R . 321
10.7 Classification . 325

10.7.1 Logistic Regression . 325
10.7.2 Logistic Regression in R . 328
10.7.3 Naive Bayes Classifier . 331
10.7.4 Naive Bayes Classifier in R 332
10.7.5 KNN Classification . 333
10.7.6 KNN Classification in R . 334

10.8 Review Questions . 337

11 Introduction to Unsupervised Machine Learning 341
11.1 Introduction . 342
11.2 Principal Components Analysis . 343
11.3 Principal Components Analysis in R 348
11.4 Clustering . 351

11.4.1 K-Means Clustering . 351
11.4.2 K-Means Clustering in R . 354

vi CONTENTS

11.4.3 Hierarchical Clustering . 356
11.4.4 Hierarchical Clustering in R 360

11.5 Review Questions . 363

12 Time Series Analysis 367
12.1 Introduction . 368
12.2 Time Series Statistical Models . 370
12.3 Basic Time Series Operations in R 374
12.4 Smoothing a Time Series . 376
12.5 Time Series Regression . 380
12.6 Stationarity . 382
12.7 Dealing with Non-Stationarity . 387
12.8 ARIMA Models . 392
12.9 Fitting an ARIMA Model . 396
12.10GARCH Models . 401
12.11Review Questions . 407

13 Introduction to Neural Networks and Deep Learning 411
13.1 Introduction . 413
13.2 Parameter Estimation . 417

13.2.1 Gradient Descent . 417
13.2.2 Stochastic Gradient Descent 419
13.2.3 Parameter Updates . 420
13.2.4 Gradient Problems . 423
13.2.5 Regularization with Dropout 425

13.3 Software Frameworks for Neural Network Models 425
13.4 Linear Regression using Tensorflow and Keras 427
13.5 Non-Linear Regression using Tensorflow and Keras 429
13.6 Classification using Tensorflow and Keras 433
13.7 Review Questions . 443

14 Convolutional Neural Networks 445
14.1 Introduction . 446
14.2 Convolutional Layers . 447
14.3 Pooling Layers . 450
14.4 Understanding ConvNets . 451
14.5 Image Classification Example using Tensorflow 456
14.6 Other Computer Vision Tasks for CNNs 459
14.7 Text Classification Example using Tensorflow 461

14.7.1 Bag-ofWord encoding . 464
14.7.2 Word Embedding . 466

14.8 Review Questions . 470

15 Recurrent Neural Networks 473
15.1 Introduction . 474
15.2 Sequence Models . 475

CONTENTS vii

15.3 Unrolling an RNN . 477
15.4 LSTM Cells . 478
15.5 GRU Cells . 481
15.6 Statefulness . 482
15.7 Example – Stock Market Prediction 483
15.8 Next Activity Prediction in Business Processes 491
15.9 Review Questions . 497

16 Intepretable Machine Learning 499
16.1 Introduction . 501
16.2 Intrinsically Interpretable Models . 504

16.2.1 Linear Regression . 505
16.2.2 Decision Trees . 506

16.3 Global Model-Agnostic Methods . 514
16.3.1 Partial Dependence Plots (PDP) 514
16.3.2 Individual Conditional Expectation (ICE) Curves 515
16.3.3 Accumulated Local Effects (ALE) Plot 517
16.3.4 Permutation Feature Importance 519
16.3.5 Global Surrogate Models . 521

16.4 Local Model-Agnostic Interpretation Methods 522
16.4.1 Local Interpretable Model-agnostic Explanations (LIME) . . . 523
16.4.2 Shapley Additive eXplanations (SHAP) 528

16.5 Review Questions . 534

17 Analytics at Industrial Scale 537
17.1 Introduction . 539
17.2 Hadoop . 541

17.2.1 HDFS . 542
17.2.2 Map-Reduce . 546

17.3 Apache Spark . 554
17.3.1 Spark SQL . 556
17.3.2 Spark Machine Learning . 563

17.4 Stream Analytics . 568
17.5 Spark Streaming . 571
17.6 Review Questions . 576

18 Reinforcement Learning – Tabular Methods 581
18.1 Introduction . 582
18.2 K-Armed Bandits . 585
18.3 Markov Decision Processes and Dynamic Programming 589

18.3.1 Definitions . 590
18.3.2 Bellman Equations and Iterative Policy Evaluation 591
18.3.3 Bellman Optimality and Iterative Policy Improvement 593

18.4 Monte Carlo (MC) Learning . 596
18.5 Off-Policy MC Learning . 603
18.6 Temporal-Difference (TD) Learning 606

viii CONTENTS

18.7 Off-Policy TD Learning . 610
18.8 Review Questions . 612

19 Reinforcement Learning – Function Approximation 617
19.1 Introduction . 618
19.2 Value-Based Methods and Stochastic Gradient Descent 619
19.3 Deep Q Network (DQN) . 621
19.4 Policy Gradient Methods . 627
19.5 Additional Information . 631
19.6 Additional Learning Materials . 634
19.7 Review Questions . 636

20 Managing Machine Learning Operations (MLOps) 639
20.1 Introduction . 640
20.2 MLOps Lifecycle Overview . 645
20.3 MLOps Roles and Requirements . 648
20.4 MLOps Tooling . 652
20.5 MLOps Lifecycle Phases . 654

20.5.1 Develop Models . 655
20.5.2 Prepare for Production . 657
20.5.3 Deploy to Production . 660
20.5.4 Monitoring and Feedback 667

20.6 ML Governance . 671
20.7 Review Questions . 676

21 Legal Issues in Business Analytics 681
21.1 Introduction . 681
21.2 Tort Law . 682
21.3 Contracts . 685
21.4 Licenses . 686
21.5 Copyright . 687
21.6 Web Site Data Collection . 687
21.7 Information Protection and Privacy Legislation

in Canada . 689
21.8 Artificial Intelligence and Data Act 703
21.9 European Union Artificial Intelligence Act 707
21.10Review Questions . 710

A Installing and Using a Virtual Machine 713
A.1 Introduction . 713
A.2 VirtualBox on Windows . 714
A.3 VMWare Fusion on MacOS . 723

Index 729

List of Figures

2.1 Floating Point Numbers (IEEE 754 Standard) 25
2.2 Keys in a relational database . 34
2.3 Key Value Data Store . 35
2.4 JSON Example – Complex Object 36
2.5 JSON Example – List of Objects . 37
2.6 Property Graph Example . 42
2.7 RDF Graph Example . 43
2.8 Graph Queries . 44
2.9 PG-JSON Example . 45
2.10 GraphSON Example . 46
2.11 Levenshtein Distance . 53
2.12 Data Provenance Framework Basics 58
2.13 Data Provenance Framework Example 58

3.1 pgAdmin Query tool . 78
3.2 DBeaver database tool . 78
3.3 psql command line tool . 79
3.4 Relational diagram of the Pagila demo database 86

4.1 Neo4j Browser interface . 104
4.2 Sample Cypher syntax . 105
4.3 Example graph . 107
4.4 Graph Visualization and Exploration in Neo4j Browser 108
4.5 Equivalent graph models of movie genres 109
4.6 Graph models of airports and flights 111
4.7 Transforming relational data to graph data 113
4.8 The Pagila database in Neo4j Browser 116
4.9 Exploring relationships among nodes in Neo4j Browser 118

5.1 The R command line interface . 126
5.2 Attaching the tidyverse packages in R 137

6.1 The Interactive Python Shell . 150
6.2 Jupyter Notebook . 151

ix

x LIST OF FIGURES

6.3 PyCharm Integrated Development Environment (IDE) 152

7.1 Comparing Pie Charts . 181
7.2 Truncated Axes . 181
7.3 Scaling Axes and Aspect Ratios . 182
7.4 3D Pie Charts . 182
7.5 Scaling Multiple Dimensions . 183
7.6 Incomplete Data . 183
7.7 Visualization Comics by XKCD . 184
7.8 Different types of spatial divisions lead to different interpretations . . 186
7.9 Map Visualization Comics by XKCD 187
7.10 Force-directed graph layout example 188
7.11 Circular graph layout example . 188
7.12 Arc graph layout example . 189
7.13 Layered graph layout example . 189
7.14 Types of Color Palettes . 191
7.15 Simulated Color Vision Deficiencies 193
7.16 Example: Colourbrewer Palette ”Paired” 194
7.17 Viridis Colour Palette . 194

8.1 Example BPMN model . 245
8.2 Process Activity Lifecycle . 246
8.3 Overview of Process Analytics with Event Logs 249
8.4 Directly-Follows-Graph . 255
8.5 Principles of the Inductive Miner . 256
8.6 Model discovered by the Inductive Miner 257
8.7 Model discovered by the Heuristics Net Miner 259
8.8 DFG annotated with median waiting times 264
8.9 Example of a Dotted Chart . 265
8.10 Example of a Performance Spectrum 266
8.11 Event distribution over time . 267
8.12 Events per time graph . 268
8.13 Example handover-of-work network 269
8.14 Example working-together network 269
8.15 Activity-based resource similarity graph 270

9.1 Example regression model . 278
9.2 Example classification model . 279
9.3 Huber loss function versus squared error 281
9.4 Fit versus flexibility of a model . 282
9.5 Fit versus number of parameters of a model 283
9.6 Bias and variance trade-off . 286
9.7 KNN example for binary classification 288
9.8 Decision boundaries of two KNN classifiers 288
9.9 KNN error rates and optimal KNN decision boundary 289
9.10 ROC curves of three example classifiers 293

LIST OF FIGURES xi

9.11 AUC of an example classifier . 294
9.12 Validation error for different random splits of a data set 298
9.13 Cross-validation error with LOOCV and 10-fold cross-validation . . . 300

10.1 A linear regression model . 305
10.2 The ”Datasaurus Dozen” data sets 306
10.3 Correlation and regression slopes . 307
10.4 Example linear regression with two predictors 309
10.5 Example interaction effect in linear regression 310
10.6 Regression example with polynomial predictors 311
10.7 Bias, variance, and MSE in ridge regression 318
10.8 Fitting a degree 14 polynomial with ridge regression 319
10.9 Preditor selection in the LASSO . 320
10.10Cross-validation error in the LASSO 320
10.11Cross-validation MSE in ridge regression 323
10.12Cross-validation MSE in the LASSO 324
10.13Transforming linear regression output for binary classification 326
10.14Transforming non-linear decision boundaries using polynomials . . . 328
10.15Transforming linear decision boundaries using polynomials 329
10.16ROC and precision/recall curves for a logistic regression classifier . . 331
10.17ROC curve of a naive Bayes classifier 334
10.18ROC curve of a k-NN classifier . 336

11.1 Scatterplot with Principal Components 344
11.2 US arrests data example – Biplot . 346
11.3 US arrests data example – Scree plot 348
11.4 K-means iterative cluster assignment example 352
11.5 K-means clustering solutions from different initial cluster assignments 353
11.6 Result of k-means clustering on simulated data 355
11.7 Example dendrogram and data for agglomerative clustering 357
11.8 Different distance metrics and their intuition 358
11.9 The effect of different linkage functions in agglomerative clustering . 359
11.10Cutting a dendrogram to determine the number of clusters 360
11.11Dendrogram of three clustering solutions for simulated data 361

12.1 Example of time series data . 369
12.2 Example white noise time series and its moving average 371
12.3 Example autoregressive time series 372
12.4 Example random walk with drift time series 373
12.5 Example signal in noise time series 374
12.6 Moving average smoothing . 377
12.7 Kernel density smoothing with different kernel bandwidths 378
12.8 Lowess regression smoothing example 379
12.9 Smoothing spline example . 380
12.10Three time series . 381
12.11ACF of Gaussian white noise . 385

xii LIST OF FIGURES

12.12Autocorrelations at six different lags 386
12.13Time series and detrended time series 388
12.14Original, first and second differences of a simulated time series 389
12.15ACF for detrended and differenced time series 391
12.16Simulated (blue) and theoretical (red) ACF of an AR(2) model 393
12.17Simulated (blue) and theoretical (red) ACF of an MA(2) model 395
12.18ACF and PACF of an AR(2) model 396
12.19ACF and PACF after transformations 398
12.20Diagnostics for an AR(1) model fitted to the GNP time series 399
12.21Diagnostics for an MA(2) model fitted to the GNP time series 400
12.22Forecasting from an ARIMA(1,0,0) model 402
12.23Squared residuals after fitting an AR(1)+ARCH(1) model 403
12.24Diagnostic plots for a GARCH model 405

13.1 Tensorflow Playground . 413
13.2 Image of a biological neuron and its connections 414
13.3 Activation functions and their gradients 415
13.4 Neural network with a single fully-connected hidden layer 415
13.5 Neural network with two fully-connected hidden layers and multiple

outputs . 416
13.6 Illustration of gradient descent . 418
13.7 Slow convergence and no convergence in gradient descent 419
13.8 Adaptive learning rates . 421
13.9 ResNet architecture . 423
13.10Example of dropout regularization in neural networks 425
13.11Regression example training and validation loss (MSE) 432
13.12Tensorboard visualization . 439
13.13Tensorboard visualization of classification model (1) 441
13.14Tensorboard visualization of classification model (2) 441
13.15Tensorboard visualization of classification model (3) 442

14.1 1-dimensional convolution filter . 447
14.2 2-dimensional convolution filter . 448
14.3 Multi-channel 2D convolution . 448
14.4 Striding and padding in a convolutional network 449
14.5 Pooling in a ConvNet . 450
14.6 Convolutional network for image classification 452
14.7 Convolutional network for image classification, with dimensionality . 452
14.8 DeconvNet architecture . 453
14.9 Layer 1 feature map visualization by a DeconvNet 454
14.10Layer 2 feature map visualization by a DeconvNet 454
14.11Layer 3 feature map visualization by a DeconvNet 455
14.12Layers 4 and 5 feature map visualization by a DeconvNet 455
14.13Object detection example input and bounding boxes 460
14.14Semantic segmentation example input, network architecture, and output 461
14.15Object detection and semantic segmentation example 461

LIST OF FIGURES xiii

14.16StackOverflow dataset in Keras cache directory 463
14.17Example of word embedding . 468

15.1 Seq2Vec recurrent neural network architecture 476
15.2 Vec2Seq recurrent neural network architecture 477
15.3 Seq2Seq recurrent neural network architecture 477
15.4 Unrolling a recurrent neural network 478
15.5 Long Short-Term Memory Cell . 479
15.6 Gated Recurrent Unit (GRU) . 482

16.1 Decision tree for two numerical features 508
16.2 Regression tree example . 512
16.3 Predictions of a regression tree . 513
16.4 Example PDP for a regression tree 516
16.5 Example ICE plot for a regression tree 516
16.6 Illustrative example of ALE computation 518
16.7 Example ALE for one feature . 519
16.8 Example ALE for two features . 519
16.9 Permutation feature importance plot 521
16.10Illustration of LIME . 524
16.11LIME results depend on choice of weight kernel 525
16.12Weights of the LIME local surrogate model 527
16.13LIME results for explaining a specific instance 527
16.14LIME explanations for image classification 527
16.15SHAP barplot for an individual prediction 531
16.16SHAP barplot of mean SHAP values for feature importance 531
16.17SHAP waterfall plot for an individual prediction 532
16.18SHAP beeswarm plot . 532
16.19SHAP heatmap plot . 533
16.20SHAP for image classification . 534
16.21SHAP for text classification . 534

17.1 CERN data centre images . 541
17.2 HDFS architecture . 543
17.3 HDFS Explorer . 544
17.4 Executing MapReduce job on YARN cluster manager 548
17.5 MapReduce performance for process discovery 552
17.6 Apache Spark components . 555
17.7 Apache Spark cluster architecture 556
17.8 Pipelines in Spark ML . 564
17.9 FHM on AWS Kinesis – system architecture 570
17.10FHM on AWS Kinesis – data throughput 570
17.11Spark Streaming input sources and output destimations 571
17.12Speark Straming batches . 572
17.13Spark data stream as an unbounded table 572
17.14Spark Streaming line and word DStreams 574

xiv LIST OF FIGURES

17.15Spark Streaming complete word count example 575
17.16Spark Streaming time windowing . 576

18.1 The game of Tic-Tac-Toe . 584
18.2 Exploration and exploitation in an RL environment 584
18.3 An ”one-armed bandit” slot machine 586
18.4 A simple bandit algorithm (Source: SB) 587
18.5 Learning performance for k-armed bandit agents for different ϵ and

initial action-values . 589
18.6 RL agent and environment . 590
18.7 Gridworld example and optimal state value function 592
18.8 Iterative Policy Evaluation (Source: SB) 592
18.9 Iterative Policy Improvement (Source: SB) 594
18.10Iterative policy improvement example 596
18.11First-visit MC prediction . 597
18.12First visit MC control with exploring starts 598
18.13Policies and state value function for the Blackjack example 601
18.14Racetrack example . 602
18.15Racetrack trajectory after 0, 100, 200, and 10000 learning episodes: . 604
18.16Off-Policy MC Control . 605
18.17TD-control with SARSA . 607
18.18Windyworld example . 608
18.19SARSA versus n-Step TD Learning (n-step SARSA) 610
18.20SARSA and Q-Learning Results on Windyworld 612

19.1 Semi-gradient SARSA . 621
19.2 DQN Algorithm (adapted from SB) 622
19.3 CartPole environment . 623
19.4 REINFORCE: Monte-Carlso Control 629
19.5 REINFORCE with Baseline . 630
19.6 One-Step Actor-Critic algorithm . 631
19.7 AlphaGo – The Documentary . 633

20.1 MLOps – Relationship to other disciplines 645
20.2 Model Development Lifecycle . 646
20.3 Software Development Lifecycle . 647
20.4 MLOps Lifecycle . 648
20.5 Roles in the MLOps lifecycle . 649
20.6 Overlapping MLOps Roles . 651
20.7 Commercial Offerings in the ML Landscape 654
20.8 Simplified MLOps Lifecycle and ML Governance 655
20.9 Model development in the MLOps lifecycle 655
20.10Prepare for Production in the MLOps Lifecycle 657
20.11Deploy to Production in the MLOps Lifecycle 660
20.12Monitoring and Feedback in the MLOps Lifecycle 668
20.13ML Governance Phases . 672

LIST OF FIGURES xv

20.14RACI Matrix for ML Governance 673

21.1 Example robots.txt file . 689
21.2 US NIST guidelines for media sanitization 698
21.3 Risk levels defined in the European Union AI Act 708

xvi LIST OF FIGURES

List of Tables

1.1 Software used in this book . 7

2.1 Primitive Data Types . 24
2.2 Serializing Numbers to Text . 26
2.3 ISO 8601 / RFC 3339 Rules for Dates and Times 29
2.4 Structured data types (”collection types”) in Python and R 30
2.5 Example Table . 31
2.6 Basic Regular Expressions . 50
2.7 Basic Regular Expression Examples 51
2.8 Extended Regular Expressions . 51
2.9 Extended Regular Expression Examples 51
2.10 Character classes in Regular Expressions 52
2.11 Data Quality Dimensions . 56
2.12 Examples of Public External Data Sources 62
2.13 Examples of Private External Data Sources 62

3.1 Primitive Data Types in SQL and PostgreSQL 75
3.2 Basic SQL Commands . 77

4.1 Neo4j Documentation . 104

5.1 Tidyverse packages for R . 136
5.2 Important dplyr functions . 139

6.1 Attributes of NumPy ndarray . 159
6.2 Methods for indexing Pandas DataFrames 166

7.1 Plot elements that can be mapped to data variables 199
7.2 Fuel efficiency data set variables . 200

8.1 Example event log filter functions in PM4Py 261

9.1 Differences between explanation and prediction 280

11.1 US arrest data example – first two principal component loadings . . . 346

xvii

xviii LIST OF TABLES

11.2 Common distance metrics or ”norms” in clustering 358
11.3 Commonly used linkage functions in hierarchical clustering 359

12.1 Properties of the ACF and PACF for AR and MA models 396

13.1 Selection of frequently-used activation functions 414

16.1 Intrinsically Interpretable Models . 504
16.2 Strengths and weaknesses of global model-agnostic methods 522

17.1 Data management infrastructure at CERN 541
17.2 Basic HDFS file system commands 545
17.3 MapReduce performance for process discovery 552
17.4 Core Pig Latin operations . 553
17.5 Common Spark DataFrame transformations 558
17.6 Common Spark DataFrame actions 558

Preface

Why this book?

This book is originally intended as material for the BUSI 4720 undergraduate course
on Business Analytics. This course is a core, required course for the Bachelor of Com-
merce program at Memorial University of Newfoundland, Canada. As students receive
only a single course in business analytics, and this course is in the fourth and final year
of the program, the material coverage is intentionally broad, and covers aspects that
may be outside some narrower conceptions of analytics. Additionally, students taking
the course generally have little to no exposure to computer applications or statisti-
cal software, necessitating a rather comprehensive approach that not only introduces
computer and programming basics, such as data and data types that students may en-
counter in business analytics, but also covers introduction to R and Python as well as a
brief coverage of relational and graph databases, that are typically not considered part
of business analytics. On the other hand, this course also contains advanced topics,
such as interpretable machine learning, analytics at industrial scale, reinforcement and
MLOps, that are not usually found in a business analytics course. However, these top-
ics are gaining importance and it is essential that students have at least some exposure
to them. In summary, the book was written because no other single book offers the
necessary broad perspective.

The book is written from an applied perspective. I believe that students, even business
students, should not only be able to talk about analytics, but must also be able to do
analytics. This means that, together with the concepts, every chapter also contains R or
Python code showing how the concepts can be applied. Looking at this from another
perspective, I believe students must not rely solely on software tools and statistical
libraries, but it is crucial that they understand, at least in principle and at an intuitive
level, how these tools work. This is necessary to allow an informed use of tools, to
be able to select the appropriate tool for a given situation, and to be aware of the
shortcomings, drawbacks, boundary conditions, and other limitations of tools. In short,
formulas in this book are to explain what happens ”behind the scenes” of the code, and
code is in this book to show how formulas can be applied; both are necessary.

xix

xx PREFACE

Why these tools?

The focus on R and Python, over commercially available tools, is due to multiple rea-
sons. First, the use of open-source software makes the material more easily accessi-
ble to students, independent of the availability of campus-wide licenses, or the use of
limited ”evaluation” licenses for some commercial tools. A second reason is the cross-
platform nature of these software tools. Computing hardware in practice, and in the
classroom, is a heterogeneous mix of different chip sets (Intel, Apple/ARM) and differ-
ent operating systems (Windows, MacOS, Linux, etc.) so that is essential to work with
software tools that are available and interoperable across these hardware and operating
system platforms. A third reason is that R and Python are widely used in production
environments. They tend to be more flexible than commercial offerings, and are also at
the forefront of new developments in the area of business analytics. New methods and
techniques are typically implemented directly by their inventor in open-source libraries
and packages for R or Python, before they mature and are included in commercial of-
ferings. The focus on command line tools is to avoid the complexities of graphical user
interfaces that tend to change more rapidly than application programming interfaces
(APIs), it is focus on the essentials and not be distracted by graphical environments.
Scripting with command line tools generally also leads to better replicability of anal-
yses and easier integration into production environments. For example, while it is all
well and good to explore customer purchasing predictions on a small data set using
the desktop edition of SPSS (a commercial, graphical, statistics software application),
implementing real-time dynamic pricing in the global web-based ordering system will
require the model to be implemented and integrated with very different tools.

Instructors: How to use this book?

For instructors, the book is written for a 24 class semester of 75 minutes each (the
chapter on visualization should be covered in two classes), with two classes dedicated
to mid-term exams. If time is short, some of the later, more advanced chapters could be
omitted, for example, the two chapters on reinforcement learning, and/or the chapter on
MLOps. A slide set for 22 classes is available, as is a question bank of multiple-choice
questions for each chapter, e.g. for quizzes. Each chapter also contains a set of short
hands-on exercises that can be used during class to keep students engaged or can form
the basis for a computer lab setting. Also available is a set of example exam questions.
Given the extensive set of online materials on programming in general, and data science
and data analytics in particular, ranging from the traditional https://stackoverflow.com/
site, to Google and YouTube, to the most recent ChatGPT or other LLMs, it is easy for
students to complete any technical homework assignment or course project using such
tools. Instructors should therefore focus on data and results interpretation and use new
or unpublished data sets, if they wish to set such assessment or evaluation exercises at
all. Consequently, the example exam questions are long-answer questions that focus
on conceptual understanding of the material, and less on technical programming skills.

xxi

Students: How to study?
For students, accompanying this book is a virtual machine with all required software
installed and data sets provided. I recommend that students at least run the provided
example code to get some ”hands-on” with the tools. The best way to learn and under-
stand is to experiment and modify the examples. See what happens when parameters
or functions are changed. Ask yourself: Does the result match my expectation? Why
or why not? Another way to work with the examples is to make sure you recognize the
code elements in the formulas and vice versa. If the formula contains an X , where is
this specified in the code or where does it appear in the output? Ensure that you can
recognize and make the connection between the conceptual or mathematical level and
the implementation in software.

Each chapter contains hands-on exercises. These are relatively simple exercises that
build directly on the code presented in a section and require only minor changes or
adaptations. These exercises invite experimentation with the code and trying different
options. They are highly recommended to further your understanding.

Every chapter also contains a number of review questions. These are there to help
check your own understanding. At least read and think about the questions, even if you
do not write out any answers.

Many chapters contain pointers to textbooks that formed the basis for the material in
this book, and all contain links to online references. These are valuable in that they
provide additional, deeper information. And because those resources are written by
different authors, they may be easier to understand; at the very least they can provide a
different and complementary perspective on the material in this book. Many textbooks
that have been used to inform this book are popular or classic textbooks in their own
right. Many could form the basis of a somewhat more narrowly conceived course
on business analytics. In short, they make for excellent complementary reading and
are highly recommended. The vast majority of them are also freely available on the
internet.

Additionally, a wealth of information is available in various formats on the internet.
This begins with Wikipedia pages, which provide a good introduction to many topics,
and material from Wikimedia Commons has been used extensively in this book. Since
all the tools used in this book are open-source tools, their web sites provide not only
the code, but more importantly, also provide documentation in the form of tutorials, in-
troductions, and detailed programming descriptions. These are all excellent resources.
Many researchers and teachers in the area of machine learning have made their ma-
terials freely available, for example in their blogs or in YouTube videos and entire
YouTube channels. Many of these researchers are active at the forefront of machine
learning and are excellent teachers. These resources are valuable resources and pro-
vide more depth than offered in this book. At the same time, the current popularity of
the topic has also led to some questionable material on the internet, and caution should
be exercised when searching for material. Begin your internet search with a trusted
source, for example Wikipedia, a well-known researcher, or material from a university
instructor active in the field.

xxii PREFACE

What about ChatGPT?
Absolutely consider using your favourite large language model (LLM) for studying this
material. For example, ChatGPT is quite good at explaining things. Ask it to explain a
code fragment that you copy and paste into it. Ask it to translate R code to Python code
or vice versa. Ask it to simplify code for you. Ask it to check code for mistakes. Other
ways to engage your favourite LLM are to ask it to quiz you on the material; copy and
paste the material into it and then ask it to generate questions and wait for your answer,
then to evaluate and correct your answers. Yet another use of an LLM is to a ask it to
evaluate and correct your answers to the review questions, provide both the question
and your answer to the LLM.

These are valuable ways in which you can further your understanding, but keep in mind
that LLMs are simply statistical models that predict the most likely next word in the
output. As such, they cannot truly reason, they have no intelligence (at least in terms
of how we conceive human intelligence) and they make mistakes without being aware
of them. So, be careful when you engage them. However, the beauty of using an LLM
with computer code is that you can run the code and verify that it does what you expect
it to do.

About the Author

Dr. Joerg Evermann is an associate professor at the Faculty of Business Administration
at Memorial University of Newfoundland. He received his PhD in Information Systems
in 2003 from the University of British Columbia. Prior to joining Memorial University
in 2007, Dr. Evermann was a lecturer in Information Systems with the School of
Information Management at the University of Wellington, New Zealand.

Dr. Evermann’s interests are in business process management, statistical methods, and
information integration. Dr. Evermann has published his research in more than 80 peer-
reviewed publications. His work has appeared in high-quality journals, such as Euro-
pean Journal of Marketing, Decision Support Systems, IEEE Transactions on Software
Engineering, IEEE Transactions on Knowledge and Data Engineering, IEEE Transac-
tions on Services Computing, Journal of Business Research, Organizational Research
Methods, Structural Equation Modeling, Journal of the AIS, Information systems, and
Information Systems Journal. Dr. Evermann has presented his work at international
conferences, such as ICIS, AMCIS, CAiSE, ER, among others. He is an associate
editor for the Communications of the AIS (CAIS) and the Business Information Sys-
tems Engineering (BISE) journals and serves regularly on the program committee of
the BPM, ICPM, CBI and AI4BPM conferences and workshops.

xxiii

xxiv ABOUT THE AUTHOR

Chapter 1

Introduction

Learning Goals
After reading this chapter, you should be able to:

• Differentiate between methods, techniques, and tools.

• Describe different types of analytics and their respective goals.

• Describe the difference between supervised and unsupervised machine learning.

• Describe the different aims of statistics and analytics despite the fact that they
often use the same mathematical models.

• List some popular software tools for business analytics, and be able to describe
why they are widely used and what they are used for.

• Use a Linux system using the Terminal window and command line for basic file
and folder management.

1.1 Introduction
This section describes some of the terminology around the rapidly expanding field
of data analytics, business analytics, data science, statistics, machine learning and AI
(artificial intelligence).

Data analytics (or simply ’analytics’) refers to the broad collection of methods, tech-
niques, and tools to allow humans to make sense of information for purposes of under-
standing and decision making. Business analytics is the application of data analytics
to operational, tactical, or strategic management in businesses and other organizations.
Examples are the use of visualization of human resource performance data, trend anal-
ysis of outbound logistics costs, prediction of customer demand, fraud analysis of fi-
nancial transactions, and others.

1

2 CHAPTER 1. INTRODUCTION

Data analytics as a broad field is closely related to a range of other fields, such as data
management (how best to collect, store, access, and use data in a variety of format),
visualization (how best to present data in an easy-to-understand format to generate in-
sights or persuade stakeholders), machine learning (how to train computers to classify
data and to make predictions), or text analysis (how to extract meaningful information
from natural-language text information). Some argue that these fields are within an-
alytics, but others view them as separate but strongly interrelated. For example, text
analysis and machine learning overlap when training computers to predict customer
behaviour based on social media post data. Text analysis can provide certain features
that characterize or summarize a text, and may be used as input for machine learning.
Machine learning models can exploit text-specific features, such as the sentence struc-
ture, in making predictions. Training machine learning systems also requires a very
large amount of data, so advanced data management techniques are required in order
to store and provide this data in an efficient way.

Artificial Intelligence (AI) is a field with a long and varied history, going back to the
1960s. Originally, AI was used for symbolic computations, where researchers at-
tempted to explicitly describe and model human reasoning processes in a computer. In
the late 1990s and early 2000s, AI has morphed to focus on statistical models and has
most recently become dominated by artificial neural networks (ANN) and deep neural
networks (DNN), a field called deep learning. Artificial neural networks, while inspired
by the human brain, are essentially statistical models for classification and regression,
akin to the simple linear or logistic regression. But whereas the simplest linear re-
gression model may describe a small dataset of hundreds to thousands of observations
using just two parameters (the slope and intercept), ANN and DNN are non-linear and
highly complex with millions or even billions of parameters and are often trained on
billions of observations. However, the main ideas are the same in that the model is
trained on or fitted to a data set.

More recently, since about 2020, generative AI, that is, AI models and systems that
are used to generate text, images, audio or video in response to user input has become
synonymous with AI. The rise in popularity of systems such as ChatGPT, Dall-E, and
many others, has led to many people equating AI with generative AI.

While machine learning may sometimes be viewed synonymously with ANN or DNN,
the field of machine learning is broader than just neural network models and concerns
the development of methods to make predictions for new observations. Traditional
statistical techniques for regression and classification, such as decision trees or sup-
port vector machines, are considered part of machine learning, and therefore also part
of data analytics. However, these statistical models sometimes take a back seat role
compared to ANNs because of the power and flexibility of the latter.

Machine learning and AI are also sometimes viewed synonymously. However, as noted
above, there are subfields of AI that are not concerned with machine learning and pre-
diction. First, research into symbolic reasoning is still ongoing. Second, methods such
as reinforcement learning, which focuses not on making predictions, but on prescribing
optimal courses of action, are considered part of machine learning and AI.

1.2. METHODS, TECHNIQUES, AND TOOLS 3

Big Data was an important topic in the early 2000s and 2010s but is now often con-
sidered a sub-field of data analytics or data science. The motivation for Big Data was
the recognition that the volume of data produced and available for analysis has been
growing exponentially since the 1990s. This has spurred the development of advanced
data management methods, techniques, and tools, such as distributed file systems and
databases. The velocity of data, that is, its rate of production, has also increased greatly
since the 1990s. Processing the data often has to occur in real-time, leading to develop-
ment of techniques and tools that can analyze data ”on-the-fly” (”stream processing”).

Finally, the term data science is often used in a less applied and more scientific or
research and developmental way than the term data analytics, to characterize the devel-
opment, rather than application, of methods, techniques, and tools.

1.2 Methods, Techniques, and Tools
In the context of data science and data analytics, methods, techniques, and tools play
distinct roles in the process of extracting insights from data. Methods encompass over-
arching approaches and strategies, providing a systematic framework for tasks such as
data exploration, modeling, and analysis. These high-level methodologies guide data
scientists in formulating a structured plan for addressing specific challenges or achiev-
ing analytical goals.

Techniques in data science are the specific procedures and practices employed within
the broader methodological framework. These practical and detailed approaches are
applied to handle particular aspects of the data analysis process. For instance, in ex-
ploratory data analysis, techniques like histograms or scatter plots are used to visually
inspect data distributions or relationships between variables and in classification, a
naive Bayes classifier is considered a specific technique.

Tools in data science refer to the instruments and software applications that facilitate
the practical application of methods and techniques. These can range from program-
ming languages like Python and R, statistical packages such as Pandas and SciPy, to
visualization tools like Shiny or Matplotlib. The selection of appropriate tools is crucial
for efficiently executing data science tasks and optimizing the workflow.

1.3 Types of Analytics
There are different ”types” of analytics that have different aims.

Descriptive Analytics describes ”what is”. It typically provides summaries of the
data, makes comparisons between different types of entities or measurements, may
identify historical trends, or provide rankings of observations or measurements. An
example is the identification and comparison of current and historical costs to manu-
facture different widgets in different plants. Another example are the identification of
the top-grossing sales people in the organization for specific product types, or calcu-
lating the the mean cycle time of the order-to-cash business process for different time

4 CHAPTER 1. INTRODUCTION

periods. Descriptive analytics is therefore important in a business context and organi-
zations expend a great deal of money, time, and effort on technologies such as report
generating tools to support this type of analytics.

Predictive Analytics describes ”what may be” in the future. It typically builds a
model based on past data to predict future cases/events/outcomes. As a simple example,
consider a linear regression model that predicts the overall spending of a customer
from their income. One can build a linear model with parameters for the intercept and
slope and then train the model on customers whose spending and income are known.
Training means to determine the two parameters of the model so that they model best
fits the data. Given a trained model, one can then predict the overall spending of a new
customer given their income. Of course, the models can be much more complex than a
simple linear regression, and often have tens, hundreds, thousands, or even millions of
parameters, but the principle of model-based predictive analytics remains the same.

Prescriptive Analytics describes ”what should be done”. Similar to predictive an-
alytics, a model is usually built from past data. However, the model must now also
consider which actions can be taken (and were taken for the past training data). In
reinforcement learning, a popular prescriptive analytics technique, one assumes that an
agent can observe the state of an environment, can take actions based on the observed
state, and receives a (positive or negative) reward from the environment after taking
an action. Actions may change the state of the environment. The agent must learn
to identify those actions in each state that give it the maximum rewards. The optimal
actions are called a policy and can then be used to prescribe which action to take in
which state.

Visual Analytics describes the use of graphs (plots, diagrams) to visualize informa-
tion for exploring data and gaining insight. Visual analytics makes use of the human
ability to visually identify trends, make comparisons, etc. In effect, this type of analyt-
ics supports humans in their tasks. It employs no mathematical or statistical models.
However, humans may identify features of the data such as trends, comparisons, etc.
with visual analytics that may then be tested with statistical models or form the basis
on which to build predictive or prescriptive analytics models.

1.4 Machine Learning
In the context of analytics, machine learning (sometimes simply called ”learning”) can
be divided into supervised and unsupervised learning. Supervised learning is typi-
cally based on a parameterized statistical or mathematical model. For example, a sim-
ple linear regression is based on two parameters, the slope and intercept. Models are
trained (that is, parameters are estimated) by adjusting the model parameters so that the
model’s output (e.g. the predicts value ”ŷ in a linear regression) for each given input
(e.g. the ”x” value in a linear regression) matches the actually observed outcome (the
”y” value in a linear regression). Supervised learning assumes that a correct/observed

1.5. ANALYTICS IS NOT STATISTICS 5

outcome is available for all inputs. Linear regression is a very simple supervised learn-
ing approach with a simple statistical model; on the other extreme there are generative
pre-trained transformer (GPT) models that predict words for generating text, and which
contain billions of parameters and non-linear relationships among them.

Unsupervised learning on the other hand does not require outcome values and only
requires ”input” (”x”) values. Typical unsupervised learning tasks are clustering and
dimensionality reduction. For example, one may form clusters of widgets at the end of
a production line based on how similar the widgets are on different characteristics that
were measured by sensors. These clusters could then, for example, be interpreted as
quality grades. Similarly, customers may be clustered based on their past transactions
or purchases. Different marketing strategies may then be applied to each cluster. The
aim of dimensionality reduction is to be able to describe a data set with many variables
by using only a few variables. Imagine that having hundreds of different characteristics
of widgets. One might then wish to simplify and identify fewer, perhaps as few as two
or three, combinations of the original characteristics that provide the same information
about the widgets.

1.5 Analytics is not Statistics
Analytics and statistics use the same kinds of mathematical models. However, ”tra-
ditional” statistics focuses on sample and population characteristics, such asmeans,
slopes, intercepts, and others, of a sample or a population that are represented as pa-
rameters of a mathematical model. Statistics aims to identify and explain the data
generating mechanism, i.e. the ”real world” or population. In particular, inferential
statistics is used to generalize from a sample to a population. Importantly, statistics is
typically not concerned with individual cases or individual observations.

In contrast, data analytics, especially predictive analytics, focuses on predicting the
outcome of an individual case or observation. Analytics is pragmatic, in that models
are considered useful tools and do not need to faithfully describe the ”real world” or
the data generating mechanism, as long as they make good predictions or are otherwise
useful for their purpose. Consequently, there is no inference from sample to population,
because the model does not claim to describe a population. The quality of a model is
determined not by its fit with the observed data, but by its precision or accuracy when
predicting specific observations.

1.6 Tools used in this Course
The software used in this course is open-source and free software. Open-source soft-
ware (OSS) embodies a collaborative approach to software development, allowing
users to access, modify, and distribute the source code freely1. This approach pro-
motes transparency, enabling users to inspect the code, modify, adapt, fix and extend
it, and contribute to its improvement.

1https://en.wikipedia.org/wiki/Open-source_software

https://en.wikipedia.org/wiki/Open-source_software

6 CHAPTER 1. INTRODUCTION

Free software, as defined by the Free Software Foundation (FSF), goes beyond acces-
sibility, emphasizing users’ fundamental freedoms to run, study, modify, and share the
software2. Contrary to the common misconception, "free" in this context pertains to
freedom, not necessarily zero cost. The ethical philosophy behind free software under-
scores the importance of user control over technology.

The term FOSS, or Free and Open-Source Software3, serves as an inclusive label en-
compassing both the principles of free software and the collaborative nature of open-
source software. FOSS encourages a shared approach to software development, em-
phasizing not only the technical benefits of open code but also the ethical imperative of
user freedom and community-driven innovation.

Free and Open-Source Software (FOSS) licenses are legal agreements that govern the
use, modification, and distribution of open-source software. These licenses play a cru-
cial role in preserving the core principles of freedom, transparency, and collaboration
within the open-source community. Common characteristics of FOSS licenses are:

Freedom to Use FOSS licenses grant users the freedom to use the software for any
purpose without any restrictions.

Freedom to Study Users have the right to access and study the source code of the
software. This transparency allows for a deeper understanding of how the software
functions.

Freedom to Modify FOSS licenses typically allow users to modify the source code
according to their needs. This encourages innovation, customization, and adaptation of
the software.

Freedom to Share Users can distribute both the original and modified versions of the
software, fostering a collaborative environment. This freedom to share is fundamental
to the open-source philosophy.

Copyleft Licenses Some FOSS licenses, such as the GNU General Public License
(GPL), include copyleft provisions. Copyleft ensures that any derivative works or mod-
ifications are also subject to the same open-source terms. This prevents the software
from being incorporated into proprietary projects without maintaining open-source
characteristics.

Permissive Licenses On the other hand, permissive licenses, like the MIT License
and the Apache License, allow for more flexibility. They permit the use of the software
in proprietary projects without imposing the requirement to open-source the derived
code.

2https://en.wikipedia.org/wiki/Free_software
3https://en.wikipedia.org/wiki/Free_and_open-source_software

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_and_open-source_software

1.6. TOOLS USED IN THIS COURSE 7

R 4.1.2 www.r-project.org
dplyr 1.1.3 www.tidyverse.org
tidyr 1.3.0 www.tidyverse.org
ggplot2 3.4.4 www.tidyverse.org
Python 3.8 www.python.org
numpy 1.24.4 numpy.org
pandas 2.0.3 pandas.pydata.org
plotly 5.18.0 plotly.com
tensorflow 2.13.1 www.tensorflow.org
Postgres 16.0-1 www.postgresql.org
pgAdmin4 7.8 www.pgadmin.org
PyCharm 2023.2.3 www.jetbrains.com/pycharm/
Jupyterlab 4.0.7-1 //github.com/jupyterlab/jupyterlab-desktop
Neo4J 5.14.0 www.neo4j.com

Table 1.1: Software used in this course

While a lot of free and open-source software used to be developed by individuals, in-
creasingly FOSS is developed by companies whose business model rests either on pro-
viding paid support for such tools, or on providing paid hosted versions of the software,
or on providing non-free extensions for their FOSS software. In other cases, companies
provide software developer time to important projects that benefit themselves.

The R System
R is is a programming language and free software environment
designed for statistical computing and graphics.

The history of R begins in the early 1990s at the University of
Auckland, New Zealand. Ross Ihaka and Robert Gentleman, two
statisticians, set out to create a programming language that would
make data analysis and visualization more accessible. They re-

leased the first version of R in 1995, and it quickly gained traction within the academic
community.

Over the years, R evolved and expanded its capabilities, thanks to the collaborative
efforts of statisticians, data scientists, and programmers worldwide. The Comprehen-
sive R Archive Network (CRAN) was established to serve as a hub for R packages,
fostering a community-driven approach to software development.

The open-source nature of R played a pivotal role in its success. As more people em-
braced it, R became not just a statistical tool but a versatile platform for data analysis,
machine learning, and graphical exploration. Its popularity soared in both academic
and industry settings, with businesses recognizing its potential for extracting meaning-
ful insights from data.

R continues to thrive as a dynamic and evolving tool in the world of data science. Its
rich ecosystem of packages and active community ensure that it remains at the forefront

www.r-project.org
www.tidyverse.org
www.tidyverse.org
www.tidyverse.org
www.python.org
numpy.org
pandas.pydata.org
plotly.com
www.tensorflow.org
www.postgresql.org
www.pgadmin.org
www.jetbrains.com/pycharm/
//github.com/jupyterlab/jupyterlab-desktop
www.neo4j.com

8 CHAPTER 1. INTRODUCTION

of statistical computing and analysis.

One of the key hubs of the R community is the Comprehensive R Archive Network
(CRAN), where thousands of R packages are hosted. These packages cover a vast
array of topics, from basic statistical functions to cutting-edge machine learning al-
gorithms. The "open-source" ethos is strong here, with contributors from around the
globe actively developing and maintaining packages.

Stack Overflow4 and other online forums serve as virtual interchanges of ideas where
R users exchange knowledge and troubleshoot problems.

The tidyverse5 is a comprehensive collection of R packages that share a common phi-
losophy and syntax, designed to streamline and enhance the data analysis workflow.
Developed by Hadley Wickham and his collaborators, the tidyverse promotes a prin-
cipled approach to data manipulation, visualization, and exploration. Key components
are:

ggplot2 A sophisticated and flexible plotting system, ggplot2 enables the creation
of intricate and publication-ready visualizations. Its grammar of graphics approach
provides a consistent framework for constructing a wide range of plots.

dplyr This package serves as a cornerstone for data manipulation, offering a set of
succinct and expressive verbs for tasks such as filtering, grouping, summarizing, and
joining datasets. Its syntax facilitates a more intuitive and readable coding style.

tidyr Complementing dplyr, tidyr focuses on reshaping and tidying data. It provides
functions like ‘gather()‘ and ‘spread()‘ to efficiently restructure datasets, ensuring they
adhere to the principles of tidy data.

readr A fast and user-friendly package for reading and parsing data from various
file formats. readr’s emphasis on speed and consistency makes it a reliable choice for
importing datasets seamlessly.

The tidyverse’s cohesive design and interoperability between packages make it a pop-
ular choice for data scientists and analysts seeking an efficient and coherent ecosystem
for their R-based projects.

Python
Python6, conceived by Guido van Rossum in the late 1980s and released in 1991, has
evolved into a versatile and influential programming language. Known for its readabil-
ity and clean syntax, Python prioritizes simplicity and ease of use, making it accessi-
ble to both beginners and seasoned developers. The Python Software Foundation now

4https://stackoverflow.com/collectives/r-language
5https://www.tidyverse.org/
6www.python.org

https://stackoverflow.com/collectives/r-language
https://www.tidyverse.org/
www.python.org

1.6. TOOLS USED IN THIS COURSE 9

oversees its development, ensuring that it remains free, open, and continually improved
by a global network of contributors.

One of Python’s key strengths is its versatility. It serves
as a general-purpose language, excelling in web develop-
ment, data analysis, artificial intelligence, scientific com-
puting, and more. Its extensive standard library and a
rich ecosystem of third-party packages contribute to its
adaptability across diverse domains.

Python’s readability, enforced by the use of indentation for block delimiters, facilitates
code comprehension and maintenance. This, coupled with a strong emphasis on code
readability and maintainability, has contributed to its popularity among developers.

Python’s adoption in data science has surged, with libraries such as NumPy, pandas,
and scikit-learn forming the backbone of numerous data analytics and machine learning
projects.

The language’s cross-platform compatibility, supported by its interpreted nature, al-
lows developers to write code once and run it on various operating systems without
modification. This, combined with a vast and active community, ensures that Python
remains at the forefront of technological advancements.

In the Python ecosystem, packages play a crucial role in extending the language’s func-
tionality and addressing specific programming needs. Python packages are collections
of modules, scripts, and other resources that facilitate the development of reusable and
modular code. Pip (Package Installer for Python) is the default package installer for
Python, allowing users to easily install, upgrade, and manage Python packages. It
simplifies the process of fetching and installing packages from the Python Package In-
dex (PyPI) and other repositories. PyPI is the official repository for Python packages,
hosting a vast collection of open-source Python software.

NumPy NumPy, short for Numerical Python, is a fundamental library in the Python
ecosystem for numerical computing. Developed to facilitate array operations, math-
ematical functions, and linear algebra capabilities, NumPy provides a foundation for
scientific and data-intensive applications.

Launched in 2005 by Travis Olliphant, NumPy has become a cornerstone in the Python
data science stack. Its core feature is the ndarray, a multidimensional array object that
enables efficient manipulation of large datasets. NumPy’s array-oriented computing
paradigm enhances performance and readability, making it a preferred choice for nu-
merical tasks.

Pandas Pandas, a Python library introduced in 2008 by Wes McKinney, is an im-
portant tool in data manipulation and analysis. Designed to provide high-performance,
easy-to-use data structures, Pandas simplifies the handling of structured data and time
series.

10 CHAPTER 1. INTRODUCTION

At its core are two primary data structures: the Series, a one-dimensional labeled array,
and the DataFrame, a two-dimensional table with labeled axes. These structures, built
on top of NumPy arrays, empower users to perform a range of operations from basic
data cleaning to complex analytics, with a concise and expressive syntax.

Pandas can handle missing data gracefully and offers easy to use tools for reshaping,
grouping, and aggregating data. Its integration with other Python libraries, coupled
with efficient indexing and alignment features, makes it a good choice for data scien-
tists, analysts, and researchers working with heterogeneous and large datasets.

Tensorflow and Keras TensorFlow is an open-source
machine learning framework initially developed by the
Google Brain team. It provides a comprehensive set of
tools and libraries for building and deploying machine
learning models. TensorFlow facilitates the creation of
artificial neural networks and other machine learning
models through a flexible and scalable platform.

Keras is an open-source high-level neural networks API
written in Python. Originally developed as an indepen-
dent library, it has become an integral part of TensorFlow, serving as its official high-
level programming interface. Keras simplifies the process of building, training, and
deploying neural networks, making it accessible to developers of different skill lev-
els. While Keras is designed to be user-friendly and concise, TensorFlow provides a
more extensive and low-level framework for those requiring greater flexibility in model
design and customization.

PyCharm PyCharm by JetBrains is an integrated development
environment (IDE) for Python developers. PyCharm Community
is its free and open-source version. The IDE includes a code ed-
itor with syntax highlighting, code completion, and error check-
ing, supporting developers in writing clean and efficient code. Py-
Charm’s code navigation and refactoring tools facilitate easy ex-
ploration and improvement of code bases. The built-in debugger and seamless inte-
gration with testing frameworks like pytest enhance debugging and testing capabilities.
PyCharm also supports version control systems, including Git and Mercurial, promot-
ing collaborative development. PyCharm has a user-friendly interface, continuous up-
dates, and active support.

Jupyter, JupyterLab, JupyterLab Desktop Jupyter Note-
books are interactive computing environments that allow users
to create and share documents containing live code, equations,
visualizations, and narrative text. Originally developed for
Python, Jupyter Notebooks support multiple programming lan-
guages through various kernels. The notebooks are structured as

1.6. TOOLS USED IN THIS COURSE 11

a series of cells, where each cell can contain code, markdown text, or rich media ele-
ments. Users can execute code cells interactively, see immediate outputs, and create a
seamless blend of code and documentation.

JupyterLab is an extensible web-based interactive computing environment developed
by the Jupyter Project. It serves as the next-generation interface for Jupyter Notebooks,
offering a more versatile and powerful environment. JupyterLab provides a flexible
and modular interface where users can arrange documents, notebooks, terminals, and
custom components in a tabbed layout. It supports multiple Jupyter Notebooks si-
multaneously and allows for drag-and-drop functionality to rearrange and organize the
workspace. JupyterLab’s extensibility comes from its plugin system, enabling users to
add new features and customize the environment to suit their workflows.

JupyterLab Desktop refers to the stand alone application version of JupyterLab that
runs on a user’s desktop rather than in a web browser. It offers the same rich features
as the web-based version but provides a stand alone application that can be launched
independently. JupyterLab Desktop enhances user accessibility and convenience, pro-
viding a familiar desktop application experience for working with Jupyter Notebooks
and other interactive computing tasks.

PostgreSQL
PostgreSQL is an open-source relational database management
system (RDBMS) whose history goes back to the mid-1980s when
a team led by Michael Stonebraker at the University of California,
Berkeley laid the foundation for what would later become Post-
greSQL.

PostgreSQL has been characterized by standards compliance, ex-
tensibility, and robustness. Over the years, it has evolved into a feature-rich and reliable
database system that caters to a wide range of applications. One of PostgreSQL’s key
strengths lies in its extensibility and support for custom data types, operators, and func-
tions. This flexibility empowers developers to model and store data in ways that suit
the specific needs of their applications. Furthermore, PostgreSQL boasts support for
advanced indexing techniques, complex queries, and transactional consistency, making
it well-suited for high-performance and mission-critical environments.

The commitment to data integrity is a hallmark of PostgreSQL. It provides support
for ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring the reli-
ability of transactions. Additionally, features like point-in-time recovery and built-in
replication mechanisms contribute to the system’s resilience and availability.

Neo4j
Neo4j is a graph database management system,
designed to handle and store data in a graph
structure rather than in traditional tables. In
Neo4j, data is represented as nodes, edges, and

12 CHAPTER 1. INTRODUCTION

properties. Nodes typically represent entities
such as people, businesses, accounts, or any

other item you might find in a dataset. Relationships provide the connections between
these nodes, akin to how foreign keys work in relational databases, but with a more
natural and direct approach to represent how items are related. This structure makes it
particularly efficient for querying complex and deeply interconnected data.

One of the key strengths of Neo4j is its powerful query language, Cypher, which allows
for expressive and efficient querying and manipulation of the graph data. Cypher is
designed to be intuitive and readable, focusing on the clarity of expressing what data to
retrieve or how to manipulate the data, rather than how to navigate the structure. This
makes it easier to model complex relationships and query them efficiently. Neo4j is
a popular choice for applications that require complex data relationships and network
analysis, such as social networks, recommendation systems, and fraud detection.

1.7 Ubuntu Linux

Ubuntu Linux, developed and distributed by Canonical
Ltd., has emerged as a popular distribution within the
Linux ecosystem since its first release in 2004. Through
its commitment to ease-of-use and pragmatic approach to
hardware compatibility, Ubuntu has played a significant
role in popularizing Linux as a viable alternative to pro-

prietary operating systems. The operating system’s development is steered by a global
community of contributors who collaborate on various aspects, from bug fixes to the
introduction of new features.

One distinguishing feature of Ubuntu is its emphasis on regular and predictable release
cycles. This approach ensures that users have access to the latest software updates,
security patches, and improvements. Ubuntu’s Long Term Support (LTS) releases,
occurring every two years, provide a support window of 5 years, offering stability and
reliability for enterprises and users seeking a more predictable environment.

The desktop edition of Ubuntu employs the GNOME desktop environment, providing
an intuitive and user-friendly interface. Ubuntu’s package management system, APT,
simplifies the installation and removal of software packages. It uses the ”apt” com-
mand line tool or the ”Synaptic” graphical interface to APT. The extensive and well-
maintained software repositories contribute to Ubuntu’s versatility, allowing users to
access a rich ecosystem of applications without the need for extensive manual configu-
rations. Because Ubuntu is based on Debian, it can use Debian packages and packages
in the Debian package format.

1.8. VIRTUAL MACHINES 13

As a multi-user operating system, Ubuntu provides support for file permissions for each
user, user home directories, and user privileges. User home directories are typically
located in /home/<userName>/ and the sudo (”superuser do”) command may
be used to execute commands as super user (equivalent to the ”root” user in Linux
terminology).

1.8 Virtual Machines
Virtualization with virtual machines allows users to create an run
virtual computers on their own computers, enabling the installa-
tion and operation of multiple operating systems simultaneously.
The ”real” system that is running the virtualization software ap-
plication is called the host system or host operating system, while
the virtual computer running inside the virtualization software is
called the guest system, or guest operating system. In effect, the virtualization soft-
ware pretends to be an actual computer to the guest system, and the guest system is a
complete operating system, such as Windows or Linux.

VirtualBox is a free and open-source virtualization software application developed by
Oracle. VirtualBox is available for host systems with an Intel or AMD processor,
running Windows, MacOS, or Linux operating systems. VirtualBox supports a wide
range of guest operating systems, including various versions of Windows, Linux dis-
tributions, MacOS, BSD, and others. VirtualBox provides "Guest Additions," which
are additional software packages that can be installed on the guest operating system.
These additions enhance the performance and integration between the host and guest
systems, providing features like seamless mouse integration, shared folders, and im-
proved graphics support.

14 CHAPTER 1. INTRODUCTION

VMWare Fusion is a proprietary virtualization software owned by Broadcom. VMWare
Fusion is available for Apple Mac computers running either Intel processors (before
circa 2021) or the later Apple M1, M2 or M3 processors (after circa 2021). Similar to
VirtualBox, it allows users to create and run virtual machines on their computer and
provides a way to share folders from the host system to the guest system, and to copy
and paste from host to guest and vice versa.

Virtual machine files for use with VirtualBox and VMWare Fusion are
provideda that contains an Ubuntu system with all required software installed
If you wish to use this, you must install VirtualBox or VMWare Fusion on
your computer, then download the corresponding virtual machine file and
import it into the virtualization software application.

The username is busi4720 and the password is busi4720. Whenever a pass-
word is required, you should enter busi4720.

ahttps://evermann.ca/busi4720.html

If you do NOT wish to use the VirtualBox Appliance, you should download and
install all software to your computer from the sources indicated in Table 1.1 in
(at least) the versions indicated in the table.

1.9 The Ubuntu Command Line (also for Mac Users)
This tutorial provides a very brief introduction to the Ubuntu command line (”termi-
nal”). The command line, also called a ”shell” is by default the ”bash” shell (Bourne-
again shell; a pun on the earlier Bourne shell). In Ubuntu, you can open the Terminal
application using the key combination Ctrl-Alt-T , or by selecting the Terminal appli-
cation icon from the side bar or the application list. You can also open a Terminal from
the file browser.

Note: The default shell in the MacOS terminal is the ”zsh” and behaves slightly dif-
ferently from the bash shell. You can work with a ”bash” shell by typing the bash
command in a MacOS terminal.

Bash will show you a command prompt that indicates your username (”busi4720”),
the name of the computer (”busi4720vm”) and your current working directory (”∼”)
followed by the dollar sign ”$”.

Print the working directory by typing the pwd command and then pressing the Return
or Enter key:

https://evermann.ca/busi4720.html

1.9. THE UBUNTU COMMAND LINE (ALSO FOR MAC USERS) 15

busi4720@busi4720vm:~$ pwd
/home/busi4720

Make a folder/directory with the mkdir command (in your current working directory):

busi4720@busi4720vm:~$ mkdir someFolder

Change the working directory to the folder you have just created with the cd command.
Note how the Bash command prompt indicates your new working directory.

busi4720@busi4720vm:~$ cd someFolder
busi4720@busi4720vm:~/someFolder$ cd ..
busi4720@busi4720vm:~$ cd ~

The following special characters can be used when specifying folders/directories and
paths:

∼ User home directory
. Current directory
.. Upwards in the directory tree
/ Root of directory tree

Here are some tips that make working with the shell a lot easier:

• Autocompletion of file names is available with the ” Tab ” key. When multiple
file names exist that match what you have entered so far, you can enter further
characters of a file name to disambiguate and press the Tab key again for further
autocompletion.

• You can recall earlier commands with the ” Up Arrow ” key. By default, the
shell stores the last 1000 commands.

• You can search earlier commands with the ” Ctrl-R ” key. You are then prompted
to search by typing in characters to find commands. The shell finds the most
recent command that contains the characters you entered. At any time you can
press Ctrl-R again to find earlier matches to your command search.

• Because the usual keys Ctrl-X , Ctrl-C , Ctrl-V for cutting, copying, and
pasting text have different functions in the shell, you can cut, copy, and paste
with the Ctrl-Shift-X , Ctrl-Shift-C , and Ctrl-Shift-V keys.

List folder/directory contents using the ls command. The option -l for the command
indicates that you would like to see long results.

16 CHAPTER 1. INTRODUCTION

busi4720@busi4720vm:~$ ls -l ~/Applications
total 8
drwxrwxr-x 7 busi4720 busi4720 4096 Nov 8 12:05 arcadedb-23.10.1
drwxr-xr-x 8 busi4720 busi4720 4096 Nov 7 11:45 pycharm-community-2

The results show the total size in kB, and a list of entries:

• Type of entry (”d” = directory)

• Permissions for owner of the file (”rwx”), users in the same user group as the
owner (”r-x”) and other users (”r-x”): r indicates read access, w indicates write
access, x indicates permission to run the application or enter/view a directory
(with cd or ls), and a - indicates the lack of the corresponding permission.

• Names of owner and groups (”busi4720”)

• Size (in bytes)

• Last modification date and time

• File or directory name

Print a string of text using the echo command:

$ echo "To be or not to be"
To be or not to be

Redirect the output of the echo command to a file using the redirect symbol ”>”. You
can redirect the output of any command this way. Use » to redirect and append, instead
of overwriting a file.

$ echo "To be or not to be" > someFile.txt
$ ls -l someFile.txt
-rw-rw-r-- 1 busi4720 busi4720 19 Nov 8 14:50 someFile.txt

Print contents of a file (”concatenate”) using the cat command. You can concatenate
multiple files by specifying them all (this is why the command is called ”concatenate”):

$ cat someFile.txt
To be or not to be

If you would like to see the contents of a file page by page or line by line, use the less
command (a pun on ”less is more” and the earlier ”more” command that did the same).
You will be shown the contents and can navigate up and down with the usual arrow
keys.

1.9. THE UBUNTU COMMAND LINE (ALSO FOR MAC USERS) 17

$ less someFile.txt

Copy a file using the cp command:

$ cp someFile.txt someCopy.txt

Move a file to a new location (folder/directory) using the mv command:

$ mv someCopy.txt ~/someFolder

Renaming is moving. When you want to rename a file, move it to a new file name:

$ mv someFile.txt newName.txt

Remove (delete) a file using the rm command:

$ rm someFolder/someFile.txt

Remove a directory recursively (i.e. remove all its contents first):

$ rm -r ~/someFolder

Use this very carefully! You could inadvertently delete all your files. The shell will
delete files and folders immediately and irrevocably. There is no ”undoing” this.

View the command line history with the history commands. Remember that you can
redirect this output to a file if you wish or use a pipe to pipe it into the less command
(see below).

$ history
1 echo "To be or not to be"
2 echo "To be or not to be" > someFile.txt
3 ls -l someFile.txt
4 less someFile.txt
5 cat someFile.txt

...

Management of file permissions is done using the chmod command. You can gran
and revoke read, write, and execute permissions for yourself, your group members,
and other users. Remove write permission for yourself by using the -w option and
specifying the filename:

18 CHAPTER 1. INTRODUCTION

$ chmod -w newName.txt

Add write permissions using the +w option:

$ chmod +w newName.txt

Add execute permissions using the +x option:

$ chmod +x newName.txt

If you are stuck on how to use a command or wish to see all its options and capabilities,
you can get the manual for a command using the man command:

$ man ls

If you can’t quite remember which command to use, you can search for commands
using keywords with the apropos command:

busi4720@busi4720vm:~$ apropos python
keyring (1) - Python-Keyring command-line utility
pdb3 (1) - the Python debugger
pdb3.10 (1) - the Python debugger
pip (1) - A tool for installing and managing Python p...
pip3 (1) - A tool for installing and managing Python p...
py3compile (1) - byte compile Python 3 source files
py3versions (1) - print python3 version information
pydoc3 (1) - the Python documentation tool
pydoc3.10 (1) - the Python documentation tool
pygettext3 (1) - Python equivalent of xgettext(1)
pygettext3.10 (1) - Python equivalent of xgettext(1)
python (1) - an interpreted, interactive, object-oriente...
python3.10-config (1) - output build options for python C/C++ exte...
python3 (1) - an interpreted, interactive, object-oriente...
...

You can see a list of all processes currently running using the ps command. The results
show the process identifier (PID), the console from which you started the process, the
computing time it has consumed, and the command that was used to start the process.
Add the a and x option to see all the processes running on your computer, not just the
processes you have started.

$ ps ax
PID TTY TIME CMD
3024 pts/0 00:00:00 bash
3151 pts/0 00:00:00 ps

1.10. REVIEW QUESTIONS 19

The grep command is useful to find something in a file or input stream. Use it as in
the following example in a pipe:

$ cat newName.txt | grep be
$ ls -l | grep .txt
$ history | grep .txt

Note: The vertical bar is called a ”pipe”, it pipes the output of one command as input
into the next one

The following are further beginner-level tutorials on using the command line on Ubuntu
(or really any Linux distribution):

• Ubuntu command line for beginners

• Linux command line primer

• Getting started with Linux

1.10 Review Questions
General

1. What is the definition of ”data analytics”? What is "business analytics"?
2. What is the relationship between data management and analytics?
3. Give examples of areas related to analytics and their relationships.
4. Why is text analysis mentioned in connection with machine learning?
5. What are artificial neural networks (ANN) and deep neural networks (DNN), and

how are they the same and how are they different from linear regression models?
6. In what way does AI include areas beyond machine learning?
7. Characterize Big Data and its focus.
8. Provide an example that illustrates areas of AI outside of data analytics.
9. Define techniques in the context of data science.

10. Provide an example of a technique used in exploratory data analysis.
11. Mention a few examples of tools used in data science.
12. Explain the relationship between methods and techniques in data science.
13. Provide examples of tasks or challenges that high-level methodologies (methods)

might address in data science.
14. Summarize the roles of methods, techniques, and tools in the context of data

science.

Types of Analytics

15. What is the primary purpose of descriptive analytics? Give an example of how it
might be used in a business context?

16. Explain how predictive analytics differs from descriptive analytics. Illustrate
with an example how a simple linear regression model can be used in predictive
analytics.

https://ubuntu.com/tutorials/command-line-for-beginners
https://www.digitalocean.com/community/tutorials/a-linux-command-line-primer
https://www.digitalocean.com/community/tutorial-series/getting-started-with-linux

20 CHAPTER 1. INTRODUCTION

17. Describe prescriptive analytics and how it differs from predictive analytics.
18. What is visual analytics and how does it support human tasks in data analysis?

Discuss how it can contribute to other types of analytics.
19. Compare and contrast predictive and prescriptive analytics in terms of their ap-

proach and end goals. How do they both utilize past data?
20. If a company wants to understand its sales performance over the last five years,

which type of analytics would be most appropriate and why?
21. Imagine a scenario where a company needs to decide on future marketing strate-

gies. Which type of analytics would be most beneficial for them and how might
it be implemented?

Learning

22. What is supervised learning in machine learning, and how does it differ from
unsupervised learning?

23. Describe how a simple linear regression model works in supervised learning.
What are the key parameters in this model?

24. Compare the simplicity of a linear regression model with the complexity of a
model like GPT in supervised learning. What are the key differences?

25. Provide examples of tasks that are typically performed using unsupervised learn-
ing.

26. How is clustering used in unsupervised learning, and can you give an example
of its application in a business context?

27. Explain the concept of dimensionality reduction in unsupervised learning and its
potential benefits.

1.11 Hands-On Exercises
The following are a set of connected exercises to help you practice your command line
skills. Do them in the order listed.

1. Navigation and Listing

(a) Open the terminal and use the pwd command to print the current working
directory.

(b) Use ls to list the contents of the current directory.
(c) Create a new directory named "Exercise1" using mkdir.
(d) Navigate into the "Exercise1" directory using cd.

2. File Manipulation

(e) Create a new file named "file1.txt" inside the "Exercise1" directory using
touch.

(f) Use cat to display the contents of "file1.txt".
(g) Append the text "Hello, Bash!" to "file1.txt" using echo and ».
(h) Display the updated contents of "file1.txt" using cat.

3. Removing and Renaming

1.11. HANDS-ON EXERCISES 21

(i) Remove "file1.txt" using the rm command.
(j) Create a copy of the "Exercise1" directory named "Exercise1_backup" us-

ing cp -r.
(k) Remove the original "Exercise1" directory using rm -r.

4. Directory Manipulation

(l) Recreate the "Exercise1" directory.
(m) Create three subdirectories inside "Exercise1" named "Subdir1", "Subdir2",

and "Subdir3" using mkdir.
(n) List the contents of "Exercise1" to verify the creation of subdirectories.

5. Searching and Filtering

(o) Create a file named "keywords.txt" inside "Exercise1" and add some ran-
dom text.

(p) Use grep to search for a specific word (e.g., "Bash") in "keywords.txt".
(q) Create a new file named "filtered.txt" and use grep to filter lines contain-

ing the word you searched for in "keywords.txt".

6. Process Management

(r) Use ps to display information about the current processes running on your
system.

(s) Use ps aux | grep bash to filter and display information about Bash
processes.

7. Cleanup

(t) Remove the entire "Exercise1" directory and its contents using rm -r.
(u) Confirm that the "Exercise1" directory no longer exists by listing the con-

tents of the current directory.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Data, Data Types, Data Quality

Learning Goals
After reading this chapter, you should be able to:

• List and describe the primitive data types of numbers, characters and strings,
dates and times, and the standards and options for their representation or serial-
ization.

• Characterize and differentiate among structured data types in R and Python, such
as lists, vectors, sets, etc.

• List and describe structured data, such as tables, documents, and graphs, includ-
ing standardized serialization and exchange formats.

• List and describe unstructured data formats and identify use cases in business
analytics. For text data, be able to apply regular expressions and string edit
distances for basic text analysis.

• Identify relevant questions to ask with respect to the quality of a data set. De-
scribe the importance of data provenance in ensuring data quality.

• Describe the process and different activities for data cleaning, that is, for improv-
ing data quality.

• Identify useful external data sources.

2.1 Introduction
Business analytics is the use of data for understanding, description, prediction, pre-
scription and decision making. Hence, it is important to understand the different types
of data and the variety of formats in which they can exist.

23

24 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

char Individual Characters
string A string of characters
byte 1 byte, −128 . . . 127 or one ASCII characters
int (16 bit) ”Short”, Integer numbers, −32, 768 . . . 32, 767
int (32 bit) ”Long”, Integer numbers, −2, 147, 483, 648 . . . 2, 147, 483, 647
int (64 bit) Integer numbers, −9, 223, 372, 036, 854, 775, 808 . . .

9, 223, 372, 036, 854, 775

float Decimal numbers, 6 to 7 significant digits, ”single precision”
double Decimal numbers, 15 to 16 significant digits, ”double precision”
boolean Logical, true/false, 1 or 0

Table 2.1: Primitive Data Types

This section first introduces primitive data types, such as numbers and text. There are
many complexities to be aware of that can make analytics challenging. Next, complex
data types are introduced, such as tables, documents, and graphs, which are useful in
describing complex information, such as customer purchase history in tables, product
descriptions in documents, or supply chain logistics in a graph. Then, unstructured
data in the form of text, images, and audio/video information is explained. Data in
these formats may be market information from financial reports (text), quality control
photos taken on a manufacturing line (images), or video captured inside the chemical
reactors of an oil refinery.

In the second section, you will learn about data quality, data cleaning, and data prove-
nance. It is important to understand potential problems with the data you use, how to
identify them, and how to address them. Data provenance, that is, understanding where
the data was collected or created, and how it was processed, is important because errors
or biases may be introduced at various stages of the processing and handling pipeline.

The final section introduces different data sources. While most data for business an-
alytics is internally produced by an organization, there is a vast amount of external
information available to use and to combine with internal data for richer business ana-
lytics.

2.2 Data Types

2.2.1 Primitive Types
Primitive data types are basic types of data built into programming languages and other
software systems such as statistics and analytics tools. They represent the simplest
forms of data and serve as the building blocks for constructing more complex data
structures.

Table 2.1 shows a list of common data types. However, not all software systems use

2.2. DATA TYPES 25

the same names, and not all systems make the same distinctions. For example, the
R system uses the terms numeric (which is actually a double type) and integer
(which is a 32 bit integer).

Additionally, it is important in statistics and analytics to indicate the lack of a value,
that is, a ”missing value”. Different systems use different special names for this. The
R statistical system uses the term ”NA”, while the Python programming languages uses
”None” and the SQL database language uses the term ”Null”. Moreover, the meaning
of these in practice can be ambiguous and says nothing about the reason for the miss-
ingness. For example, is the value not appropriate to the thing measured (e.g. in a table
of geometric objects, the diameter value is simply not appropriate for two-dimensional
object)? Was it missed during data collection? Was it withheld during data collection?
Was it removed during initial analysis as an outlier?

Numbers

As Table 2.1 indicates, decimal numbers can be represented using different numbers of
bytes with different precisions. Integer numbers are relatively straightforward. Here, a
number is simply represented as its equivalent binary number (base 2, with digits 0 to
1), often with the first bit indicating the sign (positive/negative).

To represent decimal numbers, computers use the floating point representation defined
by the IEEE 754 standard1. Figure 2.1 shows how decimal numbers are represented in
binary form. A float, or single precision number occupies 4 bytes (32 bits): 1 bit for
the sign, 8 bits for an exponent, and 23 bits for the fraction (also called ”significand”
or ”mantissa”). With this, a float has a precision of approximately 6 to 7 decimal
digits and a range at full precision between ±1.18× 10−38 . . .±3.4× 1038.

https://commons.wikimedia.org/wiki/File:Float_example.svg

(a) 32 bit float

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

(b) 64 bit double

Figure 2.1: Floating Point Numbers (IEEE 754 Standard)

1https://en.wikipedia.org/wiki/IEEE_754

https://commons.wikimedia.org/wiki/File:Float_example.svg
https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
https://en.wikipedia.org/wiki/IEEE_754

26 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

A double, i.e. a double precision number, occupies 8 bytes (64 bits): 1 bit for the
sign, 11 bits for an exponent and 52 bits for the fraction. It has a precision of 15 to 16
decimal digits and a range at full precision between±2.23×10−308 . . .±1.80×10308.

Example: Consider the number 0.15625 in the top of Figure 2.1. Its IEEE 754 float
representation can be understood as follows:

1. First, convert 0.15625 to binary, which is 0.001012 (1/8 + 1/32).

2. Rewrite in normalized scientific notation: 1.012 × 2−3.

3. Sign Bit: 0.15625 is positive, so the sign bit is 0.

4. Exponent: The actual exponent is −3, and the biased exponent is −3 + 127 =
124, which is 011111002 in binary.

5. Fraction (significand, mantissa): The fraction is the normalized value without
the leading 1, so it is 0100000000000000000000002 (23 bits).

Combining these components as shown in Fig. 2.1 leads to the number ”01011111
00010000 00000000 00000000”, written in 4 bytes of 8 bits each.

While the IEEE 754 standard defines how computers store decimal numbers internally,
when exchanging information, numbers are printed as plain text. Such ”printing as
plain text” is called ”serialization”, because the data are written as a series of characters
or bytes. Writing out decimal numbers is fraught with complexities due to different
idiosyncratic styles of writing or formatting numbers, depending on the application or
the locale (that is, the dominant rules in the location of the user).

Format Comment
-1023476.56
-1023476,56 some locales use comma as decimal separator

-1,023,476.56 some locales use comma for grouping
-1.023.475,56 some locales use comma as sep and points to group

(1,023,476.56) some applications use brackets for negation
-1 023 476.56 some locales use space for grouping

-1.02347656e+06 ”scientific notation”
-1023.47656e+03 also ”scientific notation”

Table 2.2: Serializing Numbers to Text

The most frequent variations occur with respect to the decimal point (some locales, for
example in Europe, use a comma instead), the grouping of digits (some locales group
thousands, millions, etc. with spaces, points, commas, and other characters), writing
negative numbers (in accounting, negatives are often put in parentheses instead of using
a minus sign), and ”scientific notation”, which specifies numbers as coefficients and
exponent for powers of 10 (for example 1.234e+3 = 1.234×103 = 1234; 1.234e−2 =

2.2. DATA TYPES 27

1.234 × 10−2 = 0.01234). Table 2.2 shows examples of some idiosyncratic ways of
writing the same number.

It is important to verify the number format in any data set, and to transform it
into one that is readable and usable by the chosen business analytics tool.

Characters & Strings

There exist a multitude of writing systems beyond the Latin alphabet, using many
different symbols. Symbols can represent consonants, consonant-vowel sequences,
phonemes, words or morphemes, or syllables, leading to a vast range of symbols across
the written languages of the world.

The Unicode system2 was developed to address the limitations of earlier encoding sys-
tems and to enable consistent, universal representation of text from all the world’s writ-
ing systems. Before Unicode, there were different encoding systems, such as ASCII
(American Standard Code for Information Interchange), which could only represent a
limited set of characters (primarily used in the English language). This led to difficul-
ties in representing text in languages with larger character sets or different scripts.

The Unicode Consortium was founded in 1988 and incorporated
in 1991 with the goal of developing a universal character encoding
standard. Unicode was standardized in 1998 as ISO/IEC standard
10646 and its popular UTF-8 encoding was standardized as RFC
22793. Over the years, Unicode has been expanded and refined
to include a wider array of characters, symbols, and scripts. This

includes not only modern languages but also historic scripts, mathematical symbols,
emojis, and more. By providing a unique identifier for every character, regardless of
the computer system, software application, or programming language, Unicode solves
the problem of inconsistent encoding and ensures that text appears consistently across
different systems and devices. It has become the standard for modern software and in-
ternet protocols and is fundamental for web content, databases, applications, and more.
The latest version of Unicode as of this writing (v15.1) contains 149,813 characters for
different 161 scripts, including 3782 emojis4.

UTF-8 (Unicode Transformation Format – 8-bit) is the most common method for repre-
senting Unicode characters. It uses between one and four bytes to represent a character
and is backwards compatible with ASCII because the initial 127 Unicode characters
are identical to the corresponding ASCII characters.

Example: Consider the word ”Inuktitut”. This word is written in the Inuktitut writ-
ing system as , which contains six symbols (the Inuktitut writing system is

2https://home.unicode.org/
3https://datatracker.ietf.org/doc/html/rfc2279
4https://www.unicode.org/versions/stats/

https://home.unicode.org/
https://datatracker.ietf.org/doc/html/rfc2279
https://www.unicode.org/versions/stats/

28 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

not alphabetic, it is syllabic)5. The corresponding Unicode character numbers (”code-
points”) are: U+1403, U+14C4, U+1483, U+144E, U+1450, U+1466. These are given
as hexadecimal numbers, using a base of 16 with digits from 0 to F. In text documents
this may be written as \u1403 \u14c4 \u1483 \u144e \u1450 \u1466 when the document
is read/parsed by an appropriate software tool that can understand this way of writing
Unicode characters.

The corresponding decimal (base 10, with digits from 0 to 9) Unicode character num-
bers are 5123, 5316, 5251, 5198, 5200, 5222. These are used when the text is written
for web content in HTML as HTML entities, such as ”&#5123; &#5316;
&#5251; &#5198; &#5200; &#5222;”.

Using UTF-8, each of these six characters can be encoded in 3 bytes. These are usually
written in hexadecimal form, indicated by the ”0x” prefix. Hexademical form is a base
16 system and uses ”numbers” between 0 and F, that is, it uses 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F as numbers. For example, 0xE1 is 14 (the ”E”) times 16 (the
first digit) + 1 times 1 (the second digit), yielding 225. 0x.

The sequence of Unicode characters for the word ”Inuktitut” becomes 0xE1 0x90 0x83
(first symbol) 0xE1 0x93 0x84 (second symbol) 0xE1 0x92 0x83 (third symbol) 0xE1
0x91 0x8E (fourth symbol) 0xE1 0x91 0x90 (fifth symbol) 0xE1 0x91 0xA6 (sixth
symbol).

As a business analyst, you may come across data that contains Unicode characters
either spelled out in the ”\uXXXX” form, or UTF-8 encoded in byte sequences, or
in the HTML format. While you do not need to understand the technical details of
Unicode and its different encodings, you should be aware that data in this format is
common and you need to know how to deal with it when you encounter it. This includes
using a Unicode-aware data storage and management system, using a Unicode-aware
business analytics tool, and using a Unicode-aware visualization or report-writing tool.

Hands-On Exercise

• Choose your favourite emoji
• Determine its Unicode number (”codepage”)
• Determine its UTF-8 encoding

Dates and Times

The world has largely standardized on the Gregorian calendar for secular and com-
mercial use, while other calendar systems exist now only for religious or traditional
purposes. However, as with written numbers, written dates show a bewildering variety
of forms, depending on the locale and other traditions.

Complexities are introduced by 12 hour (AM/PM) versus 24 hour time formats (”14:30”

5Using https://www.inuktitutcomputing.ca/Transcoder/index.php and https:
//www.compart.com/en/unicode/

https://www.inuktitutcomputing.ca/Transcoder/index.php
https://www.compart.com/en/unicode/
https://www.compart.com/en/unicode/

2.2. DATA TYPES 29

Calendar dates YYYY-MM-DD

Ordinal dates YYYY-DDD

Week dates YYYY-Www-d

Times

Thh:mm:ss.sss (or Thhmmss.ss)

Thh:mm:ss (or Thhmmss)

Thh:mm.mmm or Thhmm.mmm

Thh:mm or Thhmm

Thh.hhh

Time Zones
<time>Z or <time>±hh:mm or
(<time>±hhmm or <time>±hh)

Combined <date>T<time>
Periods PnYnMnDTnHnMnS or P<date>T<time>

The italicized forms are in ISO 8601 but not in RFC 3339

Table 2.3: ISO 8601 / RFC 3339 Rules for Dates and Times

is ”2:30PM”), different time zones across the world, leap seconds and leap years, week
numbering (does it start with the first full week?), different written formats for the se-
quence of days, months, and years (is ”06-07-09” June 7, 2009 or July 6, 2009, or
July 9, 2006?), different separators between years, dates, and months (”06/07/09” and
”06-07-09”), and the difficult arithmetic when using years, months, and days.

The ISO 86016 (first published in 1988) and RFC 33397 (published in 2002) standards
define how dates and times should be written. Table 2.3 shows a summary of the
ISO 8601/RFC3339 rules (the italicized forms are in ISO 8601 but not in RFC 3339).
However, these standards are by no means universally followed and reading/parsing
date and time data remains a difficult and complex task in many business analytics
settings.

Even within the ISO 8601 standard, there are numerous ways to express the same date
or time, such that June 13, 2024 can be written as an ordinal date (”2024-165”) or a
week date (”2024-W24-4”) and the time of T13:45:30 can be written as ”T13:45.500”
or as ”T1345.500”.

For a business analyst, it is important to verify the format of dates and times in
any data set, especially when the data comes from different or external sources.

6https://en.wikipedia.org/wiki/ISO_8601
7https://datatracker.ietf.org/doc/html/rfc3339

https://en.wikipedia.org/wiki/ISO_8601
https://datatracker.ietf.org/doc/html/rfc3339

30 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Python
list [1, 2, "a", "b", 2] mutable, ordered
tuple (1, 2, "a", "b", 2) immutable
set {1, 2, "a", "b"} mutable, unordered, unique
dict {"make": "Ford", "year": 2023} mutable

R
list list(1, 2, "a", "b", 2) mutable, ordered
vector c(1, 2, 3) mutable, same primitive type
factor as.factor(c("Hot", "Med", "Cold")) ordered
matrix matrix(c(1, 2, 3, 4), nrow=2)

array array(c(1, 2, 3), c(4, 5, 6))

Table 2.4: Structured data types (”collection types”) in Python and R

A year is a leap year if it can be divided by four and (cannot be divided by 100
but can be divided by 400). Formally:
(year % 4 == 0) and (year % 100 != 0 or year % 400 == 0)

Hands-On Exercise

The territory of Nunavut was created on April 1st, 1999.

• Express the date in RFC 3339
• Calculate the number of days since the creation of Nunavut
• Assume that a ceremony took place at 3PM that day in Iqaluit and ex-

press this date-time in RFC 3339
• Assume the ceremony lasted for 125 minutes and express this duration

in RFC 3339

Collections

Collections can store multiple instances of primitive data, often heterogeneous. Differ-
ent collection types have different characteristics in terms of whether they are

• ordered or unordered,

• homogeneous (same primitive types) or heterogeneous (different primitive types),

• unique or allow duplicates,

• mutable (can be changed) or immutable (cannot be changed).

Different software tools offer different kinds of structured types and unfortunately the
terminology is not necessarily consistent across software tools. Table 2.4 provides a
summary of structured types in Python and R, with examples and key characteristics
of the type.

2.2. DATA TYPES 31

2.2.2 Structured Data

Data that you encounter in business analytics is built on the primitive and collection
data types described in the previous section. We distinguish between structured data,
such as tables, key-value pairs, documents, or graphs, and unstructured data, such as
text, images, and audio/video data. The latter are called unstructured because these
data essentially come as simply a sequence of characters or bytes. Information must
first be identified in them and extracted from them, before it can be used for analytics.

Tables

Table data refers to a method of organizing data in a structured, tabular format, where
the data is arranged in rows and columns. Each row in a table represents a single
record or entry. For instance, in a table of customer data, each row could represent a
different customer. Columns, sometimes called fields, represent different attributes or
characteristics or features of a record. In the customer data example, columns might
represent attributes of a customer such as their name, address, and purchase history.
The intersection of a row and a column is called a cell. Each cell contains a single piece
of data for a particular attribute of a record. For example, the cell at the intersection
of the ”Name” column and the third row might contain the name of the third customer.
Cells may be of simple type or be themselves of structured types, such as sets or lists
or even other tables. Tables often have a header row at the top, which contains the
names of the columns. These headers provide context for what each column in the
table represents. Table 2.5 shows an example table with a header row that names the
columns, three rows of data in three columns that use simple data types (strings and
integers). Some tables may also have an index column as the first column with row
numbers.

CSV Files While table data is familiar from spreadsheet systems such as Microsoft
Excel or LibreOffice Calc, these tools often store table data in a format that is unique to
their system and difficult to read with other tools. This is because spreadsheet tables can
contain formulas, formatting instructions such color and font, and other information
besides the actual data.

The standard format for storing and exchanging tabular data (i.e. the serialization
format) is the comma-separated value file (”CSV” file) that is standardized in RFC

Name Area Population
Canada 9,984,670 38,781,292
Nigeria 923,768 223,804,632
Germany 357,600 83,294,633

Table 2.5: Example Table

32 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

41808. Tabular data is stored in a plain text format, without formatting instructions
or formatting information, that makes it easy to read and write with different software
tools, such as statistics and analytics software, spreadsheet applications, or database
management systems.

CSV files are plain text files, typically encoded in ASCII or UTF-8. Every line con-
tains one row of the table, and fields within a row are separated by commas (although
sometimes other, non-standard delimiters such as semicolon are used). Fields are typ-
ically of a primitive data type although the interpretation of the field content is left to
the software tool reading the CSV file. The CSV file may contain an optional header as
the first line, with the same format as the data lines of the file. Every line is ended by
a line break using the sequence of CR and LF characters9. Every line must contain the
same number of fields and fields are allowed to be empty, but must still be separated
by a comma. The content of each field may be enclosed by double quotes (although
sometimes other, non-standard quotes like single quotes are used). The following is a
CSV serialization of Table 2.5:

"Name", "Area", "Population" CR LF
"Canada", "9984670", "38781292" CR LF
"Nigeria", "923768", "223804632" CR LF
"Germany", "357600", "83294633" CR LF

While the CSV format is standardized, not all data sets necessarily conform fully to the
standard. You may encounter different field delimiters, such as semicolons, tabs, carets
(”ˆ”) or others. Line breaks may not use the Microsoft Windows convention of CR LF
but instead use only the LF character as is typical on MacOS and Linux/Unix systems.
Not all fields may be quoted and you may encounter a mix of double quotes and single
quotes even in the same CSV file. Additionally, the field contents themselves, such
as numbers and dates, may themselves not be standards compliant and exhibit a range
of different notations, as discussed above. For a business analyst, it is important to
recognize these variations and be able to address them prior to further data analysis.

8https://datatracker.ietf.org/doc/html/rfc4180
9These stand for ”carriage return” and ”line feed”, respectively, and are a hold-over from the era of

mechanical typewriters where the paper carriage needed to be returned to the start of a line and then advanced
by one line. CR and LF are represented by ASCII/UTF-8 codes 13 and 10, respectively. Hence, the CSV
line break conforms to the Microsoft Windows convention of line breaks. MacOS and Linux use only the LF
character for line breaks.

https://datatracker.ietf.org/doc/html/rfc4180

2.2. DATA TYPES 33

Hands-On Exercise

• Search the internet for a CSV file of the population and areas of all coun-
tries of the world

• Examine the CSV file and answer the following questions:
– What is the delimiter?
– Which fields are quoted, and how?
– What is the line ending character(s)?
– What is the number format?
– What is the date format (if there are dates)?

• Import the CSV file into your favourite spreadsheet tool
– Does it recognize all information correctly? If not, what is not

imported well?
• Export the CSV file from your tool under a different name.

– Do you get an identical file to the one you imported? If not, what
has changed?

Relational Databases Tabular data is also the basis for relational database manage-
ment systems (RDBMS). Tables in these systems are called relations10. Records, i.e.
rows of a relation, are uniquely identified by primary keys. These may be ”natural”
primary keys, such as a combination of fields (also called ”attributes” in RDBMS) or
artificial/synthetic primary keys. For example, in some applications one may assume
that the combination of first name, last name, date of birth, and postal code uniquely
identifies a person and is used as a primary key. However, it is generally safer to assign
artificial primary keys, such as consecutive numbers, to records.

One key characteristic of data in an RDBMS is that fields in one table can refer to
primary key fields in another table. For example, the product numbers for an order in
the order table must refer to product numbers of products in the products table. The
referring fields are called ”foreign keys”. Foreign-key relationships ensure referential
integrity, a form of validity of the data. They also allow an RDBMS to easily retrieve
related records from different relations. Figure 2.2 shows an example of keys in a
relational database.

Data normalization in an RDBMS refers to reducing data redundancy. For example,
if a customer can have multiple addresses, rather than using multiple address fields
in the customer relation or having multiple customer records for a customer (one for
each address), normalization will create a table to store addresses where each address
refers back to a particular customer using a foreign-key relationship. Normalizing the
relations and thereby reducing redundancy makes data storage more efficient and also
reduces the potential for inconsistent data, leading to higher data integrity. RDBMS
typically use the structured query language (SQL) for retrieving information.

Prominent RDBMS examples are Oracle RDBMS11, a proprietary system for on-premises
10After the mathematical concept of a relation as a subset of a cross-product.
11https://www.oracle.com/ca-en/database/

https://www.oracle.com/ca-en/database/

34 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

https://commons.wikimedia.org/wiki/File:Relational_key_SVG.svg

Figure 2.2: Keys in a relational database

installation; the PostgreSQL12 open-source RDBMS system for on-premises installa-
tion; and Amazon RDS13, Google BigQuery14, and Azure SQL15 which are cloud-
based systems on AWS, Google Cloud, and Microsoft Azure, respectively.

Hands-On Exercise

• Assume that products are identified by a product code and have attributes
such as description, weight, and price.

• Assume that suppliers are identified by a supplier number and have at-
tributes such as name and address.

• Assume that each product is available from exactly one supplier (but a
supplier can supply multiple products).

Write example relations and identify foreign-key relationships for referential
integrity, similar to Figure 2.2

Key-Value Data Stores

Key-value data stores are a type of non-relational (NoSQL16) database that organize
data as a collection of key-value pairs. In this model, each data item is stored as a key,
along with an associated value. Keys may have multiple components, in an ordered
list of ”minor keys”. The associated value is not interpreted by the data store, and
can contain anything that is meaningful to the application, from primitive data types
to collections to complex documents to images or video data. Figure 2.3 shows an
example of the key-value model of data storage.

Important characteristics of key-value stores the extremely simple data model: every

12https://www.postgresql.org/
13https://aws.amazon.com/rds/
14https://cloud.google.com/bigquery
15https://azure.microsoft.com/en-ca/products/azure-sql/database
16NoSQL is term to describe non-relational database models. It does not mean ”no SQL”, but means ”Not

only SQL.”

https://commons.wikimedia.org/wiki/File:Relational_key_SVG.svg
https://www.postgresql.org/
https://aws.amazon.com/rds/
https://cloud.google.com/bigquery
https://azure.microsoft.com/en-ca/products/azure-sql/database

2.2. DATA TYPES 35

https://commons.wikimedia.org/wiki/File:KeyValue.PNG

Figure 2.3: Key Value Data Store

item is stored as a key and its corresponding value. The keys are unique identifiers.
Due to their simple structure, key-value databases allow faster data insertion, updating,
and retrieval when compared to more complex relational databases. Unlike relational
databases, key-value stores do not have predefined relations with foreign-key relation-
ships. This means that the values associated with keys can be changed dynamically,
and different keys can have values of different types. This makes key-value stores
more flexible than other databases. On the other hand, they lose the data integrity ad-
vantages that come from a predefined schema and the referential integrity based on
relationships between multiple tables. Key-value stores are more efficient at storing in-
formation than RDBMS because empty table cells do not need to be stored. Key-value
stores are also easier to scale and distribute among multiple computers, due to their
simple data model. On the other hand, key-value stores are limited in terms of their
data querying and analysis capabilities. They are not inherently designed for complex
queries, such as joining data across different keys.

Example key-value data stores include Redis17, an open-source, in-memory key-value
store. Amazon DynamoDB18 is a proprietary scalable NoSQL database service avail-
able on the AWS cloud. Google BigTable19 and Azure CosmosDB20 are key-value
stores offered on the Google cloud and the Microsoft Azure cloud. Facebook’s RocksDB,
Google’s LevelDB21 and the Apache Cassandra22 and HBase23 projects offer open-
source systems for on-premises installation.

Documents (JSON)

When speaking about documents in the context of structured data, we do not mean
unstructured text (as a series of characters) but a structured collection of elements.
The JavaScript Object Notation (JSON) is a lightweight data-interchange format that
is easy for humans to read and write, and also easy for machines to parse and generate.

17https://redis.io/
18https://aws.amazon.com/dynamodb/
19https://cloud.google.com/bigtable
20https://cosmos.azure.com/
21https://github.com/google/leveldb
22https://cassandra.apache.org/
23https://hbase.apache.org/

https://commons.wikimedia.org/wiki/File:KeyValue.PNG
https://redis.io/
https://aws.amazon.com/dynamodb/
https://cloud.google.com/bigtable
https://cosmos.azure.com/
https://github.com/google/leveldb
https://cassandra.apache.org/
https://hbase.apache.org/

36 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

It is software tool independent. Originally developed for exchanging data between
web servers and web browser client applications, it has emerged as a popular way of
describing and exchanging many different kinds of data for a variety of purposes in
many different applications. JSON was standardized in RFC 825924 in 2017.

JSON documents are plain text documents encoded in UTF-8 and consist of key-value
pairs where the key or name is a string and the separator is a colon. Values may be
strings (enclosed by single or double quotes), numbers, boolean values (”true” or
”false”), or the special value ”null”. Values are either objects or arrays. JSON
objects are unordered collections of zero or more key-value pairs and are delimited
by ”{” and ”}”. Figure 2.4 shows an example of a JSON object with key-value pairs
and nested objects. JSON arrays are ordered sequences of zero or more values and
are delimited by ”[” and ”]”. Arrays contain values but no keys and, because they are
ordered, elements can be accessed by position. Figure 2.5 shows an example of a JSON
array, i.e. a list of values, in this example a list of objects.

{
"Image": {
"Width": 1060,
"Height": 400,
"Title": "Skyline of Iqaluit, Nunavut",
"Url":

"https://upload.wikimedia.org/wikipedia/commons/b/b4/Iqaluit_skyline.jpg",
"Legal": {
"Copyrighted": true,
"License": "GNU Free Documentation License",
"Inception": "2010-03-24",
"Author": "Aaron Lloyd"
},

}
}

Figure 2.4: JSON Example – Complex Object

Hands-On Exercise

Describe yourself in a JSON object:
• Identify information about yourself, such as names, addresses, dates, re-

lationships (work, school, uni), etc.
• Structure the information in JSON Objects and Arrays
• Use nested structures, e.g. objects in arrays, or arrays in objects, or ob-

jects in objects, etc.

24https://datatracker.ietf.org/doc/html/rfc8259

https://datatracker.ietf.org/doc/html/rfc8259

2.2. DATA TYPES 37

[
{

"Latitude": 56.536389,
"Longitude": -61.718889,
"City": "Nain",
"Province": "NL",
"Postal": "A0P",
"Country": "Canada"

},
{

"Latitude": 53.512778,
"Longitude": -60.135556,
"City": "Sheshatshiu",
"Province": "NL",
"Postal": "A0P",
"Country": "Canada"

}
]

Figure 2.5: JSON Example – List of Objects

Documents (XML)

XML25, for ”eXtensible Markup Language”, is a flexible and versatile serialization
format that plays an important role in the storage and transmission of data. It is a text-
based format that allows for the creation of custom tags (tags are used to describe and
delimit data elements), providing a means to define and structure data in a way that
is both machine-readable and human-readable. Unlike HTML (the Hypertext Markup
Language that describes web pages), which has a predefined set of tags for web page
layout, XML does not prescribe any specific tags, allowing users to create tags tailored
to their specific application.

XML’s development began in the late 1990s by an XML Working Group under the
auspices of the World Wide Web Consortium (W3C). XML 1.0 was officially recom-
mended by the W3C in February 1998. It quickly gained widespread adoption due to
its simplicity, extensibility, and ability to work seamlessly across different systems and
platforms. XML has become a cornerstone technology in numerous domains, from
web services and APIs to configuration files and data interchange formats.

An XML document is composed of elements. XML elements are described by match-
ing opening and closing tags, between which simple text content or other XML ele-
ments may be placed. Elements in turn may have attributesAttribute (in XML). At-
tributes are specified in the opening tag of an element and may contain simple, quoted
text data only. This hierarchical organization can represent complex data relationships
and nested structures.

XML files are human-readable and self-descriptive in nature; the names of elements

25https://www.w3.org/TR/2008/REC-xml-20081126/

https://www.w3.org/TR/2008/REC-xml-20081126/

38 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

and attributes used in the document indicate that type or meaning of the data they
describe, enhancing the understanding and interpretation of the data’s structure and
meaning. Additionally, XML is platform-independent and language-neutral, making
it a universally accepted standard for data interchange across different systems and
applications.

XML element and attribute names may be defined within a namespace. This allows
mixing elements with the same name but different namespaces in the same document
and removes ambiguity that could arise from identically named elements that describe
different data or content. For example when mixing customer and product information
in an order document, both the customer and the product may have a ”name” ele-
ment and different namespaces for the two ”name” elements helps to tell them apart.
Namespaces are declared using the special xmlns attribute and are typically defined
by a URI (Uniform Resource Identifier), typically a URL (Uniform Resource Locator).
These URI/URL are for identification purposes and do not need to describe an actually
existing resource.

The following example describes the Innu people of northern Canada in the form of an
XML document. The element names, like People, History, Culture are self-
descriptive and human-readable. Note that each opening tag (such as <Traditions>)
is matched by a corresponding closing tag (such as </Traditions>. Empty ele-
ments that do not contain any content are defined using a single tag (for example, the
<geo:Location.../> element). Some elements contain attributes, such as the
Name attribute of the GeneralInformation element. Attributes must be quoted
character strings.

Namespaces are declared at the root element of the document: The xmlns:geo and
xmlns:hist are namespace declarations. They are used to distinguish between ge-
ographical (geo) and historical (hist) data. Notice how element and attribute names
may be prefixed by a namespace (such as the <hist:History> element or the
geo:Country attribute. The xmlns declaration defines the default namespace that
applies to all elements and attributes without an explicit namespace.

Notice that elements with the same name may be repeated. For example, there are
multiple Period elements in the History element, each with their own hist:era
attribute to specify the era. This allows one to represent lists or sets of elements.

2.2. DATA TYPES 39

<People
xmlns="https://www.example.com/peoples"
xmlns:geo="http://www.example.com/geo"
xmlns:hist="http://www.example.com/history">

<GeneralInformation
Name="Innu" Language="Innu-aimun">

<geo:Location geo:Country="Canada"
geo:Regions="Labrador, Quebec" />

</GeneralInformation>
<hist:History>

<hist:Period hist:era="Pre-Colonial">
<Description>

Nomadic lifestyle, primarily
hunting and fishing.

</Description>
</hist:Period>
<hist:Period hist:era="Post-Colonial">

<Description>
Impact of colonization,
including displacement and
cultural changes.

</Description>
</hist:Period>

</hist:History>
<Culture>

<Traditions>
<Tradition>

Hunting and fishing as cultural
and subsistence activities.

</Tradition>
<Tradition>

Use of the tepee for temporary
shelter.

</Tradition>
</Traditions>
<Art>

<Form>Drum making</Form>
<Form>Clothing with intricate beadwork
</Form>

</Art>
</Culture>
<Challenges>

Issues like land rights, cultural preservation
</Challenges>

</People>

Given the similarities between JSON and XML it is not surprising that one can read-
ily be transformed into the other. An equivalent JSON document of the above XML
document could be as follows:

40 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

"Innu": {
"@xmlns:geo": "http://www.example.com/geo",
"@xmlns:hist": "http://www.example.com/history",
"GeneralInformation": {

"@Name": "Innu",
"@Language": "Innu-aimun",
"Location": {

"@geo:Country": "Canada",
"@geo:Regions": "Labrador, Quebec"

}
},
"History": {

"Period": [
{

"@hist:era": "Pre-Colonial",
"Description": "Nomadic lifestyle,

primarily hunting and fishing."
},
{

"@hist:era": "Post-Colonial",
"Description": "Impact of colonization,

including displacement and
cultural changes."

}
]

},
"Culture": {

"Traditions": {
"Tradition": [

"Hunting and fishing as cultural and
subsistence activities.",

"Use of the tepee for temporary shelter."
]

},
"Art": {

"Form": [
"Drum making",
"Clothing with intricate beadwork"

]
}

},
"CurrentStatus": {

"Challenges": "Issues like land rights,
cultural preservation, etc."

}
}

In this example, XML namespaces are represented as properties with names prefixed
by ”@”. This does not imply any special meaning or treatment in JSON, but makes
it easier for the computer to read and parse (”understand”) the document. XML el-
ements with attributes are represented as JSON objects, while repeated elements are
represented as JSON arrays.

In comparing XML to JSON, it is evident that both formats are human as well as

2.2. DATA TYPES 41

machine readable. It is also clear that XML is more verbose or lengthy. This is an
advantage in that it makes it very self-descriptive, but a disadvantage in that XML
documents are larger than corresponding JSON documents. In contrast, JSON is more
compact or lightweight, and not quite as self-descriptive as an XML document. XML
supports more complex structures than JSON through is attributes, namespaces, and a
larger selection of possible data types for simple content.

While XML can be strictly defined using XML Schema there is not yet a well-adopted
means for specifying JSON documents. This means that JSON documents cannot be
validated against a set of rules or constraints, possibly leading to data quality issues,
but, on the other hand, may be used more flexibly.

Hands-On Exercise

Describe yourself in an XML document:
• Identify information about yourself, such as names, addresses, dates, re-

lationships (work, school, uni), etc.
• Structure the information in Elements and Attributes
• Use nested elements where appropriate

Document Databases Document databases, a type of NoSQL databases, are de-
signed to store, retrieve, and manage document-oriented information, typically in the
form of JSON or BSON (Binary JSON) documents. Unlike traditional relational data-
bases that store data in rows and columns, document databases handle data in a more
flexible, semi-structured way. They are designed for handling large volumes of diverse
data that does not fit into a tabular format. Document databases may be thought of
as nested key-value data stores where all keys are strings. Their fundamental unit of
storage is the document. Unlike relational databases, document databases usually do
not have a predefined schema. Each document in a collection can have its own unique
structure, with different fields, data types, and sizes. This makes them more flexible
than RDBMS. Document databases often offer query languages that are designed to
handle complex queries on document data, including searching within documents and
aggregating data across multiple documents.

Typical use cases for document databases are content management, where different
types of content need to be stored and retrieved efficiently, catalogs and product data,
where each product may have different attributes and structures, and real-time analytics
of Internet-of-Things (IoT) sensor data, where large volumes of unstructured and semi-
structured data are generated.

Prominent examples of document databases are MongoDB26 and ArangoDB 27 which
are partially proprietary system for on-premises installation or cloud-based use; Apache

26https://www.mongodb.com/
27https://arangodb.com/

https://www.mongodb.com/
https://arangodb.com/

42 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

CouchDB28 which is a fully open-source system; and AWS DocumentDB29 which is a
cloud-based system on the Amazon AWS cloud.

Graphs

Graphs consist of nodes (also called vertices) and edges (also called arcs or relation-
ships) that connect two nodes. Edges may be directed or undirected. Both nodes and
edges may be labelled or typed. For example, different node types may be used to rep-
resent customers and products; different edge types may represent a customer ordering
a product, a customer returning a product, a customer obtaining a quote about a prod-
uct, etc. Graph data is found in social networks (between people, events, topics, etc.),
in logistics networks (between suppliers, customers, warehouses, distribution centers,
etc.), in financial networks (between organizations, accounts, etc.), in biological net-
works, and in many other contexts.

https://commons.wikimedia.org/wiki/File:GraphDatabase_PropertyGraph.png

Figure 2.6: Property Graph Example

Graph data is either in the form of property graphs or RDF graphs (”Resource Descrip-
tion Framework”). Property graphs are a graph data model where each node and edge
can have a set of properties (key-value pairs) that describe the attributes of the entity
represented by the node. Edges can also have properties, which can describe attributes
of the relationship. For example, a node representing a person might have proper-
ties like name: ”John Doe” and age: 30. An edge representing a friendship
relationship might have a property like since: 2010. Property values may be sim-
ple data types or complex ones like JSON documents. Figure 2.6 shows an example
property graph.

In contrast to property graphs, RDF30 graphs do not allow properties on nodes and
edges. Instead, they describe information in subject–predicate–object triples. What
might be an ”age” property in a property graph can be described in RDF as the triple

28https://couchdb.apache.org/
29https://aws.amazon.com/documentdb/
30https://www.w3.org/RDF/

https://commons.wikimedia.org/wiki/File:GraphDatabase_PropertyGraph.png
https://couchdb.apache.org/
https://aws.amazon.com/documentdb/
https://www.w3.org/RDF/

2.2. DATA TYPES 43

JohnDoe - has age - 30. In an RDF graph, subjects and objects have unique
identifiers (URIs, uniform resource identifiers31 that are typically defined in the form
of URL as defined in RFC 261632), or are literal values such as strings or numbers.
Figure 2.7 shows and example RDF graph.

https://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png

Figure 2.7: RDF Graph Example

While graphs could be modelled or described in table (relational) form, or as key-
value pairs, graph databases provide powerful, intuitive, and efficient graph-specific
queries33. Figure 2.8 shows an overview of different query types:

• Path queries: Reachability of nodes, shortest-path between nodes

• Subgraph queries: Exact or approximate match of a smaller graph in a larger one

• Aggregate queries: Aggregating nodes or properties along paths

• Similarity search: Similarity of nodes or edges using path-based approaches,
graph embedding-based approaches

• Keyword search: Tree-based semantics, subgraph-based semantics

• Natural language query answering: Identifying edges or nodes

Prominent examples of graph database management systems are JanusGraph34, a fully

31https://www.w3.org/TR/webarch/#identification
32https://www.ietf.org/rfc/rfc2616.txt
33Source: Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph queries.

World Wide Web, 24, 297-346
34https://janusgraph.org/

https://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png
https://www.w3.org/TR/webarch/#identification
https://www.ietf.org/rfc/rfc2616.txt
https://janusgraph.org/

44 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Source: Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph queries. World Wide Web,
24, 297-346.

Figure 2.8: Graph Queries

open-source system for on-premises installation; ArangodDB35, Neo4J36, and Ori-
entDB37 which are partially open-source for on-premises installation; AWS Neptune38

on the Amazon AWS cloud, and CosmosDB39 on Microsoft Azure cloud.

While there does not exist a standardized serialization format for property graph data
interchange, PG-JSON and GraphSON are two recent proposals to describe property
graphs in a JSON object, shown in Figure 2.9 and Figure 2.10.

35https://arangodb.com/
36https://neo4j.com/
37https://orientdb.org/
38https://aws.amazon.com/neptune/
39https://azure.microsoft.com/en-ca/products/cosmos-db

https://arangodb.com/
https://neo4j.com/
https://orientdb.org/
https://aws.amazon.com/neptune/
https://azure.microsoft.com/en-ca/products/cosmos-db

2.2. DATA TYPES 45

{
"nodes":[

{
"id":101,
"labels":["Person"],
"properties":{"name":["Alice"], "age":[15], "country":["USA"]}
},
{
"id":102,
"labels":["Person", "Student"],
"properties":{"name":["Bob"], "country":["Japan", "Germany"]}
}

],
"edges":[

{
"from":101,
"to":102,
"undirected":true,
"labels":["sameSchool", "sameClass"],
"properties":{"since":[2012]}
},
{
"from":102,
"to":101,
"labels":["likes"],
"properties":{"since":[2015]}
}

]
}

Figure 2.9: PG-JSON Example

46 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

{
"graph": {
"mode":"NORMAL",
"vertices": [
{
"name": "lop",
"lang": "java",
"_id": "3",
"_type": "vertex"

},
{
"name": "vadas",
"age": 27,
"_id": "2",
"_type": "vertex"

},
{
"name": "marko",
"age": 29,
"_id": "1",
"_type": "vertex"

},
{
"name": "peter",
"age": 35,
"_id": "6",
"_type": "vertex"

},
...

"edges": [
{
"weight": 1,
"_id": "10",
"_type": "edge",
"_outV": "4",
"_inV": "5",
"_label": "created"

},
{
"weight": 0.5,
"_id": "7",
"_type": "edge",
"_outV": "1",
"_inV": "2",
"_label": "knows"

},
{
"weight": 0.400,
"_id": "9",
"_type": "edge",
"_outV": "1",
"_inV": "3",
"_label": "created"

},
...

Figure 2.10: GraphSON Example

2.2. DATA TYPES 47

In contrast, multiple standardized RDF graph serializations are defined40. The ”Tur-
tles” format (Terse RDF Triples) is the most compact representation and most easy to
read for humans. The following example describes the RDF graph in Figure 2.7. It
defines three prefixes of URIs to identify resources. These resources form the subjects,
predicates, and objects of the RDF triples.

@prefix eric: <http://www.w3.org/People/EM/contact#> .
@prefix contact: <http://www.w3.org/2000/10/swap/pim/contact#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

eric:me contact:fullName "Eric Miller" .
eric:me contact:mailbox <mailto:e.miller123(at)example> .
eric:me contact:personalTitle "Dr." .
eric:me rdf:type contact:Person .

The equivalent N-Triples representation is still reasonably compact, but easier for com-
puters to read and parse. Here, the URI prefixes are embedded in the subjects, predi-
cates, and objects:

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#fullName>
"Eric Miller" .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#mailbox>
<mailto:e.miller123(at)example> .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#personalTitle>
"Dr." .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/10/swap/pim/contact#Person> .

Finally, the RDF/XML serialization uses the XML language to describe RDF triples.
It is quite verbose:

40Examples taken from https://en.wikipedia.org/wiki/Resource_Description_
Framework

https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework

48 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"
xmlns:eric="http://www.w3.org/People/EM/contact#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:mailbox rdf:resource="mailto:e.miller123(at)example"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:personalTitle>Dr.</contact:personalTitle>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<rdf:type rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#Person"/>

</rdf:Description>
</rdf:RDF>

Hands-On Exercise

Document yourself in a Turtle:
• Identify information about yourself, such as names, addresses, dates, re-

lationships (work, school, uni), etc.
• Structure the information in Turtle triples
• Make up appropriate prefixes and appropriate verbs/predicates

2.2.3 Unstructured Data

Text
Text refers to written language in some writing system and is provided as a string of
characters or a file containing bytes that encode the text in Unicode UTF-8 or some
other format. Text data in business analytics does not normally contain formatting
instructions, such as font sizes or font styles, or mixed tables or images, as might be
common in word processing systems. Instead, it refers to plain text only.

Text analysis is the process of extracting meaningful information from unstructured text
data. Typical text analysis tasks are named entity recognition, co-reference analysis,
event extraction, sentiment analysis, and document clustering. Named entity recog-
nition identifies names of persons, organizations, or places, and expressions of time,
quantity, or monetary amounts in a text. It is useful for content classification and data
extraction.

Co-reference analysis involves identifying when two or more expressions in a text refer
to the same entity. This task is crucial for understanding the context and for maintaining
the continuity of subjects throughout the text. For example, in the sentence ”Alice
drove her car. She parked it near the mall,” co-reference analysis links ”She” to ”Alice”

2.2. DATA TYPES 49

and ”it” to ”Alice’s car.”. Co-reference analysis helps in understanding the text flow
and the relationships between various entities.

Event and relationship extraction is about identifying instances of specific types of
events in text and the entities associated with them. An event can be anything that
happens or is described as happening. For example, in ”The company acquired a startup
for $1 million in 2021,” event extraction would identify the acquisition event, involving
the company, the startup, the amount of $1 million, and the time 2021. This task is
useful for information monitoring or historical data analysis.

Sentiment analysis involves identifying and categorizing opinions expressed in a piece
of text, especially to determine whether the writer’s attitude towards a particular topic,
product, etc., is positive, negative, or neutral. It is widely used in social media moni-
toring, brand monitoring, customer service, and market research.

Document clustering is a method to categorize documents into groups (or clusters)
based on their similarity. It is useful for news aggregation, organizing web search
results, discovering prevalent topics or themes and grouping of similar documents to
make it easier to find relevant information.

The history of text mining approaches has evolved through several stages. In the 1950s
and 1960s, text mining began with symbolic approaches, involving rule-based sys-
tems. These systems, which relied on handcrafted linguistic rules, attempted to encode
human language knowledge into a format readable by computers. Their reliance on ex-
tensive domain knowledge and manual rule creation made them inflexible and unable
to adapt to language variations and new data.

The late 1980s and 1990s saw a shift towards statistical methods in text mining, driven
by the growing availability of digital text data and computational power. This pe-
riod was characterized by the use of machine learning models like Naive Bayes, Deci-
sion Trees, and Support Vector Machines. The era of corpus linguistics also emerged,
enabled by the availability of large text corpora, allowing for the statistical analysis
of real-world text data. Techniques like Latent Semantic Analysis (LSA) and Latent
Dirichlet Allocation (LDA) were developed for topic modeling and document classifi-
cation.

The 2010s marked a revolution in text mining with the advent of deep learning and
neural networks, which provided the ability to learn complex patterns in large datasets.
Recurrent Neural Networks (RNNs) and variants like LSTMs became popular for han-
dling sequential text data. The development of attention mechanisms and transformer
models in the 2020s, such as Google’s BERT or OpenAI’s ChatGPT, represented yet
another significant advancement.

50 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Hands-On Exercises

1. Identify a specific business problem that can be addressed by analyzing
text data

2. What text data would you need to address the problem?
3. What would you wish to do with the text data?
4. Where might you get this text data?

Regular Expressions (RegEx)

Regular expressions (often abbreviated as regex or regexp) are a tool for pattern match-
ing within text. They enable the specification of complex search patterns in a concise
and flexible manner. Regular expressions are widely used for searching, editing, or
manipulating text and data. For example, the following regular expression matches any
number, including one in scientific notation41:

[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?.

Metacharacter Description

ˆ Matches start of text

. Matches any character; matches the dot character when used within brack-
ets

[] Matches any of the characters in the brackets; - can be used to specify
ranges of characters

[ˆ] Matches any character not in the brackets

$ Matches the end of text

() Marked subexpression

\n Matches the n-th marked subexpression

* Matches the preceding element zero or more times

{m,n} Matches the preceding element at least m and not more than n times

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.6: Basic Regular Expressions

Regular expressions are specified using meta characters, i.e. characters that describe
other characters. Table 2.6 shows the metacharacters for basic regular expressions as
defined by the POSIX standard. All other characters are treated as literal characters.
With these definitions, you can understand the examples shown in Table 2.7.

Extended regular expressions add optionality and choice operators to set of basic regex
meta characters, as shown in Table 2.8. Table 2.9 shows examples for using these
operators.

41Source: https://en.wikipedia.org/wiki/Regular_expression

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

2.2. DATA TYPES 51

RegEx Matches

.at ”hat”, ”cat”, ”bat”, ”4at”, etc.

[hc]at ”hat”, ”cat”

[ˆb] all strings matched by .at except ”bat”

[ˆbc] all strings matched by .at except ”bat” and ”cat”

ˆ[bc]at ”bat” and ”cat” at start of text

[bc]at$ ”bat” and ”cat” at end of text

\[.\] any single charater surrounded by [and], e.g. ”[a]”, ”[7]”, etc.

s.* character ”s” followed by zero or more characters, e.g. ”s”, ”saw”, ”s3w96.7”, etc.

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.7: Basic Regular Expression Examples

Meta character Description

? Matches preceding element zero or one time

+ Matches preceding element one or more times

| Matches either the expression before or after the choice operator

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.8: Extended Regular Expressions

Over the years, different types or ”dialects” of regular expressions have been developed
for or within different programming languages. One popular dialect is that used in
the Perl programming language or the Vim text editor. One important way in which
they differ is in the character classes they provide as shortcuts for specifying a set of
characters to match. Table 2.10 shows an excerpt of the most frequently used character
classes.

Regular expressions are a fundamental tool in text processing and manipulation, of-
fering a robust and efficient method for pattern matching and string analysis. Their
versatility makes them an essential skill in many programming and data-related tasks.
Regular expressions are available in all programming languages and statistics and ana-

RegEx Matches

[hc]?at ”at”, ”hat”, ”cat”

[hc]*at ”at”, ”hat”, ”cat”, ”chat”, ”chchchat”, etc.

[hc]+at ”hat”, ”cat”, ”chat”, ”chchchat”, etc.

cat | dog ”cat” or ”dog”

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.9: Extended Regular Expression Examples

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

52 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Perl/Vim ASCII POSIX

Digits \d [0-9] [:digit:]

Non-digits \D [^0-9]

Lowercase letters \l [a-z] [:lower:]

Uppercase letters \u [A-Z] [:upper:]

Alphanumeric chars \w [A-Za-z0-9_]

Non-word chars \W [^A-Za-z0-0_]

Whitespace \s [\t\r\n\v\f] [:space:]

Non-whitespace \S [^ \t\r\n\v\f]

Table 2.10: Character classes in Regular Expressions

lytics software tools and allow a basic level of text processing and manipulation.

Hands-On Exercise
1. Specify a RegEx to match Canadian postal codes:

https://www.canadapost-postescanada.ca/cpc/en/
support/articles/addressing-guidelines/postal-codes.
page

2. Specify a RegEx to match a full RFC 3339 date with timezone, such as
”2023-11-14T20:42:53-04:30”

3. Challenge: Specify a RegEx that matches any ISO 8601 date-time format

Levenshtein Distance

The Levenshtein distance is a metric of similarity of two text fragments. It is a type
of string–edit distance, in that it measures the lowest number of insertion, deletion
and substitution operations of individual characters to transform one text fragment into
the other. The operations may be equally weighted or be differentially weighted, for
example to penalize deletion operations more than insertion operations. The recursive
definition is shown in Figure 2.11.

As an example, consider the two strings ”kitten” and ”sitting”. The (unweighted) Lev-
enshtein distance between the two is 3. In the first edit, the ”k” is substituted with an
”s”, then the ”e” is substituted with an ”i” and finally a ”g” is inserted at the end.

Hands-On Exercise Determine the Levenshtein distances between the fol-
lowing:

1. Last five digits of your student number and ”12345”
2. The words ”Nunavut” and ”Nunatsiavut”
3. The words ”Inuktitut” and ”Innuttitut”
4. The words ”Mikak” and ”Micock”

https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page
https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page
https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page

2.2. DATA TYPES 53

https://en.wikipedia.org/wiki/Levenshtein_distance

Figure 2.11: Levenshtein Distance

Images
Image data is the representation of visual information in a digital format.There are two
primary types of image formats: vector and raster.

https://commons.
wikimedia.org/wiki/File:
Persian_sand_CAT.jpg

Vector images represent images as sets of graphical prim-
itives such as lines, polygons, and curves (vectors) us-
ing their mathematical description. Common vector
image formats are SVG42 (Scalable Vector Graphics),
PDF (Portable Document Format) and EPS (Encapsu-
lated Postscript). Vector images can be scaled to any size
without losing quality, as the mathematical formulas for
the graphical primitives adapt and scale to the new size.

Raster images are composed of a grid of pixels (”picture
element”), where each pixel has a color value. These
are also known as bitmap images. The quality of raster

images is dependent on their resolution. Scaling up a raster image can lead to a loss in
quality, known as pixelation. Common formats are JPEG, and PNG, which use a lossy
compression, that is, in reducing the file size, image detail may be lost. In contrast, the
TIFF format uses lossless compression, retaining the full information of an image.

Image data in analytics is typically in a raster format using the RGB colorspace, which
describes colours in terms of their red, green, and blue components43. Hence, each
pixel is described by 3 bytes (color components range from 0 to 255) and a full image
can be thought of conceptually as a 3×X ×Y array of values between 0 and 255. For
image analytics, images in a compressed format such as JPEG, PNG or TIFF must be
decompressed to the full set of X × Y pixels, and the three RGB values are usually
scaled to a range between 0 and 1.

Typical image analysis tasks include object detection and counting, object classifica-
tion, image segmentation, and image retrieval. Object classification or image classifi-
cation categorizes an entire image, or specific objects within an image, into predefined
classes. This is commonly used for social media analysis or applications like photo
tagging. Object detection involves identifying and locating objects within an image.

42https://www.w3.org/TR/SVG2/
43Another widely used colour space is CMYK, where a pixel’s color is described in terms of its cyan,

magenta, yellow, and black components.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
https://www.w3.org/TR/SVG2/

54 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

This task goes beyond merely recognizing what objects are present; it also determines
where they are in the image. Typically, object detection algorithms output a bounding
box for each detected object, specifying its coordinates within the image. Object detec-
tion is widely used in applications such as surveillance, face detection, and autonomous
vehicles. Image segmentation divides an image into multiple segments with the aim of
simplifying or changing the representation of an image into a form that is more mean-
ingful and easier to analyze. Image segmentation is used in medical imaging, machine
vision, and object tracking. Image retrieval involves searching and retrieving images
from a large database based on the content of the images themselves. It typically in-
volves extracting features like color, texture, and shape from the images and using these
features to find similar images in a database.

Business applications of image analysis include robotics, character and handwriting
recognition in documents for process automation, security (identity verification, fraud
detection, etc.) and manufacturing (defect detection, etc.).

Hands-On Exercise

1. Identify a specific business problem that can be addressed by analyzing
image data

2. What image data would you need to address the problem?
3. What would you wish to do with the image data?
4. Where might you get this image data?

Video
Video data consists of a sequence of images (”frames”) displayed at a certain rate
(frame rate) to create the illusion of motion. Accompanying audio tracks are synchro-
nized with these frames. Video data can be complex due to the need to balance quality,
resolution, compression, and file size. Conceptually, video is a series of image frames
in raster image format, i.e. a T × 3 × X × Y array of RGB values between 0. . . 255
(where T refers to the set of frames over time).

However, in practice, video data is heavily compressed in video files as specified
by different video formats. Each format has its compression techniques and algo-
rithms, impacting the video’s quality, size, and playback compatibility. A video codec
(compressor-decompressor) is a software or hardware tool that compresses (encodes)
and decompresses (decodes) digital video in a particular format to reduce file size and
bandwidth requirements for storage or transmission. Popular video formats (codecs)
are H.264, H.265, AVC, and AV1. A video container format is a file format that can
contain various types of data, including video, audio, subtitles, and metadata. The con-
tainer format determines how the data streams are organized and synchronized to each
other. Popular container formats include MPEG-4, MKV, AVI, VOB and WebM.

Typical video analytics tasks include object detection, object recognition, object mo-
tion detection, object or background dynamic masking/blurring, event detection and

2.3. METADATA 55

classification (errors, exceptions), and activity detection and classification. Object de-
tection in video involves identifying and locating objects within a frame or series of
frames. This task typically recognizes and tracks multiple objects over time, often
in real-time. Object recognition goes a step beyond detection to classify the detected
objects into predefined categories, such as identifying specific types of vehicles, an-
imals, or other objects within a video. Motion detection involves identifying moving
objects in the video. It is crucial in surveillance systems to detect unusual or suspicious
movements or to track the movement of specific objects or people over time. Dynamic
masking or blurring is used to obscure or protect portions of the video image, such
as faces or license plates, to maintain privacy or comply with regulations. Event de-
tection involves identifying specific events within a video, such as errors, exceptions,
accidents, or other significant incidents. Classification categorizes these events into
predefined types to facilitate appropriate responses or further analysis. Activity detec-
tion involves recognizing and categorizing the actions or behaviors of objects or people
in the video, such as walking, running, or using machinery. This can be used in various
settings, from analyzing customer behavior in retail to monitoring patient activities in
healthcare.

Hands-On Exercise

1. Identify a specific business problem that can be addressed by analyzing
video data

2. What video data would you need to address the problem?
3. What would you wish to do with the video data?
4. Where might you get this video data?

2.3 Metadata

Metadata is often described as ”data about data.” It provides information about, or
documentation of, other data managed within an application or data store. Metadata is
crucial for understanding, managing, and using the actual data effectively.

Metadata can describe authorship and ownership of the data, e.g. who created or owns
it. It can also describe licensing and legal information, such as what one is allowed
to do with a data set, what purposes it may be used for, whether it may be copied or
redistributed, etc. Metadata can also provide information about when, where, and how
data was collected or processed. It can specify the meaning of fields in tabular data,
or of properties in graph databases. Metadata can be used to describe validation rules
for data. Finally, metadata may be technical information, for example, describing the
encoding or serialization format of the data.

Some data formats allow meta-data to be embedded within them, such as popular image
or video formats. For other data formats, such as CSV files, metadata may be provided
as a separate document or simply as a text file.

56 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Hands-On Exercise

1. With your cell phone camera, take a selfie
2. Identify the meta-data that your phone camera embedded in this photo

2.4 Data Quality and Data Provenance
Data quality refers to the condition or fitness of data to serve its intended purpose
in a given context. Poor data quality will lead to poor predictions, prescriptions, and
decisions. Data quality has a long history both in research and practice44. There are
many dimensions to data quality, depending on the kind of data and the purpose for
which the data is intended. Different authors and sources will list different dimensions;
Table 2.11 gives an overview of the most important aspects of data quality.

Achieving, maintaining and ensuring data quality is a continuous process that involves
regular monitoring, cleaning, standardization, and validation of data. Because of its
importance, and the significant effort involved in it, data quality management is often a
centrally located responsibility of the Chief Information Officer (CIO) or other senior
management of an organization. Typically, organizations aim to have procedures and
policies into place that govern data quality and how to achieve and maintain it.

Dimension Example Considerations

Accuracy Error rate for numerical data
Availability Cost or ease of retrieval or collection or licensing
Completeness Incomplete data may lead to bias
Conformity Conforms to internal and/or external standards
Consistency Free from internal contradictions
Integrity Complies with validation rules, data types, and schema
Precision Measurement precision of values
Relevance Usefulness for purpose
Reliability Consistency of repeated data points
Timeliness Latency, currency, ”age”
Traceability Auditable provenance, verifiable source

Based in part on: Richard Y. Wang & Diane M. Strong (1996) Beyond Accuracy: What Data Quality Means
to Data Consumers, Journal of Management Information Systems, 12:4, 5-33, DOI:

10.1080/07421222.1996.11518099

Table 2.11: Data Quality Dimensions

44For a seminal academic reference, see Richard Y. Wang & Diane M. Strong (1996) Beyond Accuracy:
What Data Quality Means to Data Consumers, Journal of Management Information Systems, 12:4, 5-33,
DOI: 10.1080/07421222.1996.11518099

2.4. DATA QUALITY AND DATA PROVENANCE 57

Data provenance refers to the documentation or tracing of the origins, lineage, and
lifecycle of data. It encompasses recording information of the inputs, entities, systems,
and processes that influence the data of interest, providing a record of the data and
its origins. Data provenance is crucial for understanding the context, derivation, and
rationale behind the data, making it an essential aspect of data management and an
important prerequisite for data quality.

Source tracking identifies where the data comes from, including the original source
of the data and any intermediate sources. Tracking data transformation or processing
keeps a record of how the data has been altered, transformed, or processed from its
original state. This includes changes in format, structure, or content. Tracking of own-
ership and responsibility documents who has handled or managed the data throughout
its lifecycle. Versioning information keeps track of different versions or states of the
data over time.

Provenance information helps in assessing the reliability and trustworthiness of data.
Knowing the source and history of data can establish confidence in its accuracy and
validity. Data provenance also provides transparency into the data’s history, ensuring
accountability for the data’s quality and integrity. Understanding the provenance of
data can aid in identifying when and where errors were introduced into the dataset.
This facilitates more effective error correction and data cleansing.

Figure 2.12 shows a recommendation by the World Wide Web Consortium (W3C) of
the basic elements of a framework to maintain data provenance records. Agents are as-
sociated with activities that use or create data entities. In turn, data entities are derived
from other data entities, and are attributed to agents, e.g. as creators. Figure 2.13 shows
an example diagram of a provenance record using this framework. The figure shows
agents playing the roles of contributor and editor with respect to an editing activity of
a data object that was generated by the editing activity.

Data provenance is about asking and answering questions related to the data and all
that happened to it. Important questions include:

• How was the data collected? What errors could have occurred?

• Who collected the data? Is it a trustworthy source?

• When were the data collected? Are they still valid?

• Are all the data collected? Are the data biased?

• Can the data collection be verified/audited/repeated?

• How was the data processed? What mistakes could have been made?

• Was anything omitted or added?

• Who processed the data? Is it a trustworthy party?

• Can the processing be verified/audited/repeated?

• What do different data fields mean?

58 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png

Figure 2.12: Data Provenance Framework Basics

urlhttps://www.w3.org/TR/prov-dm/#dfn-provenance

Figure 2.13: Data Provenance Framework Example

• What are the units of measurement?

• What is the level of aggregation?

• Were data sources combined? Are the different sources consistent with each
other and of the same quality?

• Are the data accurate? How high are the error rates and the levels of precision?

• Can the data be validated? What are the validation rules for the data? Was the
data validated?

• How can errors be detected and/or corrected?

• Are the data usable in a technical and legal way?

https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png

2.5. DATA CLEANING AND VALIDATION 59

2.5 Data Cleaning and Validation
Data cleaning is a critical step in the data analysis process and contributes to high qual-
ity. It involves the identification of errors and inconsistencies in the data and their cor-
rection. Data correction can mean different things in different situations, from simply
omitting erroneous data, to ”clipping” numerical data within certain ranges, standard-
izing or normalizing textual data (for example all lowercase, word stemming, etc.),
imputing missing data (for example, by using the mean or some more sophisticated
method), etc. The ultimate aim is improve the data quality and therefore the quality of
the analysis results themselves. Data cleaning typically involves a number of steps:

1. Auditing

This step identifies anomalies and inconsistencies. It requires a thorough under-
standing not only of the data but also how the data was collected, and what the
data is intended to describe or represent, that is, the domain. Only then can errors
be identified (e.g. based on plausibles mistakes during data collection) and the
internal consistency of the data (e.g. based on what is plausible in the domain)
be evaluated.

2. Validation

Ensure data conforms to rules and constraints. This requires first identifying any
rules for data coding or data consistency constraints that should apply. Next,
data that violates these rules and constraints can be identified. Example of data
validation rules are:

• Encoding or serialization rules, e.g. with Regex

– Example: Are all phone numbers of the format
^([0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$

• Data type constraints

– Example: Are all sales prices numbers?

• Range constraints

– Examples: Are prices > 0? Are sales numbers < 1000?

• Cross-field validation

– Example: If province is NL, then phone area code must be 709 or 879

3. Cleaning

Clearning involves the transformation and correction of data, including identi-
fying how to deal with missing values. This may also include bringing data to
standardized formats, e.g. transforming numbers, dates, standardizing abbrevia-
tions and spelling, etc. Numerical data may be clipped or constrained to certain
ranges, and inconsistencies between different data items must be resolved.

60 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

• Data Transformation: Convert data into required format or structure. For
example,

– One row for each observation, case, or event

– Create case or event identifiers

• Data Imputation: Replacing missing values with estimated or default val-
ues, or removing missing values entirely. Be mindful that:

– Missing values may have different meanings

– Data removal may bias data

– Estimating values may introduce errors

• Data Correction: Correct or remove erroneous data

– Importantly, data correction requires access to correct data, which may
not be available or must be provided by other, secondary sources.

4. Duplicate Removal: Ensure uniqueness of data. Duplicates may be real dupli-
cates or simply the result of different spelling or abbreviations or other data en-
try mistakes. In any case, duplicates can bias analysis results that rely on sums,
counts, variances or other statistics. Consider the following example of names:

• Example: Rebekah Uqi Williams (Commissioner of Nunavut (2020–2021)

• Abbreviations: Rebekah U. Williams; Rebekah Williams, R.U. Williams

• Order: Williams, Rebekah Uqi; Williams, Rebekah U.; Williams, R., . . .

• Spelling: Rebekah; Rebecca; Rebeccah; Rebeckah; Rebecka, . . .

• Misspellings: Reebkah, Rebkah, Wililams, Willaims, . . .

5. Harmonization: Merge datasets from different sources and ensure consistent for-
mats and scales. For example, standardize date and number formats, standards
units of measure, etc.

6. Standardization: Bring data into a standard format. Chapter 2 showed that stan-
dards exist in many areas for many data types. It is important for further analysis
to ensure data complies with standards, to be able to easily, efficiently and effec-
tively use tools for further analysis.

7. Quality Assessment: Ensure cleaning has been effective. Re-assess the resulting
data set on data quality aspects.

Cleaning, transformation, and correction of data is subjective and requires a do-
main or business expert with expert knowledge of the data and its provenance,
the metadata, the validation rules, and the application domain.

2.6. DATA SOURCES 61

In practice, cleaning, transformation, and correction of data takes approxi-
mately 80% of a data analyst’s time, while actual analysis takes only 20% of
their time. This is sometimes called ”data wrangling”.

2.6 Data Sources
Data used for business analytics can be internal to an organization or acquired from
external sources. Often, the data required to address a particular analytics problem
is a combination of internal and external data, i.e. the internal data is enriched with
external data.

Internal data sources may be operational computer systems, such as the HR, payroll,
accounting, logistics, manufacturing, sales systems and many others. These systems
provide operational data about human resources, finances, goods movements, etc. An-
other source of data are data-rich products. Since the 2010s, companies are increas-
ingly selling products that include a variety of sensors, with the ability for the sold
products to provide information back to the manufacturer or some other organization.
Such data-rich products, whether they are cars45 or teddy bears46, can provide a vast
amount of rich data relating to the operation of the device and the customer that uses the
device. Most computer systems also keep technical logs. The most prominent example
are web-server logs, but many other computer systems do as well. Such logs provide
information about who accesses what information or performs what operation at what
time. Rich information can also be obtained from message data, whether those mes-
sages are emails that pass through the company’s email servers, customer service chat
interactions, or call center audio recordings. Finally, data may be directly collected
from humans for a specific project or purpose, for example in the form of employee or
customer surveys.

External data may be public or private. The increasing popularity and use of analytics
has fuelled the publication of many data sets by governments, international institutions,
and companies interested in furthering analytics applications and insights. These data
sets are now easier to access than ever. Table 2.12 provides examples of public, ex-
ternal data sources and where to find them. However, when using these data sets it is
important to critically assess their provenance and quality.

If the required data is neither internally nor publicly available, there exist many sources
to purchase data, especially financial market and consumer data. Such data may come
directly from services companies or may be provided by data brokers who aggregate
data from a variety of sources to increase the value of the data. Table 2.13 shows some
examples of private external data sources.

Data licenses provide the legal framework and specify permissions governing the use,

45https://foundation.mozilla.org/en/privacynotincluded/articles/
its-official-cars-are-the-worst-product-category-we-have-ever-reviewed-for-privacy/

46https://arstechnica.com/information-technology/2017/02/
creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/

https://foundation.mozilla.org/en/privacynotincluded/articles/its-official-cars-are-the-worst-product-category-we-have-ever-reviewed-for-privacy/
https://foundation.mozilla.org/en/privacynotincluded/articles/its-official-cars-are-the-worst-product-category-we-have-ever-reviewed-for-privacy/
https://arstechnica.com/information-technology/2017/02/creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/
https://arstechnica.com/information-technology/2017/02/creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/

62 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Government Agencies

Statistics Canada https://www.statcan.gc.ca/en/start

Open Government Canada https://search.open.canada.ca/opendata/

US Census Bureau https://www.census.gov/

US Bureau of Labor Statistics https://www.bls.gov/

International Institutions

OECD https://data.oecd.org/

Worldbank https://data.worldbank.org/

EU https://data.europa.eu/en

WHO https://www.who.int/data

Data Set Search Engines

Google Dataset Search https://datasetsearch.research.google.com/

GitHub Data Set Search https://github.com/search?q=datasets&type=repositories

Social Media Companies

X https://help.twitter.com/en/rules-and-policies/x-api

Google https://developers.google.com/gdata

Facebook/Meta https://developers.facebook.com/docs/graph-api/overview/

ML/AI Project Communities

Kaggle https://www.kaggle.com/

HuggingFace https://huggingface.co/datasets

Google Cloud https://console.cloud.google.com/marketplace/browse

Google Research https://research.google/resources/datasets/

AWS Data Sets https://registry.opendata.aws/

Azure Data Sets https://azure.microsoft.com/en-ca/products/open-datasets

Table 2.12: Examples of Public External Data Sources

Services Companies

Financial services institutions e.g. Bloomberg https://www.bloomberg.com/
professional/product/data/

Telecommunications providers e.g. Telus Insights https://www.telus.com/en/
business/medium-large/enterprise-solutions/
big-data-analytics

Mobile applications e.g. The Weather Network https://www.pelmorex.com/
en/data/

Data Brokers

LiveRamp (formerly Acxiom) http://www.liveramp.com/

Experian https://www.experian.com/

CoreLogic http://corelogic.com/

Nielsen http://nielsen.com/

DataAxleCanada (formerly InfoCanada) https://www.dataaxlecanada.ca/

Table 2.13: Examples of Private External Data Sources

redistribution, and modification of data. They dictate how data can be shared and used,
outlining the rights and restrictions placed on the data by its owner or creator. Data

https://www.statcan.gc.ca/en/start
https://search.open.canada.ca/opendata/
https://www.census.gov/
https://www.bls.gov/
https://data.oecd.org/
https://data.worldbank.org/
https://data.europa.eu/en
https://www.who.int/data
https://datasetsearch.research.google.com/
https://github.com/search?q=datasets&type=repositories
https://help.twitter.com/en/rules-and-policies/x-api
https://developers.google.com/gdata
https://developers.facebook.com/docs/graph-api/overview/
https://www.kaggle.com/
https://huggingface.co/datasets
https://console.cloud.google.com/marketplace/browse
https://research.google/resources/datasets/
https://registry.opendata.aws/
https://azure.microsoft.com/en-ca/products/open-datasets
https://www.bloomberg.com/professional/product/data/
https://www.bloomberg.com/professional/product/data/
https://www.telus.com/en/business/medium-large/enterprise-solutions/big-data-analytics
https://www.telus.com/en/business/medium-large/enterprise-solutions/big-data-analytics
https://www.telus.com/en/business/medium-large/enterprise-solutions/big-data-analytics
https://www.pelmorex.com/en/data/
https://www.pelmorex.com/en/data/
http://www.liveramp.com/
https://www.experian.com/
http://corelogic.com/
http://nielsen.com/
https://www.dataaxlecanada.ca/

2.6. DATA SOURCES 63

licensing is especially important in the era of big data and open data initiatives, where
data is often shared and reused across various domains and applications.

The creator of data is typically the owner and obtains copyright to the data. Copyright
impacts how the data can be legally used and shared. Usage rights or licenses specify
what others can and cannot do with the data. Licenses may include permissions for
using the data. Licenses also govern whether the data can be redistributed to third par-
ties and under what conditions. They also dictate whether the data can be modified and
how derivative works (new creations based on the original data) are to be handled. Im-
portantly, data licenses may also specify whether the data can be used for commercial
purposes at all, and any conditions or restrictions on access to the data.

Different kinds of licenses exist for data. Open data licenses allow data to be freely
used, modified, and shared by anyone. Examples include the Creative Commons li-
censes47 and the Open Data Commons licenses48. Additionally, many governments
and international institutions provide data with open licenses. In contrast, proprietary
licenses restrict usage to certain conditions set by the owner, which can include the
requirement for payment, restrictions on redistribution, or limitations on the type of
use (e.g., non-commercial only). Some data may be in the public domain and is not
protected by copyright so that it can be freely used by anyone without restrictions.

Data licensing is a critical aspect of data governance and data management, particularly
in contexts where data is shared and reused extensively. Understanding and complying
with data licenses is essential for anyone involved in data analysis, software develop-
ment, and research. Never assume permission to use the data for any particular purpose
is given simply because the data is accessible. Check the meta-data of the data, or the
web-site where the data is available. Some organizations may provide permission to
use data or licenses upon request, while others may require the purchase of a license,
especially if the data is to be used for commercial purposes.

47https://creativecommons.org/
48https://opendatacommons.org/

https://creativecommons.org/
https://opendatacommons.org/

64 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Hands-On Exercise

1. Identify data on the consumer price index (excluding living and trans-
portation expenses) for Newfoundland & Labrador for the last 10 years

• How was it collected? By who? When?
• How was it processed? By who? What was done to it?
• Is there meta-data available for it?
• How do you assess the quality of the data on the data quality di-

mensions?
• Under what license is it available to you to use?

2. Identify some IoT devices or sensors in your household
• What information can they measure?
• How and when is the information being collected? By who?
• How could the information be erroneous or biased?
• How would you assess the quality of the data?

2.7 Review Questions
Data Types

1. What is the equivalent of R’s numeric data type in Python?
2. Explain the difference between R’s integer and Python’s int data type.
3. What term does the R statistical system use to indicate a missing value?
4. How does Python represent a missing value?
5. What is the term used by SQL to denote a missing value?
6. If you are working with both Python and R, what considerations should you

keep in mind regarding data types when transferring data between these two
languages?

7. Give an example where a data type in R might not have a direct equivalent in
Python or SQL.

8. Discuss the potential issues that might arise when working with missing values
in data analysis.

9. Provide an example of a scenario where the meaning of a missing value can be
ambiguous. How might this ambiguity impact data analysis?

10. In a dataset, you find that some entries are marked as NA in R, None in Python,
and Null in SQL. How would you interpret these values?

11. What steps could you take to handle missing values before performing any sta-
tistical analysis?

Number Formats

12. Describe how integer numbers are represented in binary form. What does the
first bit indicate?

13. How many bytes does a float (single precision number) occupy? Break down
its composition in terms of sign, exponent, and fraction.

2.7. REVIEW QUESTIONS 65

14. Discuss some of the complexities involved in writing out decimal numbers as
plain text.

15. How do decimal point representations differ in various locales?
16. Explain how negative numbers and scientific notation are represented differently

in various contexts.
17. Why is it important to verify the number format in a dataset before using it with

a business analytics tool?

Text Format

18. Explain the purpose of the Unicode system and how it addresses the limitations
of earlier encoding systems like ASCII.

19. Discuss the variety of characters, symbols, and scripts included in the latest ver-
sion of Unicode (v15.1).

20. How does UTF-8 ensure backward compatibility with ASCII?
21. Why is it important for a business analyst to be aware of Unicode and its different

encodings?
22. Discuss the implications of using Unicode-aware data storage, management, an-

alytics, and visualization tools in a business setting.

Date Formats

23. Explain the challenges in handling different time zones in a global context.
24. How do ISO 8601 and RFC 3339 standards differ from each other?
25. Describe the variety of formats and separators used in writing dates across dif-

ferent locales.
26. Explain the challenges involved in performing arithmetic operations with years,

months, and days due to their different lengths and conventions.
27. Discuss the implications of not universally accepting standards like ISO 8601

and RFC 3339 in data management and analytics.

Collection Types

28. Define what a collection data type is and explain how it differs from primitive
data types.

29. Describe the characteristics of a list in Python and compare it with the list in R.
30. Discuss the structure and usage of dictionaries in Python.
31. Describe the properties of a vector in R and how it differs from a list.
32. Discuss the significance of mutable and immutable data types, providing exam-

ples from Python and R.

Tabular Formats

33. Explain the CSV (Comma-Separated Values) file format. What are its key char-
acteristics?

34. According to RFC 4180, what are the standard conventions for formatting a CSV
file?

66 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

35. Discuss the common variations and deviations you might encounter in CSV files
that do not strictly adhere to the RFC 4180 standard.

36. How are line breaks typically represented in CSV files, and what are the common
variations?

37. What challenges might you face when working with CSV files that do not con-
form to standards, and how could you address these challenges?

Document Formats

38. Define JSON and XML and explain their primary purpose in data interchange.
39. What are the commonalities and differences between JSON and XML? When

would you prefer one over the other?
40. Describe the structure of a JSON document in terms of key-value pairs.
41. What types of values can be stored in a JSON document?
42. Explain how objects are represented in JSON. What delimits an object?
43. Describe how arrays are represented in JSON and how they differ from objects.
44. How can an array be nested within a JSON object, and vice versa?
45. What is the purpose of a namespace in XML documents? Provide an example.
46. How do elements and attributes differ in XML? In which situation would you

choose an element? In which situation would you choose an attribute?

Text Data

47. What is text analysis and why is it important in extracting information from
unstructured text data?

48. Describe named entity recognition and its application in content classification
and data extraction.

49. Explain co-reference analysis and provide an example of how it helps in under-
standing text.

50. Discuss event and relationship extraction in text analysis, providing an example.
51. Describe sentiment analysis and its significance in areas like social media moni-

toring and market research.
52. What is document clustering and how is it used to organize and categorize text

data?
53. Compare and contrast the symbolic, statistical, and deep learning approaches in

text mining.
54. Discuss the impact of deep learning and neural networks on the field of text

analytics, specifically mentioning models like RNNs, LSTMs, and transformers.

Regular Expressions

55. Define regular expressions and explain their primary purpose in text processing.
56. What are meta characters in the context of regular expressions?
57. Give examples of basic meta characters in regular expressions and explain their

functions.
58. Describe the additional capabilities provided by extended regular expressions.

2.7. REVIEW QUESTIONS 67

59. How do regular expressions differ from literal text searching?
60. Provide an example of a regular expression pattern and explain what it matches.
61. Discuss the challenges or limitations associated with using regular expressions.

Image Data

62. What are the two primary types of image formats? Describe the main character-
istics of each.

63. Explain the concept of vector images. What are some common formats of vector
images?

64. How do vector images maintain quality when scaled to different sizes? Provide
a brief explanation.

65. Define raster images and explain how they are structured.
66. What is the main limitation of scaling raster images, and why does this limitation

occur?
67. List some common raster image formats and mention whether they use lossy or

lossless compression.
68. How are pixels represented in a typical raster image in terms of RGB values?
69. What are some common tasks involved in image analysis? Briefly describe each

task.
70. Discuss the application of image analysis in business, providing at least three

examples.

Video Data

71. What does a video frame represent in terms of data structure? Explain the nota-
tion T × 3×X × Y in this context.

72. Discuss the role and importance of compression in video data.
73. What is a video codec? Give examples of popular video codecs and their general

applications.
74. Explain the purpose of a video container format and list some common container

formats.
75. Describe the concept of object detection in video analytics and how it differs

from object recognition.
76. What is motion detection in video and why is it important in surveillance sys-

tems?
77. Discuss the purpose and applications of dynamic masking or blurring in videos.
78. Define event detection in video analytics and give examples of events that might

be detected.
79. Explain activity detection in video and its potential applications in various in-

dustries.

Metadata

80. Define metadata and explain its significance in data management and utilization.
81. Describe how metadata can provide information about authorship and ownership

of data.

68 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

82. Explain how metadata can be used to detail the collection and processing of data.
83. Give examples of technical information that metadata might describe.

Data Quality

84. Define data quality and explain why it is important in data management.
85. List and describe the various dimensions of data quality.
86. Discuss the processes involved in maintaining high data quality.
87. How does poor data quality affect predictions, prescriptions, and decisions?
88. Explain the concept of data cleansing and its role in data quality management.

Data Provenance

89. Define data provenance and its significance in the context of data management.
90. What types of information are typically included in data provenance records?
91. Explain how data provenance contributes to the reliability and trustworthiness of

data.
92. Discuss the role of data provenance in error detection and correction in datasets.
93. Provide examples of questions that are important to ask when evaluating data

provenance.

Data Sources

94. What are some examples of data-rich products, and what kind of data can they
provide?

95. Discuss the role of web-server logs and other technical logs as sources of data.
96. What are the typical ways data is directly collected from humans for business

purposes?

Data Licensing

97. Define data licenses and their importance in the context of data management.
98. Distinguish between open data licenses and proprietary licenses.
99. Explain the steps one should take to ensure compliance with data licenses.

2.8 Hands-On Exercises
Number Formats

1. Convert the decimal number 25 to its binary equivalent. Indicate the sign bit.
2. Convert the binary number 1101011 to its decimal equivalent.
3. Write the number 1234567.89 in four different formats, considering decimal

points, digit grouping, and negative number representation.
4. Convert 5.12e3 and −3.04e − 2 to their regular decimal forms in two different

locale styles.

2.8. HANDS-ON EXERCISES 69

5. Given a dataset with numbers in European format (comma as decimal separator),
write a pseudo-code to convert them to the American format (dot as decimal
separator).

6. Create a small program in a language of your choice to detect and convert scien-
tific notation to standard decimal notation.

Character Formats

7. Use an online Unicode character table (like https://www.unicode.org/
charts/) to find the Unicode characters for the letters in your name in a non-
Latin script (e.g., Cyrillic, Greek, Arabic). Write the Unicode code points for
these characters in both hexadecimal and decimal formats.

8. Choose a word in a language that uses non-ASCII characters. Find the Unicode
code points for each character of the word. Convert these code points into UTF-8
encoded byte sequences. You can use online tools or write a simple program to
do this.

Date Formats

9. Research a non-Gregorian calendar system (e.g., Hebrew, Islamic, or Chinese
calendar). Convert today’s date from the Gregorian calendar to your chosen
calendar system. Discuss the key differences and similarities between the two
calendar systems.

10. Choose three cities in different time zones. Convert 12:00 PM in your local time
to the time in each of these cities. Discuss how time zone differences impact
global communication and business.

11. Write a program or script to determine if a given year is a leap year in the Gre-
gorian calendar. Test your program with a set of years, including at least one
century year.

12. Write the current date and time in the formats specified by both ISO 8601 and
RFC 3339. Discuss why such standardizations are important in data management
and international communications.

13. Calculate the number of days between your birth date and today using a date
arithmetic tool or programming library. Discuss the challenges you might face
when calculating durations involving months and years due to their varying
lengths.

Structured Data

14. Create a list with different data types, append a new element, and modify an
element. Perform similar operations with a list in R.

15. Create a tuple in Python, attempt to modify it, convert it to a list, modify the list,
and then convert it back to a tuple.

16. Create a dictionary in Python, add, modify, and retrieve values from it.
17. Create numeric and character vectors in R and apply various functions to them.
18. Convert a character vector in R into a factor and reorder its levels.

https://www.unicode.org/charts/
https://www.unicode.org/charts/

70 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

19. Create a matrix in R, access its elements, and perform matrix multiplication.
20. Convert one structured data type into another in both Python and R.

Tabular Formats

21. Manually create a CSV file using a text editor. Include a header row and at least
4 rows of data. Ensure that your CSV adheres to the RFC 4180 standard.

22. Write a simple program or script in a language of your choice (like Python or R)
to read the CSV file you created and print out each row. Handle potential errors
like missing fields or incorrect formatting.

23. Modify your CSV file to include a non-standard delimiter (like a semicolon) and
mixed quotes. Adjust your program or script to correctly parse this modified
CSV file.

24. Extend your CSV file by adding a column that includes complex data types (like
lists or sets). Modify your parsing program to correctly interpret and display
these complex data types.

Document Formats

25. Create a JSON object that represents a book, including properties such as title,
author, publication year, and genre. Validate the JSON object using an online
JSON validator.

26. Extend the book JSON object to include a nested object for the author, with
properties like name, birth year, and nationality. Validate and format the updated
JSON object.

27. Create a JSON array representing a book series, containing several book objects.
Validate the JSON array to ensure proper formatting.

28. Take a simple dataset (e.g., a CSV file with student records) and convert it to a
JSON format. Validate the converted JSON data.

Regular Expressions

29. Write a regular expression to match email addresses in a text. Test your expres-
sion on a set of sample strings to check its accuracy.

30. Create a regular expression using meta characters to match any date in the format
“dd/mm/yyyy”. Validate your RegEx with various date strings.

31. Write a RegEx to find all the hyperlinks (URLs) in a given HTML document.
32. Develop a RegEx to identify phone numbers in different formats (e.g., 123-456-

7890, (123) 456-7890). Test the RegEx for various phone number formats to
ensure its versatility.

33. Choose a programming language and use its RegEx library to split a paragraph
into sentences. Ensure that the RegEx correctly handles periods used in abbrevi-
ations.

Levenshtein Distance

34. Determine the Levenshtein distance between "intention" and "execution".

2.8. HANDS-ON EXERCISES 71

35. What is the Levenshtein distance between a string and an empty string? Verify
your answer using the strings "algorithm" and "".

36. Compute the distance between two identical strings, such as "database" and
"database".

37. Given a list of words, ["apple", "apply", "apology", "propel"], find the word with
the smallest Levenshtein distance to "aply".

Data Sources

38. Identify various internal data sources within a hypothetical or real organization
(e.g., sales, HR). Discuss the types of data each source provides and its potential
use in analytics.

39. Research and compare two different data licenses (e.g., a Creative Commons li-
cense and a proprietary license). Summarize the key permissions and restrictions
of each license. Discuss the potential implications of these licenses on data usage
in a business context.

40. Study a real case where data licensing played a critical role in a project or prod-
uct. Identify the licensing issues that were involved and how they were ad-
dressed. Reflect on the lessons learned and how they apply to data management
practices.

72 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Chapter 3

Managing Tabular Data with
Relational Databases

Learning Goals
After reading this chapter, you should be able to:

• Understand the concept of tables in relational databases, including primary keys
and foreign keys.

• Use SQL to create a set of related tables in a relational database.

• Understand the main elements of information retrieval from a relational database
with SQL.

• Use SQL to filter information using the WHERE clause of a SELECT statement.

• Use SQL to retrieve information a set of related tables, using the JOIN clause
and understand the different types of joins.

• Use SQL to group information using the GROUP BY and HAVING clause with
different aggregation functions.

3.1 Introduction
The relational database model, developed by Edgar F. Codd in 1970, is a fundamental
approach in data organization and management. It structures data in tables, or relations,
comprising rows and columns, where each row signifies a record, and each column de-
notes a field within the record. This model is grounded in principles like tables, primary
keys for unique record identification, foreign keys for inter-table relationships, and data
integrity through constraints. The Structured Query Language (SQL) significantly im-
proved the usability of data management with relational databases.

73

74CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

The 1970s marked the theoretical development of the relational model, focusing on
data independence and efficient access. The 1980s witnessed its commercialization
with the advent of relational database management systems (RDBMS) such as Oracle,
IBM DB2, and Microsoft SQL Server, which became staples in enterprise applica-
tions. The 1990s saw the internet’s rise bring scalability and distribution challenges to
the forefront, leading to the popularity of open-source RDBMS like PostgreSQL and
MySQL.

In the 2000s, with the onset of Big Data and the advent of NoSQL databases, the rela-
tional model faced new challenges. However, it continued to evolve, adapting features
to handle non-relational data and integrating with cloud services. Relational databases
have maintained their relevance and are extensively used in various sectors, including
cloud computing, mobile applications, and big data analytics. The relational database
model’s focus on simplicity, flexibility, and accuracy has solidified its standing as a
cornerstone in data management.

The relational database model offers several benefits and advantages, making it a pop-
ular choice for a variety of data management needs. One of its primary strengths is the
simplicity of its design, which organizes data into tables, making it intuitive and easy
to understand. This tabular structure facilitates efficient data retrieval and manipula-
tion, especially with the use of SQL, a powerful and standardized query language that
enhances the accessibility and handling of data.

Another significant advantage is data integrity. The relational model enforces rules
through primary and foreign keys, ensuring that relationships between data are logi-
cally maintained and that the data remains consistent and accurate. This is crucial for
applications where data reliability is paramount.

The model’s flexibility is also a key benefit. It can easily accommodate changes in
the database structure without disrupting the existing data. This adaptability makes it
suitable for a wide range of applications, from small-scale projects to large, complex
enterprise systems.

Moreover, relational databases support ACID (Atomicity, Consistency, Isolation, Dura-
bility) properties of transactions (that is, updates to the data), guaranteeing reliable
transaction processing and robust data management, especially in multi-user environ-
ments. This ensures that even in the event of system failures or concurrent data access,
the integrity of the data is maintained.

The relational model’s widespread adoption has led to a rich ecosystem of tools and
technologies, providing users with extensive support and resources. This includes ad-
vanced features like indexing, which enhances performance, and comprehensive secu-
rity measures for data protection.

3.2 Constraints and Data Types
In relational database management systems (RDBMS), constraints are essential for
ensuring the integrity of the data. Constraints can be categorized into two main types:

3.2. CONSTRAINTS AND DATA TYPES 75

Name Description
bigint signed eight-byte integer
bit varying (varbit) variable-length bit string
boolean logical Boolean (true/false)
character varying (varchar) variable-length character string
date calendar date (year, month, day)
double precision (float8) double precision floating-point number

(8 bytes)
integer (int, int4) signed four-byte integer
interval time span
json textual JSON data
jsonb binary JSON data, decomposed
money currency amount
numeric (decimal) exact numeric of selectable precision
real (float4) single precision floating-point number

(4 bytes)
smallint (int2) signed two-byte integer
text variable-length character string
time time of day (no time zone)
time with time zone (timetz) time of day, including time zone
timestamp date and time (no time zone)
timestamp with time zone, (timestamptz) date and time, including time zone

(Source: https://www.postgresql.org/docs/current/datatype.html)

Table 3.1: Primitive Data Types in SQL and PostgreSQL with aliases in parentheses.
Emphasized entries are not contained in the SQL standard, they are PostgreSQL exten-
sions.

column constraints and table constraints. Additionally, each table column is of a certain
primitive data type, allowing only certain types of values to inserted. Constraints and
typing ensure data quality, in that data conforms to expected rules. Table 3.1 shows an
overview over commonly used datatypes.

Columns constraints are rules that are applied to individual columns, while table con-
straints apply to combinations of columns or the entire table. Many constraints can be
specified both for a single column as well as a combination of columns.

• The NOT NULL constraint can only be applied to individual columns and pre-
vents NULL values from being entered into a column, ensuring that every record
has a value for that column.

• The UNIQUE constraint ensures that all values in a column are distinct, prevent-

https://www.postgresql.org/docs/current/datatype.html

76CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

ing duplicate entries. The UNIQUE constraint can also be used at the table level
to ensure that a specific combination of values across different columns is unique
for all records in the table.

• The CHECK constraint can be applied at the column level or at the table level.
The CHECK constraint allows specifying a condition that each value in a col-
umn must satisfy. At the table level, it allows for more complex conditions that
involve multiple columns.

• The PRIMARY KEY constraint is a combination of NOT NULL and UNIQUE,
uniquely identifying each record in a table. The PRIMARY KEY constraints
can also be applied at the table level to specify that a combination of columns
uniquely identifies each record.

• The FOREIGN KEY constraint is used to link columns in different tables, es-
tablishing a relationship between them. It ensures that values in a column or
combination of columns must exist in the referenced colum or combination of
columns. The referenced columns may be in the same table, so that the con-
straint expresses a unary relationship, or in another table, so that the constraint
expresses a binary relationship. Together with NOT NULL constraints, this al-
lows the repsentation of optional or mandatory relationships.

3.3 Introduction to SQL and PostgreSQL
Despite its name, SQL serves as a language not only for querying but for data defini-
tion, data manipulation, data access control, transaction control, and querying. SQL
has been standardized by the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO), ensuring a consistent syntax and
set of features across different database systems. However, many database systems
extend standard SQL with proprietary extensions to enhance functionality and perfor-
mance. Despite these variations, the core elements of SQL remain widely consistent,
contributing to its status as the lingua franca of database management.

This section covers only the most basic aspects of SQL, insofar as they are necessary to
understand the relational database schema and to use SQL to query data for descriptive
data analytics. The most important SQL commands are listed in Table 3.2. For more
further information, consult the relevant sections of the PostgreSQL documentation on
data definition1, data manipulation2, data queries3 and primitive data types4.

The PostgreSQL RDBMS (relational database management sys-
tem) is installed in the course virtual machine or can be down-
loaded from the PostgreSQL website5. A DBMS is typically a
background computer application without a user interface. It is

1https://www.postgresql.org/docs/current/ddl.html
2https://www.postgresql.org/docs/current/dml.html
3https://www.postgresql.org/docs/current/queries.html
4https://www.postgresql.org/docs/current/datatype.html
5https://www.postgresql.org/download/

https://www.postgresql.org/docs/current/ddl.html
https://www.postgresql.org/docs/current/dml.html
https://www.postgresql.org/docs/current/queries.html
https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/download/

3.3. INTRODUCTION TO SQL AND POSTGRESQL 77

CREATE TABLE Create a new table with specified columns and constraints
DROP TABLE Deletes a table and all its contents
INSERT Inserts a row of data values into a table
UPDATE Updates/modifies data values in a table
SELECT Retrieves data values from one or more tables

Table 3.2: Basic SQL Commands

typically used by other computer applications, such as accounting
software to store financial information, a logistics management

software to store information about shipments, a customer relationship management
system to store information about customers and marketing campaigns, etc.

End users can interact with a DBMS using administration software, such as the basic
”psql” command line software or a graphical application like ”pgAdmin” or ”DBeaver”.
The desktop version of pgAdmin and DBeaver are installed in the course virtual ma-
chine, or can be downloaded from their websites6. They provide easy-to-use tools for
creating tables and querying data, but this section focuses on using the SQL language
instead.

A DBMS runs on a single computer (”server”) or, if the amount of data is very large,
distributes the data across a cluster of multiple computers. Different DBMS differ in
their performance, the ease with which data can be distributed, and the scalability to
very large clusters. However, from the users perspective, these technical considerations
are largely invisible. When connecting to a DBMS that runs on your own computer, use
the computer name ”localhost”.

A DBMS can manage multiple databases. A database named ”busi4720” has already
been created in your course virtual machine, using the CREATE DATABASE command.
pgAdmin and DBeaver also have the ability to show the SQL command that creates
every element in a DBMS, including databases, tables, and constraints. This is useful
to understand exactly what elements are contained in a database or in a table and any
constraints imposed upon them.

Every database can have multiple schema. A schema is a collection of tables with their
columns and constraints, as well as related elements such as functions, procedures, trig-
gers, views and others. In PostgreSQL, every database contains the schema ”public”.
This is the default schema and is used when no other schema is specified.

When the pgAdmin application is initially launched, it will connect to the DBMS that is
running on the local machine (”localhost”) with the username ”busi4720” (its password
is ”busi4720”) and will show an ”Object Explorer” in the left part of the application.
This allows navigation and exploration of the contents of this DBMS, as shown in
Figure 3.1.

6https://www.pgadmin.org/download/, https://dbeaver.io/download/

https://www.pgadmin.org/download/
https://dbeaver.io/download/

78CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

Figure 3.1: pgAdmin Query tool

Figure 3.2: DBeaver database tool

Similarly, when the DBeaver application is first started, it will also conncect to the
DBMS that is running on the local machine and will show a ”Database Navigator” in
the left part of the application window (Figure3.2. Navigate the contents of the DBMS
to the ”busi4720” database and the ”public” schema.

The basic ”psql” command line tool can be started by by typing psql into a termi-
nal window. The course virtual machine is configured to provide automatic access
to the ”busi4720” database. The database connection can be confirmed by executing
the \conninfo command in psql. Use psql options to specify other connections us-
ing the template psql -d dbname -h hostname -u username. Figure 3.3
shows the psql command line tool in a terminal window.

The examples and exercises in the remainder of this chapter refer to the
”busi4720” database.

3.4. DATA DEFINITION IN SQL 79

Figure 3.3: psql command line tool

3.4 Data Definition in SQL

Tip: SQL commands are traditionally written in upper case letters and this is
done here as well. However, SQL is not case sensitive, so that capitalization
does not actuallly matter. Traditionally, an SQL command must end with a
semicolon. This is done here as well, although some DBMS may no longer
require this.

For this example, assume that your database will be used to store information about
products. The CREATE TABLE data definition command in SQL is used to create
tables, their columns, and constraints. This first example creates a simple table with
three columns to store product data.

Enter the SQL commands in the code block below.
• In psql, press RETURN to execute
• In DBeaver, press CTRL-RETURN to execute
• In pgAdmin, press F5 to execute.

CREATE TABLE products (
pcode integer,
name varchar(100) NOT NULL,
price float4,
PRIMARY KEY (pcode)

);

The table contains a column named ”pcode” (to store the product code) that is of in-
teger type, that is, it can contain whole numbers only. The table has a column called
”name” of characters with a varying length and a maximum length of 100 characters
to store product names. Additionally, a column NOT NULL constraint has been de-
fined for this column, ensuring that a name always exists for a product. The table has
a column named ”price” that is of a single precision floating point type (4 bytes), that

80CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

is, it can hold decimal point numbers to store product prices. The final line of the SQL
command created a primary key constraint on the single column ”pcode” to ensure that
the product code must not be NULL and must be unique, ensuring that each row in
the table represents a distinct product. Note that column ”price”may be NULL, that is,
may not contain values, because no NOT NULL constraints have been specified. This
may be useful for example when the price has not been decided on or will be calculated
later.

The following SQL code block creates a table for suppliers. The table has a simi-
lar structure to the products table and similar NOT NULL and PRIMARY KEY con-
straints.

CREATE TABLE suppliers (
scode integer,
name varchar(100) NOT NULL,
city varchar(100),
PRIMARY KEY (scode)

);

After creating tables with the data definition part of the SQL language, the data ma-
nipulation commands of SQL can be used to insert or update values in the tables. The
following SQL code block inserts two rows into each of the tables that were just cre-
ated. Enter the following SQL commands in the Query tool:

INSERT INTO products VALUES (1, 'Hex Bolt', 1.99);
INSERT INTO products VALUES (2, 'Round Bolt', 2.99);

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers VALUES (2, 'Hardware Co', 'Cartwright');

The values for each row must be specified in the order in which the columns of the
table are defined. For the ”products” table this is first the product code, followed by the
name, and finally the price. For the ”suppliers” table, this is first the supplier code, then
the name and then the city. There are many different variations on the basic INSERT
statement; consult the official documentation using the links in the earlier footnote.

After inserting the values, a basic SELECT statement, which is the core querying com-
mand in SQL, checks that the data is actually in the tables. Run the commands in the
following SQL code block one at a time to see each command’s results:

SELECT * FROM products;
SELECT * FROM suppliers;

This is the simplest form of a SELECT statement, the asterisk (”*”) instructs SQL to
retrieve all columns. Later examples will illustrate ways to retrieve only some columns,
and many other variants on the SELECT statement.

3.4. DATA DEFINITION IN SQL 81

The two tables allow capturing information about products and information about sup-
pliers, but they do not allow capturing which supplier supplies which product. In order
to do this, the two tables need to be related by a foreign key relationship.

For the following example, assume that suppliers can supply many products, but a
product may be supplied by only one supplier (or no supplier at all). This is called a
one-to-many relationship. The following SQL code block alters the tables, retaining
the existing data, and then updates the information in the new ”supplier” column for
the ”products” table:

ALTER TABLE products ADD COLUMN supplier integer;
ALTER TABLE products ADD FOREIGN KEY (supplier) REFERENCES suppliers;

UPDATE products SET supplier = 1 WHERE pcode = 1;
UPDATE products SET supplier = 1 WHERE pcode = 2;

The first SQL statement above adds a new column to the existing products table in
which to record the supplier of the product. The second line creates a foreign key
reference from the supplier column in the products table to the primary key of the
suppliers table; the primary is the ”scode” column (see SQL code above). This ensures
that only those suppliers can be recorded in the products table that actually exist in the
suppliers table.

The third and fourth line update the data in the products table and set the value of
the supplier column for different products. The two products have the same supplier
which reflects the assumption that a supplier may supply multiple products. On the
other hand, only one supplier can be recorded for each product, and this too reflects the
above assumption. This expresses the one-to-many relationship. Moreover, the value
of the supplier column in the products table may be NULL. In fact, after altering the
table to add this column, all its values were NULL. A NULL value reflects the fact that
a product has no supplier.

As an alternative to altering the existing products table, drop the products table to delete
it and re-create it. Then insert some values. The following SQL code block uses the
DROP TABLE command of SQL to delete the products table and all its contents.

82CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

DROP TABLE products;

CREATE TABLE products (
pcode integer,
name varchar(100),
price float4,
supplier integer,
PRIMARY KEY (pcode),
FOREIGN KEY (supplier) REFERENCES suppliers

);

INSERT INTO products VALUES(1, 'Hex Bolt', 1.99, 1);
INSERT INTO products VALUES(2, 'Round Bolt', 2.99, 1);
INSERT INTO products VALUES(3, 'Square Bolt', 3.99, NULL);

The above SQL code achieves the same as altering the table but in the process deletes
all data in the products table. When possible, it is therefore preferable to use multiple
ALTER TABLE statements instead of DROP and CREATE statements.

Note the following important points about the tables so far:

• There are products that have no supplier (the ”square bolt”)

• There are suppliers that supply many products (supplier 1)

• There are suppliers that do not supply products (supplier 2)

In the products table as altered or re-created to this point, it is possible that a product
has no supplier. However, in some applications it may be necessary to enforce that it
is mandatory for products to have a supplier. This is done by adding a NOT NULL
constraint, either by altering the table again, as in the following SQL code block, or by
re-creating it with the appropriate constraint added.

ALTER TABLE products ALTER COLUMN supplier SET NOT NULL;

Adding constraints can only be done when the constraint is already satisfied. This
means that in this example, none of the values of the supplier columns can be NULL
when adding the constraint. If a new constraint is violated, the DBMS will show an
error and the constraint will not be added.

When re-creating the table, the NOT NULL column constraint can be defined in the
CREATE TABLE statement:

3.4. DATA DEFINITION IN SQL 83

DROP TABLE IF EXISTS products;

CREATE TABLE products (
pcode integer,
name varchar(100),
price float4,
supplier integer NOT NULL,
PRIMARY KEY (pcode),
FOREIGN KEY (supplier) REFERENCES suppliers

);

So far, the assumption was that each product can has one supplier. However, in many
settings, products have multiple suppliers, and suppliers supply multiple products, that
is, there is a many-to-many relationship between the two. Expressing many-to-many
relationships requires a third table that explicitly represents the relationship, here the
”supplies” relatinship between products and suppliers. The following SQL code first
removes the existing tables, then re-creates tables to express a many-to-many relation-
ship instead.

DROP TABLE IF EXISTS products;
DROP TABLE IF EXISTS suppliers;

CREATE TABLE products (
pcode integer,
name varchar(100),
PRIMARY KEY (pcode));

CREATE TABLE suppliers (
scode integer,
name varchar(100),
city varchar(100),
PRIMARY KEY (scode));

CREATE TABLE supplies (
scode integer NOT NULL,
pcode integer NOT NULL,
price float4 NOT NULL,
PRIMARY KEY (scode, pcode),
FOREIGN KEY (scode) REFERENCES suppliers,
FOREIGN KEY (pcode) REFERENCES products);

Note that the tables must be dropped in the right order: ”products” first, then ”suppli-
ers” because the products depend on the suppliers due to the foreign key constraint7.
The IF EXISTS part is a safeguard to prevent an error if the table does not exist when
attempting to drop it.

The primary key of the supplies table is a compound key, that is, it consists of a com-
bination of columns. The supplies table is related by two FOREIGN KEY constraints

7Use the CASCADE keyword to drop dependent tables automatically but use with care.

84CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

both to the products and suppliers table so that only products and suppliers that already
exist can be recorded here (and thereby related to each other). The price column is no
longer in the products table, but has been moved to the supplies table, because each
supplier may supply a product at a different price. The following example data shows
this:

INSERT INTO products VALUES (1, 'Hex Bolt');
INSERT INTO products VALUES (2, 'Round Bolt');

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers VALUES (2, 'Hardware Co', 'Cartwright');

INSERT INTO supplies VALUES(1, 1, 1.99);
INSERT INTO supplies VALUES(1, 2, 2.49);
INSERT INTO supplies VALUES(2, 1, 2.99);
INSERT INTO supplies VALUES(2, 2, 1.79);

To clean up after these exercises, drop all tables if they are no longer required:

DROP TABLE supplies;
DROP TABLE products;
DROP TABLE suppliers;

Summary In summary, a one-to-many relationships requires a foreign key from the
”many” table that references the ”one” table and its primary key. In the first example
above, a supplier supplies many products but a product has one supplier (or none,
depending on whether a NOT NULL constraint has been specified). In contrast, a
many-to-many relationship requires a table that explicitly represents the relationship.
Foreign keys from this table reference the participating, original, ”main” tables and
their primary keys. In the second example above, a supplier supplies many products
and a product can be supplied by many suppliers.

In fact, this type of relationship can be extended in a straightforward way to three or
more tables. For example, a supplier supplies many products from many warehouses,
a product may be supplied by many suppliers from many warehouses, and a warehouse
may contain many products from many suppliers.

3.5. SQL QUERIES 85

Hands-On Exercise

1. Consider the following information:
• A book has an ISBN number and a title.
• An author has a name and an address.
• An author can write many books, and a book can be written by

multiple authors. A book is written in a certain year.
2. Write the CREATE TABLE statements with the necessary FOREIGN

KEY statements, and execute them on PostgreSQL
• Use appropriate datatypes for the columns
• Create an appropriate PRIMARY KEY for all tables

3. Use INSERT statements to create some example data.
4. Use SELECT statements to ensure your data exists.

3.5 SQL Queries

The previous section has presented the basics of the relational database model, focusing
on how tables are related by foreign key relationships. Tables and their relationships
are often graphically shown in a relational diagram. Such diagrams are often called
”ER Diagrams8” or ”Entity-Relationship Diagrams”. A graphical representation of the
database structure is useful for understanding the data and for writing queries to extract
data from the table or tables of the database.

In many software tools, including in pgAdmin, the database developer can use rela-
tional diagrams to create tables, instead of writing CREATE TABLE statements. In the
reverse, relational diagrams can also be automatically created from an existing database
and its tables.

Hands-On Exercise

In the pgAdmin Object Explorer, right-click on the ”busi4720” database, then
select ”ERD for Database” to create a relational diagram.

In the DBeaver Database Navigator, select the ”busi4720” database, then right-
click on its ”public” schema and select ”View Diagram” to create the diagram.

The resulting diagram will look similar to the one in Figure 3.4. (If you did not clean up
the tables you created in the above SQL exercises, these will be present in the diagram
as well).

8Technically, the two are not quite the same.

86CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

Figure 3.4: Relational diagram of the Pagila demo database

The Pagila Database
The diagram shows the structure of the Pagila database9, a demonstration database
originally developed for teaching and development of the MySQL RDBMS under the
name Sakila10. Pagila is designed as a sample database to illustrate database concepts
and is based on a fictional DVD rental store. It consists of multiple tables for film and
actor information, customer data, store inventory, and rental transactions. Here is an
overview of the key tables in the Pagila database:

• actor: Stores details about actors, including their first and last names.

• film: Contains information about movies, such as title, release year, language,
rental duration, rental rate, length, replacement cost, rating, and special features.

• film_actor: A junction table that establishes a many-to-many relationship be-
tween the films and actors. It links each film to its actors.

9https://github.com/devrimgunduz/pagila,
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

10https://dev.mysql.com/doc/sakila/en/,
https://dev.mysql.com/doc/sakila/en/sakila-license.html

https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/sakila-license.html

3.5. SQL QUERIES 87

• category: Lists different genres or categories of films.

• film_category: Another junction table that connects films to their respective cat-
egories.

• language: Stores languages in which the films are available.

• customer: Contains customer information, including names, email addresses,
addresses, and store ID where they are registered.

• address: Holds address details, including city, postal code, phone number, and
other address components.

• city: Contains information about cities, linked to the addresses.

• country: Stores country information, which is linked to cities.

• store: Includes data about the DVD rental stores, such as the store’s address and
the staff.

• inventory: Contains information about the store’s inventory, including which film
copies are available at which store.

• rental: Records details about rental transactions, including rental and return
dates, inventory, and customer information.

• payment: Tracks payments made by customers for rentals, including amount and
payment date.

• staff : Contains information about the store staff, including their names, email
addresses, and the store they work in.

Each table is designed with primary keys for unique identification and foreign keys
to establish relationships with other tables. This structure allows for complex queries
across multiple tables, facilitating a wide range of analyses, from inventory manage-
ment to customer behavior tracking. The Pagila database is a good example of a real-
world database schema and offers a good data set for practicing SQL queries.

The SELECT Statement
The SELECT statement in SQL is used to query and retrieve data from one or more
tables in a database. The basic structure of a SELECT statement allows specification
of which columns of data you want to retrieve and from which tables. A SELECT
statement has multiple clauses or parts that are used to specific different characteristics
of the information to retrieve:

• SELECT: Which columns to query (use the asterisk ”*” to select all).

• FROM: Which tables to query from.

• JOIN: How to combine data from multiple tables based on related columns.

• WHERE: Conditions on field values used to filter the retrieved records.

88CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

• GROUP BY: Groups within which to aggregate data using an aggregate function
such as sum(), count(), or max().

• HAVING: Conditions on group aggregate values. Similar to WHERE but for
aggregates within each group.

• ORDER BY: How to sort the resulting records in either ascending or descending
order.

• LIMIT: Limit on how many results to return.

The following examples show queries for the Pagila database to illustrate different
features of the SELECT statement. Instead of describing every option in detail, to
understand SQL it is useful to execute the queries and learn by modifying the queries
and observing changes in the results.

Example: Find all actors and the films they appeared in, ordered by film category
and year, for those films that are rated PG

SELECT concat(left(actor.first_name, 1), '. ',
actor.last_name) AS Actor,

category.name AS Category,
film.title,
film.release_year

FROM film_actor
INNER JOIN actor USING (actor_id)
INNER JOIN film USING (film_id)
INNER JOIN film_category USING (film_id)
INNER JOIN category USING (category_id)
WHERE film.rating = 'PG'
ORDER BY actor.last_name,

actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;

Running this query will retrieve 1143 records from the Pagila database.

The SELECT clause specifies only a few columns to retrieve. Note that column names
are prefixed by the table name, as in ”actor.first_name” to make them unambiguous
when multiple tables contain columns with the same name. Some columns are also
given aliases using the keyword AS. This is useful to give the results more meaning-
ful and shorter names. The first item to be selected is the result of a function: The
concat() function concatenates text, and the left() function extracts the left part
of some text. Refer to the PostgreSQL documention linked to in the footnote above for
a complete reference to available functions.

The FROM clause specifies a single table ”film_actor” to which other tables are joined
using the INNER JOIN keyword. The JOIN clause specifies the common join col-
umn with the USING keyword. The join columns typically correspond to the columns

3.5. SQL QUERIES 89

related by a foreign key relationship. In the Pagila database, foreign keys are always
single columns, as are primary keys. However, one can imagine that combinations
of two or more columns serve as primary keys and as foreign keys. Then, multiple
columns are specified in the USING clause.

An INNER JOIN is a type of join that matches records from two tables if they both
have the same value in their join columns, and only if they both have non-null values
in their join columns. In contrast, a LEFT OUTER JOIN would also include records
from the left table that have a NULL value in their join columns, a RIGHT OUTER
JOIN would also includes records from the right table that have a NULL value in their
join columns, and a FULL OUT JOIN is the combination of a LEFT OUTER JOIN
and a RIGHT OUTER JOIN.

Compare the FROM and JOIN clauses to the relational diagram in Figure 3.4 and notice
how it allows you to ”navigate” from one table to another table along the foreign key
relationships that link each table.

The WHERE clause in the above example selects those films whose rating is equal to
the text ”PG”. Multiple logical conditions can be combined with the AND, OR, NOT
keywords and parentheses.

The ORDER BY clause specifies the ordering of the results. In this case, ordering is
first done by actor last name. When actors have the same last name, ordering is done
by first name. Within the same last and first names, ordering is done by category name,
in ascending order, as indicated by the ASC keyword (The default ordering is always
ascending, but it is sometimes useful to explicitly indicate this). Next, results are sorted
by film release year in descending order, then again by film title in ascending order.

The JOIN ...USING clause assumes that the columns have the same name in both
tables. When this is not the case, this short form is not available and joins must be
specified manually. Recall that the join ensures that the join columns in both tables have
the same value, which can also be specified in a WHERE clause as a set of conditions.
The following query is equivalent to the previous one, but without the JOIN clauses:

SELECT concat(left(actor.first_name, 1), '. ',
actor.last_name) AS Actor,

category.name AS Category,
film.title,
film.release_year

FROM film_actor, film, actor, film_category, category
WHERE actor.actor_id = film_actor.actor_id AND

film.film_id = film_actor.film_id AND
film_category.film_id = film.film_id AND
category.category_id = film_category.category_id AND
film.rating = 'PG'

ORDER BY actor.last_name,
actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;

90CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

When writing the query without JOIN keywords, the required tables must all be in-
cluded in the FROM clause; it does not matter in which order they are listed there.

Example: Find the most popular actors in the rentals in each city

SELECT city.city,
concat(actor.first_name, '. ', actor.last_name) AS actor_name,
count(rental.rental_id) AS Number_Rentals

FROM rental
INNER JOIN inventory USING (inventory_id)
INNER JOIN store USING (store_id)
INNER JOIN address USING (address_id)
INNER JOIN city USING (city_id)
INNER JOIN film USING (film_id)
INNER JOIN film_actor USING (film_id)
INNER JOIN actor USING (actor_id)
GROUP BY city.city, actor.actor_id
HAVING count(rental.rental_id) >= 300
ORDER BY city ASC,

Number_Rentals DESC,
actor_name ASC;

Running this query will retrieve 22 records from the Pagila database.

This query uses the GROUP BY clause to group data. First, data is grouped by the city
name, then, within each city, data is grouped by actor identification. Grouping allows,
and in fact requires, the use of aggregate functions. This query uses the count()
function to count the number of rentals in each group, that is, for each combination of
city and actor. This query also includes a HAVING clause to return only those groups
for which the count of rentals is greater than or equal to 300.

Example: Find the customers who spent the most, with their phone numbers and
cities, the cities their store is in, and the number of rentals with the highest total rental
payments for each film category, grouped by city of the rental store.

SELECT category.name AS category_name,
store_city.city AS store_city,
customer.customer_id,
concat(customer.first_name, ' ',

customer.last_name) AS customer_name,
cust_city.city AS customer_city,
cust_address.phone AS customer_phone,
count(rental.rental_id) AS num_rentals,
sum(amount) AS total_amount

FROM city AS cust_city, city AS store_city,
address AS cust_address, address AS store_address,
store, rental

INNER JOIN payment USING (customer_id)
INNER JOIN customer USING (customer_id)
INNER JOIN inventory USING (inventory_id)
INNER JOIN film USING (film_id)

3.5. SQL QUERIES 91

INNER JOIN film_category USING (film_id)
INNER JOIN category USING (category_id)
WHERE store.store_id = inventory.store_id

AND store_address.address_id = store.address_id
AND store_city.city_id = store_address.city_id
AND cust_address.address_id = customer.address_id
AND cust_city.city_id = cust_address.city_id

GROUP BY category.name, customer.customer_id,
cust_address.address_id, cust_city.city, store_city.city

HAVING sum(amount) IN (
SELECT sum(amount) AS maxamount
FROM store, address, city AS inner_city, rental
INNER JOIN payment USING (customer_id)
INNER JOIN customer USING (customer_id)
INNER JOIN inventory USING (inventory_id)
INNER JOIN film USING (film_id)
INNER JOIN film_category USING (film_id)
INNER JOIN category AS inner_category USING (category_id)
WHERE inner_category.name = category.name AND

inner_city.city = store_city.city AND
store.store_id = inventory.store_id AND
address.address_id = store.address_id AND
inner_city.city_id = address.city_id

GROUP BY inner_category.name, inner_city.city,
customer.customer_id

ORDER BY inner_category.name ASC, inner_city.city,
maxamount DESC

LIMIT 1)
ORDER BY category.name ASC, store_city ASC;

This query will return 33 records from the Pagila database.

This complex query is actually two queries as it includes a subquery within the HAVING
clause! Starting in the FROM clause, notice that some tables are included twice in this
query, under different aliases or names, using the AS keyword. This is because the
query retrieves the city that the customers live in, as well as the city that the store is
located in. As cities are linked to addresses, the address table is also included twice.

Some joins are done using the JOIN keyword on common columns, while joining
the address and city tables is done in the WHERE clause because the column names
”city_id” and ”address_id” are ambiguous as the tables are included multiple times.

The GROUP BY keyword groups the results by category, customer, address, customer
city, and store city. This is necessary to be able to the select the customer city and ad-
dress: Only columns that are groupbed by can be retrieved or selected and aggregated,
for example by using the sum() function used in this query.

As the query seeks to retrieve the maximum amount spent, the HAVING clause is used
to select just this maximum by ensuring that the sum of payment amounts is equal
to the result of the subquery. This subquery is very similar to the ”outer” query,
but returns only the sum of payment amounts, ordered by this amount in descend-
ing order and limited to the first result. That is, the subquery returns the maximum

92CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

sum of payment amounts. The subquery is linked to the outer query by two con-
ditions in its WHERE clause: inner_category.name = category.name and
inner_city.city == store_city.city. These two conditions ensure that
the maximum sum of payments computed in the subquery is done for the same group-
ing that the outer query is considering.

Because of the subquery, running this query is expensive in terms of computing time.

Example: Get the total rental revenue and number of rentals for each store by month

SELECT city.city,
extract(year from payment_date) AS year,
extract(month from payment_date) AS month,
sum(amount) as dollars,
count(rental.rental_id) as rentals

FROM payment, rental, inventory, store, address, city
WHERE payment.rental_id = rental.rental_id AND

rental.inventory_id = inventory.inventory_id AND
inventory.store_id = store.store_id AND
store.address_id = address.address_id AND
address.city_id = city.city_id

GROUP BY city.city,
extract(year from payment_date),
extract(month from payment_date)

ORDER BY city.city,
extract(year from payment_date),
extract(month from payment_date);

Running this query will return 14 results.

This query shows the use of a date function in PostgreSQL. The extract() function
can extract part of a date. In the example, it is used to extract the year and the month.
Both are also used in the GROUP BY and in the ORDER BY clause.

Example: Get the top 5 and the bottom 5 grossing customers by year

3.5. SQL QUERIES 93

(SELECT concat(customer.first_name, ' ',
customer.last_name) AS customer_name,

extract(year from payment_date) AS year,
sum(amount) as dollars,
'Top-5' as note

FROM payment, customer
WHERE payment.customer_id = customer.customer_id
GROUP BY extract(year from payment_date),

customer.customer_id
ORDER BY dollars desc
LIMIT 5
) UNION (
SELECT concat(customer.first_name, ' ',

customer.last_name) AS customer_name,
extract(year from payment_date) AS year,
sum(amount) as dollars,
'Bottom-5' as note

FROM payment, customer
WHERE payment.customer_id = customer.customer_id
GROUP BY extract(year from payment_date),

customer.customer_id
ORDER BY dollars asc
LIMIT 5) ORDER BY dollars DESC;

This query combines the results of two simple queries with the UNION keyword. Both
queries must return the same columns in order to be combined in this way. Because
the results are mathematically sets, they are not intrinsically ordered; this is why the
set that results from the UNION operation is ordered again.

Set operations can be used to combine results from multiple queries. These are speci-
fied by the UNION, INTERSECT, and EXCEPT keywords and do exactly as their name
indicates: They return the union, the intersection, or the complement of two result sets.
The inputs to each operation sets must have the same set of columns.

PostgreSQL can easily import and export data for further analysis. The pgAdmin ap-
plication can export query results to CSV files (there is a button in the query toolbar).
Alternatively, one can use the COPY command as in the following example.

COPY (SELECT * FROM customer)
TO '/tmp/filename.csv'
WITH (FORMAT CSV, HEADER);

Similarly, PostgreSQL can easily import data from CSV files using the copy command:

COPY customer
FROM '/tmp/filename.csv'
WITH (FORMAT CSV, HEADER);

94CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

Addtionally, PostgreSQL can import and export JSON files; see the documentation for
details.

Hands-On Exercise

1. Find the names and the rental numbers of the top 5 customers who rented
the most films

• Tip: Join tables ”rental”, ”customer”, use the ”count()” function
2. Calculate the rental revenue per customer. Who are the top 5? Bottom

5?
• Tip: Join tables ”rental”, ”customer”, ”payment”, use the ”sum()”

function
3. Calculate the average rental revenue per customer for each store

• Tip: Join tables ”rental”, ”customer”, ”payment”, ”inventory”, use
the ”avg()” function

4. Calculate the rental counts for each country of customer. Are there coun-
tries with no rentals?

• Tip: Join tables ”rental”, ”customer”, ”address”, ”city”, ”country”,
use the ”count()” function

5. Find all films with a single actor
• Tip: Join tables ”film”, ”film_actor”, use the ”count()” function in

a HAVING clause
6. Create tables to represent a part-of hiearchy. For example, a product may

be a part of another product, and prodcuts may have multiple parts.
• Tip: You need only one table

3.6 Review Questions
1. What is a relational database, and who developed the relational model?
2. Explain the role of primary keys and foreign keys in relational databases.
3. What is SQL and what are its main purposes?
4. List and describe at least four data types commonly used in SQL.
5. Explain the difference between the varchar and text data types in Post-

greSQL.
6. What are the ACID properties in relational databases and what is their purpose?
7. Define and give an example of each of the following constraints:

A. NOT NULL
B. UNIQUE
C. PRIMARY KEY
D. FOREIGN KEY
E. CHECK

8. How do relational databases handle relationships between tables? Give exam-
ples.

9. What are some of the challenges relational databases faced with the advent of
Big Data?

3.7. ADDITIONAL SQL EXERCISES 95

10. What is PostgreSQL and what type of system is it?
11. What is the purpose of the “psql” and “pgAdmin” tools in the context of Post-

greSQL?
12. When connecting to a DBMS running on your own computer, what hostname

should you use?
13. Define a “schema” in the context of a PostgreSQL database. What is the default

schema in PostgreSQL?

3.7 Additional SQL Exercises
Database Schema:

• Table: Employees

• Columns: EmployeeID, FirstName, LastName, Role, Department

Task: Write a SQL query to select the first and last names of all employees in the
’Sales’ department.

Database Schema:

• Table: Products

• Columns: ProductID, ProductName, Price, Category, StockQuantity

Task: Write a SQL query to select the ProductName and Price for all products in the
’Electronics’ category.

Database Schema:

• Table: Books

• Columns: BookID, Title, Author, PublishYear, Price

Task: Write a SQL query to select all columns from the Books table and sort the results
by PublishYear in descending order.

Database Schema:

• Table: Orders

• Columns: OrderID, CustomerName, OrderDate, TotalAmount

Task: Write a SQL query to select the OrderID and TotalAmount for orders where the
TotalAmount is greater than 100. Sort the results by TotalAmount in ascending order.

Database Schema:

• Table: Students

96CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

• Columns: StudentID, Name, Major

Task: Write a SQL query to select all distinct majors from the Students table.

Database Schema:

• Table: Customers

• Columns: CustomerID, FirstName, LastName, Email

• Table: Orders

• Columns: OrderID, CustomerID, OrderDate, TotalAmount

Task: Write a SQL query to select all orders with the corresponding customer’s first
and last name. Join the Customers and Orders tables on CustomerID.

Database Schema:

• Table: Authors

• Columns: AuthorID, Name

• Table: Books

• Columns: BookID, Title, AuthorID

• Table: Publishers

• Columns: PublisherID, Name

• Table: BookPublishers

• Columns: BookID, PublisherID

Task: Write a SQL query to select the title of the book, the name of the author, and the
name of the publisher. This will require joining the Books, Authors, and BookPublish-
ers tables, and then joining the resulting table with Publishers.

Database Schema:

• Table: Employees

• Columns: EmployeeID, FirstName, LastName, Department

• Table: Sales

• Columns: SaleID, EmployeeID, SaleAmount, SaleDate

Task: Write a SQL query to select each employee’s first name, last name, and total
sales amount. This requires a join between Employees and Sales tables and the use of
the SUM aggregate function on SaleAmount.

Database Schema:

3.7. ADDITIONAL SQL EXERCISES 97

• Table: Products

• Columns: ProductID, ProductName, Price

• Table: Orders

• Columns: OrderID, ProductID, Quantity

Task: Write a SQL query to select all products, along with the quantity ordered for
each product. Use a LEFT JOIN to ensure that all products are listed, even if they have
not been ordered.

Database Schema:

• Table: Students

• Columns: StudentID, Name, Major

• Table: Enrollments

• Columns: CourseID, StudentID, Grade

Task: Write a SQL query to select the names of students and their grades who are
enrolled in a specific course (e.g., ’Biology 101’). This requires a join between the
Students and Enrollments tables and a WHERE clause to filter by the CourseID.

Database Schema:

• Table: Employees

• Columns: EmployeeID, FirstName, LastName, Salary, DepartmentID

• Table: Departments

• Columns: DepartmentID, DepartmentName

Task: Write a SQL query to select the first name and last name of employees who
earn more than the average salary in their respective departments. This will require a
subquery in the WHERE clause to calculate the average salary per department.

Database Schema:

• Table: Movies

• Columns: MovieID, Title, ReleaseYear, Genre

• Table: Ratings

• Columns: RatingID, MovieID, Reviewer, Stars

Task: Write a SQL query to select the title of movies that have an average rating higher
than the overall average rating of all movies. This will require a complex subquery to
first calculate the average rating for each movie, and another subquery to calculate the

98CHAPTER 3. MANAGING TABULAR DATA WITH RELATIONAL DATABASES

overall average rating.

Chapter 4

Managing Graph Data with
Graph Databases

Learning Goals
After reading this chapter, you should be able to:

• Understand property graphs and the concept of nodes and edges.

• Understand when graph databases are preferrable over relational databases.

• Define basic graphs using Cypher.

• Create graph structures appropriate for different types of queries.

• Translate a relational database schema into a graph database definition.

• Retrieve information from a graph database using Cypher, including filtering and
aggregation of information.

4.1 Introduction
Graph databases are one type of NoSQL databases, an acronym for ”Not Only SQL”.
NoSQL databases emerged as a response to the limitations of traditional relational
database systems and the evolving needs of modern applications. The concept and the
term ”NoSQL” gained prominence in the late 2000s, but its roots can be traced back to
earlier innovations in database technology.

The rise of the internet and web applications in the 1990s and 2000s led to unprece-
dented amounts of data and new types of data that did not fit neatly into the rows
and columns of relational databases. Companies like Google and Amazon faced chal-
lenges in scaling their databases to meet the demands of huge amounts of web traffic

99

100 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

and large, unstructured data sets. This led to the development of new database systems
like Google’s Bigtable and Amazon’s Dynamo, which laid the groundwork for NoSQL
databases.

NoSQL databases were designed to overcome the scalability, performance, and flex-
ibility limitations of traditional relational databases. Unlike relational databases that
use a fixed table structure, NoSQL databases utilize a variety of data models, including
key-value, document, and graph formats. This diversity allows them to handle a wide
array of data types and structures efficiently.

Key benefits of NoSQL databases include their ability to scale horizontally across many
servers, offering significant advantages in handling large-scale, high-volume applica-
tions and big data. They also deliver high performance, particularly with large volumes
of data and concurrent read/write operations, due in part to their typical emphasis on
eventual data consistency over strict ACID compliance (atomicity, consistency, isola-
tion, and durability of database transactions).

The schema-less nature of NoSQL databases provides more agility in application devel-
opment. Developers can iterate quickly without needing to restructure databases every
time the application evolves. This flexibility is especially valuable in agile software
development environments and for applications dealing with diverse, unstructured, or
rapidly evolving data sets.

Moreover, many NoSQL databases natively support modern data formats like JSON,
aligning well with current web and mobile applications. This can simplify the devel-
opment process, as the same data format can be used throughout the application stack.

However, the strenghts of NoSQL databases also bring some drawbacks. The lack of
a fixed schema means that data integrity cannot be ensured using typing of columns,
primary keys on unique identifiers, or referential integrity with foreign keys. NoSQL
databases also do not typically make correctness guarantees for concurrent transactions
that come from the ACID properties of relational databases. Instead, they guarantee
that eventually the data will be consistent, but applications and users may occasionally
see inconsistent data. Generally NoSQL databases are less suitable for high-volume
concurrent update transaction processing; these application types are better supported
by relational databases. Instead, NoSQL databases are better suited for applications
that may require complex queries but relatively infrequent updates, few concurrent
update transactions, and updates of single data elements at a time.

Graph databases are designed to store and query relationships in data. They represent
data as nodes, akin to entities in a relational database, and relationships between these
nodes. This structure is particularly suited for handling complex, interconnected data
and is highly efficient in scenarios where relationships are as important as the data it-
self. Graph databases gained significant traction driven by the increasing complexity of
data and the limitations of relational databases in efficiently handling highly connected
or networked data. The proliferation of social networks, recommendation systems, and
other applications dealing with complex relationships between data entities spurred the
development of graph databases.

4.2. USE CASES 101

Unlike relational databases that require computationally intensive join operations to
establish connections between data in different tables, graph databases are designed
to store relationships as first-class objects. This means that queries on interconnected
data are faster and more efficient, as they exploit the direct connections between nodes.
Additionally, graph databases are schema-less or have flexible schemas, allowing for
more agility in adapting to changing data requirements.

4.2 Use Cases
Graph databases have become increasingly important in various industries due to their
ability to efficiently model and query complex relationships and interconnected data
that arise in those applications.

In fraud detection, graph databases are used to uncover patterns that are indicative of
fraudulent activities. They can map complex transaction networks and identify un-
usual patterns, such as circular transactions or abnormally close relationships between
entities, that might signal fraud. The ability to quickly traverse and analyze complex
networks of data helps in real-time detection and prevention of fraud.

For IT infrastructure monitoring, graph databases offer a way to model complex net-
works of servers, devices, and applications. They can track the relationships and de-
pendencies between various components of an IT system. This is invaluable for root
cause analysis, where understanding the impact of an issue in one part of the system
on the rest is crucial for quick resolution.

Graph databases power recommender engines by capturing and analyzing relationships
between users, their preferences, and products. They can efficiently traverse these
relationships to generate personalized recommendations based on a user’s past behavior
and the behavior of similar users.

In social media, graph databases are used to model the complex relationships between
users, their friends, and their activities. They help in understanding social dynamics,
optimizing content delivery, and enhancing user engagement by providing insights into
how users are connected and how information flows through these networks.

For supply chain management, graph databases can model the entire supply chain net-
work, including suppliers, production facilities, distribution centers, and retail outlets.
This aids in optimizing routes, managing inventories, and identifying vulnerabilities in
the supply chain, such as single points of failure.

In the financial sector, graph databases are utilized for risk assessment, compliance,
customer service, and understanding client relationships. They help in mapping and an-
alyzing complex networks of transactions and customer relationships, which is critical
for identifying risks, ensuring compliance with regulations, and offering personalized
financial services.

In life sciences, graph databases play a significant role in drug discovery, genomics, and
protein analysis. They are used to model complex biological systems and relationships,

102 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

such as gene interactions, protein pathways, and patient data, assisting in research and
the development of personalized medicine.

In each of these domains, the key advantage of graph databases lies in their ability to
naturally represent complex networks and relationships. This allows for more intuitive
data modeling, faster querying, and the extraction of insights that would be difficult or
impossible to obtain with traditional relational databases.

4.3 Graph Database Languages
In contrast to the standardized SQL language for relational databases, graph databases
use various query languages designed to leverage their unique structure and efficiently
handle complex queries that involve interconnected data. One of the more prominent
ones is the Cypher language, introduced and primarily used in the Neo4j graph database
system since 2011 but opened for use in other systems in 2015 as the openCypher
project. It is a declarative language1, known for its expressive and readable syntax
tailored for describing patterns in graphs. Cypher allows for easy querying of nodes,
relationships, and paths and includes powerful features for filtering, pattern matching,
and aggregating data.

Another notable query language is Gremlin, part of the Apache TinkerPop graph com-
puting framework. Development began in 2009 and is ongoing. Gremlin is versatile
and functional, allowing for imperative and declarative querying across different graph
databases. It is known for its flexibility and ability to execute both simple and complex
traversals, making it suitable for a wide range of applications.

SPARQL (a recursive acronym for ”SPARQL Protocol and RDF Query Language”)
is a query language used primarily for querying RDF (Resource Description Frame-
work) data, often found in semantic web applications. Its development is overseen and
standardized by the W3C (World Wide Web Consortium), beginning in 2008 with a
major update in 2013. It is particularly suited to querying and manipulating data stored
in RDF format, and is widely used in applications that require linking diverse data
sources, such as knowledge graphs.

Additionally, some graph databases support SQL-like query languages with extensions
to handle graph-specific structures. These languages make it easier for users familiar
with SQL to transition to graph databases. An example is GraphQL, developed by
Facebook in 2015.

The lack of a standard query language in the graph database realm has led to frag-
mentation. This fragmentation can pose challenges for users and developers, such as a
steeper learning curve and difficulty in transitioning between different graph database
systems. In response, the forthcoming standardized GQL (Graph Query Language) is
a new graph query language specifically designed for interacting with graph databases.

1A declarative query language allows the user to specify what data to retrieve. In contrast, an impera-
tive/procedural query language requires the user to specify how to retrieve data.

4.4. THE NEO4J GRAPH DATABASE MANAGEMENT SYSTEM 103

The development of GQL is overseen by ISO/IEC JTC 1, the same joint technical com-
mittee responsible for the SQL standard. Its design is expected to draw on the strengths
of existing languages, offering robust features for graph traversal, pattern matching, and
manipulation of graph structures while maintaining readability and ease of use. A first
version of the GQL standard was expected for 2023.

4.4 The Neo4j Graph Database Management System

Cypher is the query language for Neo4j, one of the most popular graph database sys-
tems. It was specifically designed for querying the graph data in Neo4j, making it
easy to work with complex graph structures. Cypher’s syntax is intuitive and expres-
sive, focusing on the clarity of graph patterns and drawing inspiration from SQL and
other declarative query languages. Its pattern matching approach was styled after the
SPARQL language. Key characteristics and features of Cypher include:

• Graph Pattern Matching: Cypher provides the ability to expressively describe
graph patterns. It uses a syntax where nodes and relationships in the graph are
depicted using parentheses (representing nodes) and arrows (representing rela-
tionships). This makes it visually intuitive to understand the queries and the
graph patterns they represent.

• Rich Filtering Capabilities: Cypher includes robust filtering capabilities, en-
abling users to write queries that can filter nodes and relationships based on
various criteria, including properties and patterns.

• Aggregation and Sorting: Like SQL, Cypher allows for aggregating data, per-
forming calculations, and sorting results. It provides functions for counting,
summing, averaging, and other common aggregations.

• Pathfinding and Graph Algorithms: Cypher can handle common graph queries
such as shortest path, reachable nodes, and more.

• Subqueries and Joins: Cypher supports subqueries and various forms of joins,
enabling complex queries that can span multiple parts of the graph.

• Extensibility: Cypher can be extended with user-defined procedures and func-
tions, allowing for custom logic and advanced processing capabilities.

Similar to SQL queryies, Cypher queries have multiple clauses, specifying a ”query
pipeline” for selecting, filtering, and sorting data. Unlike SQL, Cypher queries allow
graph reading and graph updating in the same Cypher statement.

Neo4j offers a number of options for running the Neo4j database management sys-
tem, among them a limited developer version called ”Neo4j desktop” and a free, open-
source community edition that is usually accessed through a web interface (”Neo4j
browser”). Table 4.1 provides links to useful documentation of the Neo4j database and
the Cypher language.

104 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

Getting Started https://neo4j.com/docs/getting-started/

Cypher Manual https://neo4j.com/docs/cypher-manual

Graph Data Science https://neo4j.com/docs/graph-data-science

APOC Library https://neo4j.com/docs/apoc/current/

Use Cases https://neo4j.com/use-cases/

Resources https://neo4j.com/resources/

Table 4.1: Neo4j Documentation

Figure 4.1: Neo4j Browser interface

The community edition is installed in the course virtual machine and enabled to
run when the machine is started. You can access Neo4j Browser (Figure 4.1) at
http://localhost:7474 with the username ”neo4j” and the password
”busi4720”.

4.5 Introduction to Cypher
Nodes Figure 4.2 shows how nodes and relationships are represented in the Cypher
syntax. In Neo4j, nodes may be labelled with zero, one, or more labels. Labels are
not types; a label does not specify anything about the information associated with a
node, it merely serves to categorize or classify nodes. Nodes may have properties,
specified as key–value pairs in JSON syntax. Graph nodes are written with normal
round parentheses, with the set of their properties in curly brackets. Both the variable
name for the node and the node labels are optional.

(variable : Label1:Label2:Label3 ... {k1:v1, k2:v2, k3:v3})

https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/cypher-manual
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/apoc/current/
https://neo4j.com/use-cases/
https://neo4j.com/resources/
http://localhost:7474

4.5. INTRODUCTION TO CYPHER 105

https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

Figure 4.2: Sample Cypher syntax

Relationships Relationships are directed connections between two nodes. Unlike
nodes, relationships only have a single label. But like nodes, they can have properties
specified as key–value pairs in JSON syntax. Relationships are written as ”lines” be-
tween nodes, directed or undirected, with an optional variable name and relationship
label in square brackets.

// Undirected, used in pattern
()-[variable : Label]-()
// Directed
()-[variable : Label]->()
// Directed
()<-[variable : Label]-()
// Unlabelled, no variable
()-[]-()
()-->()
()<--()

Only directed relationships can be created in a Neo4j graph, but undirected
relationships can be used in a pattern to query a graph.

Directionality of relationships is important and matters for querying a graph.
A directed relationship -> will match a directed pattern -> or an undirected
pattern - but not <-.

Path A path in Neo4j is a sequence of alternating nodes and relationships, beginning
and ending with a node.

Patterns and Querying Graph patterns are used with the MATCH query keyword
and describe either a node or a path that is to be searched for in the graph. When
an instance of a pattern is found, any variable names in the pattern are bound to the

https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

106 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

corresponding nodes and relationship in the graph and the bound pattern is returned in
the result set.

For example, consider the following simple pattern matching query. The MATCH clause
specifies the pattern to match. The pattern here is a node, indicated by the use of round
parentheses, and only a variable name n is specified, no labels or property values. This
means that this pattern matches all nodes in the graph database and returns them in the
variable names n.

MATCH (n)

The next pattern matching query adds a label Person to the node specification. This
means the pattern matches only those nodes that are labelled as Person and returns
them in the variable named p.

MATCH (p:Person)

Patterns can include property values to match. The following pattern matches all Per-
son nodes that contain an attribute name with value ’Joe’ and returns them in the
variable p.

MATCH (p:Person {name: 'Joe'})

4.6 Defining Graphs in Cypher

Nodes or relationships in a graph can be created using the MERGE or CREATE state-
ments in Cypher. As the name indicates, CREATE will create a node or relationship.
In contrast, MERGE will check whether the node or relationship exists and only cre-
ate it when it does not yet exist in the graph. Consider the example graph shown in
Figure 4.3. The following Cypher codes creates this graph:

4.6. DEFINING GRAPHS IN CYPHER 107

https:
//neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

Figure 4.3: Example graph

// Create nodes
MERGE (j:Person {name: "John"})
ON CREATE SET j.age = 27

MERGE (s:Person {name: "Sally"})
ON CREATE SET s.age = 32

MERGE (b:Book {title: "Graph Databases"})
ON CREATE SET b.authors = ["Jim Webber", "Ian Robinson"]

// Create relationships
MERGE (j)-[rel1:IS_FRIENDS_WITH]->(s)
ON CREATE SET rel1.since = "01/09/2013"

MERGE (j)-[rel2:HAS_READ]->(b)
ON CREATE SET rel2.on = "02/03/2013", rel2.rated = 5

MERGE (s)-[rel3:HAS_READ]->(b)
ON CREATE SET rel3.on = "02/09/2013", rel3.rated = 4

Note that the six MERGE statements in the above code block are logically related, so
that variable names, for example j, b and s, in one MERGE clause can be used to
refer to a new node or relationship in a later MERGE clause. While using variable
names in a MERGE clause is not mandatory, it is more efficient than having to later
query the graph data for a particular node when creating subsequent relationships. The
ON CREATE SET clause in the above statements sets one or more property values
(separated by commas) of the newly created nodes and relationships. Note that some
properties are lists, such as the authors property, indicated by the square brackets of
the JSON notation.

The following MATCH queries can be used to view all nodes and relationships, irre-
spective of their labels. The first MATCH clause matches all nodes and returns them,

https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

108 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

the second MATCH clause matches all relationships between any two nodes and re-
turns the relationships, the final query matches any two nodes that are connected by a
relationship and returns the set of triples of first node, second node, and relationship.

// Query nodes
MATCH (n) RETURN n

// Query relationships
MATCH ()-[r]-() RETURN r

// Query both together
MATCH (n1)-[r]-(n2) RETURN n1, r, n2

The Neo4j Browser interface allows graph visualization and visual exploration of nodes,
relationships, and their properties, as shown in Figure 4.4.

Figure 4.4: Graph Visualization and Exploration in Neo4j Browser

Hands-On Exercise

Consider the following description:
”You are completing the course BUSI 4720 in this semester with a
final grade of 100. BUSI 4720 is part of the BCom program where
it is offered in the 4th year. BUSI 4720 carries 3 credit hours of
academic credit. It is a course on the topic of Business Analytics.”

Define a graph in Cypher that represents this description:
1. Identify nodes, relationships, and properties of nodes and relationships
2. Use CREATE or MERGE statements to create nodes first, then relation-

ships
3. Use MATCH to verify your graph is correct.

To remove nodes and relationships from a graph, use the MATCH query clause together
with a DELETE clause. For example, to clean and remove the Person and Book nodes
and relationships between Person and Book nodes created in the previous exercise, use
the following Cypher statements:

4.7. GRAPH DATA MODELING 109

https://neo4j.com/docs/getting-started/
_images/modeling_genre_property-arr.svg

(a) Model as property
https://neo4j.com/docs/getting-started/
_images/modeling_genre_node-arr.svg

(b) Model as relationship

Figure 4.5: Equivalent graph models of movie genres

MATCH (:Person|Book)-[r]-(:Person|Book) DELETE r;
MATCH (n:Person|Book) DELETE n;

To remove all relationships and nodes, irrespective of their label, omit node or rela-
tionship labels, as in the following Cypher code block. Use with care as this deletes all
data in the graph database.

MATCH ()-[r]-() DELETE r;
MATCH (n) DELETE n;

4.7 Graph Data Modeling
When defining a graph, one frequent question is whether to model something as a
property of a node or as a relationship to a node. While there is no generally right or
wrong answer to this question, the choice of data model depends on the queries to be
run against the data, that is, the type of questions that will be asked.

Nodes versus Relationships
Consider the two graph models in Figures 4.5a and 4.5b. Both depict the same fact,
that there exists a movie with title ”The Matrix” in two genres, ”Action”, and ”Sci-Fi”.
Figure 4.5a models the genres as a property of list type, that contains multiple entries
in the list. In contrast, Figure 4.5b models the genres as nodes and the fact that the
movie is in a genre as a relationship between the movie node and a genre node.

The graph model in Figure 4.5a is particularly useful to find the genres for a particular
movie, that is, it is useful for queries that focus on the nodes and their properties.

https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg

110 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

However, this model makes it difficult, cumbersome, and inefficient to find movies
that share genres. The system has to consider all pairs of movies, and then for each
pair of movies iterate through each of their property lists. The following two queries
exemplify this. The first query simply filters the Movie nodes for a particular title and
returns the genre attribute of the Movie node.

The second query first identifies all pairs of Movie nodes in the MATCH clause, then
uses the WHERE clause to filter those pairs that share entries in their genre attribute. Re-
call that the genre attributes are lists, so x IN m1.genre WHERE x IN m2.genre
checks every element of the second list for every element of the first list.

// find the genres for a particular movie
MATCH (m:Movie {title:"The Matrix"})
RETURN m.genre;

// find which movies share genres
MATCH (m1:Movie), (m2:Movie)
WHERE any(x IN m1.genre

WHERE x IN m2.genre)
AND m1 <> m2
RETURN m1, m2;

The graph model in Figure 4.5b on the other hand requires a more complex query
to find the genres of the movie. However, while more complex, it no less efficient
than the corresponding query for the other model above. On the other hand, the query
to find movies that share genres becomes easier, more intuitive to write, and more
computationally efficient, as the following Cypher queries show.

The first query uses MATCH to first select movies and filter on the movie name, then
for that movie m it traverses the IN_GENRE relationship to identify all related Genre
nodes g in order to return their names. The second query is more intuitive than the
corresponding query for the other model. It finds two Movie nodes m1 and m2 that
both have an IN_GENRE relationship that points to the same Genre node g.

// find the genres for a particular movie
MATCH (m:Movie {title:"The Matrix"}),

(m)-[:IN_GENRE]->(g:Genre)
RETURN g.name;

// find which movies share genres
MATCH (m1:Movie)-[:IN_GENRE]->(g:Genre),

(m2:Movie)-[:IN_GENRE]->(g)
RETURN m1, m2, g

In summary, neither way of modeling the facts is better or worse, but the two options
are more suitable to different types of queries and data to be retrieved.

4.7. GRAPH DATA MODELING 111

https://neo4j.com/docs/getting-started/_images/modeling_airport_flights-arr.svg

(a) Airports and their relationship

https:
//neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

(b) Modeling days as relationship labels

Figure 4.6: Graph models of airports and flights

Labels versus Attributes
Consider the two graph models in Figures 4.6a and 4.6b. The two models demonstrate
the flexibility of modeling connected data and using labels to simplify queries and make
them more efficient.

Figure 4.6a shows Airport nodes connected by :FLYING_TO relationships that
indicate that a flight exists from one to the other airport. Information about flights is
modelled as properties of the relationship. However, noting that multiple flights may
be offered each day, it is clear that a flight node is required to represent each of those
flights, with a node property that represents the date of the flight. However, when
querying such a model for flights on a particular date, the system must examine all
flight nodes, and then filter those with the appropriate property value for the data.

A more efficient model is that shown in Figure 4.6b. Here, the date of the flight is
modelled as a label for the relationship between Airport and AirportDay nodes,
which allows the system to easily select only those flights that occur on a certain date
without having to examine all flight nodes.

This example shows again that the queries to be run against the data have a strong

https://neo4j.com/docs/getting-started/_images/modeling_airport_flights-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

112 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

impact on how best to model your data, here affecting the decision whether to model
data as an attribute or a label.

Relational Model and Graph Model
The relational data model consists of tables, their columns, and foreign key relation-
ships that link tables (Figure 4.7a). It is straightforward to translate such a model to a
graph model using the following translation heuristics:

• Table names become node labels

• Rows of data become nodes

• Columns become node properties

• Foreign keys become relationships between nodes

• Join tables become relationships between nodes; their properties become rela-
tionship properties

• Null values do not become properties, they are omitted entirely

Applying these heuristics to the example in Figure 4.7a leads to the graph model in
Figure 4.7b. The table names ”Employee” and ”Department” have become node labels
for two different categories of nodes. Each row in the employee table (for example,
employee 815 with name Alice) is represented as a node with label Person, and each
department (for example, department 111 with name 4Future) is a node with label
Department. The column names, the ”name” column in the Employees table and
the ”deptName” column in the Departments table, have become properties of the cor-
responding nodes. The ”Dept_Members” table joins employees and departments and
has been transformed into the relationship with label BELONGS_TO between Person
and Department nodes. The ”Dept_Members” table had no columns other than
those participating in the foreign key relations, but if it had, those columns would be
attributes on the BELONGS_TO relationship.

Applying these heuristics should only be considered as an initial translation. As seen
above, some or all properties may well be represented as nodes in their own right
(Figure 4.5) or be modelled as relationship labels (Figure 4.6), depending on the type
of queries expected to be run against the graph data.

Pagila Database Example As an example, each table of the Pagila relational database
from the previous chapter was exported from PostgreSQL to a CSV file. These CSV
files can be imported into Neo4j with the following set of Cypher expressions. Note
that not all data is imported in this example, and a more compact representation of the
statements is possible.

The Pagila database is already imported into the Neo4j Community Edition in
the course virtual machine.

4.7. GRAPH DATA MODELING 113

https://neo4j.com/docs/getting-started/_images/relational_model.svg

(a) A relational model

https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.svg

(b) An equivalent graph model

Figure 4.7: Transforming relational data to graph data

load csv with headers from 'file:///actor.csv' as row
merge (actor:Actor {actorID: row.actor_id})
on create set actor.firstName = row.first_name
on create set actor.lastName = row.last_name;

load csv with headers from 'file:///address.csv' as row
merge (address:Address {addressID: row.address_id})
on create set address.address = row.address
on create set address.district = row.district
on create set address.postalCode = row.postal_code
on create set address.phone = row.phone;

load csv with headers from 'file:///category.csv' as row
merge (category:Category {categoryID: row.category_id})
on create set category.name = row.name;

load csv with headers from 'file:///city.csv' as row

https://neo4j.com/docs/getting-started/_images/relational_model.svg
https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.svg

114 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

merge (city:City {cityID: row.city_id})
on create set city.city = row.city;

load csv with headers from 'file:///country.csv' as row
merge (country:Country { countryID: row.country_id})
on create set country.country = row.country;

load csv with headers from 'file:///customer.csv' as row
merge (customer:Customer { customerID: row.customer_id})
on create set customer.firstName = row.first_name
on create set customer.lastName = row.last_name
on create set customer.email = row.email;

load csv with headers from 'file:///film.csv' as row
merge (film:Film { filmID: row.film_id})
on create set film.title = row.title
on create set film.releaseYear = toInteger(row.release_year)
on create set film.rentalDuration = toInteger(row.rental_duration)
on create set film.rentalRate = toFloat(row.rental_rate)
on create set film.length = toInteger(row.length)
on create set film.rating = row.rating;

load csv with headers from 'file:///inventory.csv' as row
merge (inventory:Inventory { inventoryID: row.inventory_id });

load csv with headers from 'file:///language.csv' as row
merge (language:Language { languageID: row.language_id })
on create set language.name = row.name;

load csv with headers from 'file:///payment.csv' as row
merge (payment:Payment { paymentID: row.payment_id })
on create set payment.amount = toFloat(row.amount)
on create set payment.paymentDate = row.payment_date;

load csv with headers from 'file:///rental.csv' as row
merge (rental:Rental { rentalID: row.rental_id })
on create set rental.rentalDate = row.rental_date
on create set rental.returnDate = row.return_date;

load csv with headers from 'file:///staff.csv' as row
merge (staff:Staff { staffID: row.staff_id })
on create set staff.firstName = row.first_name
on create set staff.lastName = row.last_name
on create set staff.email = row.email;

load csv with headers from 'file:///store.csv' as row
merge (store:Store { storeID: row.store_id });
//
// Foreign keys
//
load csv with headers from 'file:///address.csv' as row
match (address:Address { addressID: row.address_id})
match (city:City { cityID: row.city_id})
merge (address)-[r:ADDRESS_CITY]->(city);

load csv with headers from 'file:///city.csv' as row
match (city:City { cityID: row.city_id})

4.7. GRAPH DATA MODELING 115

match (country:Country { countryID: row.country_id })
merge (city)-[r:COUNTRY_OF_CITY]->(country);

load csv with headers from 'file:///customer.csv' as row
match (customer:Customer { customerID: row.customer_id})
match (store:Store {storeID: row.store_id})
match (address:Address { addressID: row.address_id})
merge (customer)-[r1:CUSTOMER_STORE]->(store)
merge (customer)-[r2:CUSTOMER_ADDRESS]->(address);

load csv with headers from 'file:///film.csv' as row
match (language:Language { languageID: row.language_id})
match (film:Film { filmID: row.film_id})
merge (film)-[r:FILM_LANGUAGE]->(language);

load csv with headers from 'file:///inventory.csv' as row
match (inventory:Inventory { inventoryID: row.inventory_id})
match (film:Film { filmID: row.film_id})
match (store:Store { storeID: row.store_id})
merge (store)-[r1:STORE_INVENTORY]->(inventory)
merge (film)-[r2:FILM_INVENTORY]->(inventory);

load csv with headers from 'file:///payment.csv' as row
match (payment:Payment { paymentID: row.payment_id})
match (customer:Customer { customerID: row.customer_id})
match (staff:Staff { staffID: row.staff_id})
match (rental:Rental { rentalID: row.rental_id})
merge (payment)-[r1:PAYMENT_CUSTOMER]->(customer)
merge (payment)-[r2:PAYMENT_STAFF]->(staff)
merge (payment)-[r3:PAYMENT_RENTAL]->(rental);

load csv with headers from 'file:///rental.csv' as row
match (rental:Rental {rentalID: row.rental_id})
match (inventory:Inventory {inventoryID: row.inventory_id})
match (customer:Customer {customerID: row.customer_id})
match (staff:Staff {staffID: row.staff_id})
merge (rental)-[r1:RENTAL_INVENTORY]->(inventory)
merge (rental)-[r2:RENTAL_CUSTOMER]->(customer)
merge (rental)-[r3:RENTAL_STAFF]->(staff);

load csv with headers from 'file:///staff.csv' as row
match (staff:Staff {staffID: row.staff_id})
match (address:Address {addressID: row.address_id})
match (store:Store {storeID: row.store_id})
merge (staff)-[r1:STAFF_ADDRESS]->(address)
merge (staff)-[r2:STAFF_STORE]->(store);

load csv with headers from 'file:///store.csv' as row
match (store:Store {storeID: row.store_id})
match (staff:Staff {staffID: row.manager_staff_id})
match (address:Address {addressID: row.address_id})
merge (store)-[r1:STORE_MANAGER]->(staff)
merge (store)-[r2:STORE_ADDRESS]->(address);
//
// Join tables for foreign keys
//
load csv with headers from 'file:///film_actor.csv' as row

116 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

Figure 4.8: The Pagila database in Neo4j Browser

match (actor:Actor {actorID: row.actor_id})
match (film:Film {filmID: row.film_id})
merge (actor)-[r:ACTS_IN]->(film);

load csv with headers from 'file:///film_category.csv' as row
match (film:Film {filmID: row.film_id})
match (category:Category {categoryID: row.category_id})
merge (film)-[r:FILM_CATEGORY]->(category);

Importing the Pagila database takes about 10 minutes and will yield a graph that can
be explored visually using Neo4j Browser using the following Cypher command that
calls a built-in function for visualizing the database schema. A screen shot of the visual
explorer is shown in Figure 4.8.

CALL db.schema.visualization()

When importing from files, or exporting to files, Neo4j Community Edi-
tion uses the the /var/lib/neo4j/import/ directory on the server.
Files to import must be placed in that directory, and exported files will
be created there. Additionally, any scripts to be run by calling CALL
apoc.cypher.runFile() must be located in that directory.

4.8. GRAPH QUERIES WITH CYPHER 117

4.8 Graph Queries with Cypher
This section introduces the syntax of Cypher queries using example queries for the
Pagila database as imported in the previous section.

Example: Find actors by last name, limit to 10.

MATCH (a:Actor)
RETURN a.firstName, a.lastName
ORDER BY a.lastName DESC
LIMIT 10;

The Cypher code above shows basic node label matching in the MATCH clause, return-
ing a selection of node properties using the RETURN clause, ordering and limiting the
result set using the ORDER BY and LIMIT clause, which are analogous to the SQL
clauses with the same names.

Example: Find films whose title starts with a ’T’ and that have a rental rate less than
3, sort by film title, limit to 10.

MATCH (f:Film {rating: "PG"})
WHERE (f.title STARTS WITH "T") AND (f.rentalRate < 3)
RETURN f.title, f.rating, f.rentalRate
ORDER BY f.title ASC LIMIT 10;

The Cypher code above introduces note matching on labels and properties and filterung
using a WHERE clauses. Two conditions are combined using the AND word. Note that
the matching on the rating property value of ’PG’ could also have been incorportated
into the WHERE clause, but not all WHERE clause conditions can always be moved to
the node property specification in the MATCH clause and queries may be more readable
when using a WHERE clause.

Example: Find rental datas and customer names of customers that live in India.

MATCH (r:Rental)
-[:RENTAL_CUSTOMER]->(c)
-[:CUSTOMER_ADDRESS]->()
-[:ADDRESS_CITY]->()
-[:COUNTRY_OF_CITY]->(ct {country: "India"})

RETURN c.firstName, c.lastName, r.rentalDate LIMIT 5

This example introduces matching of paths that contain multiple nodes and multiple
relationships. In the above query, the types or labels or nodes and relationships are

118 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

Figure 4.9: Exploring relationships among nodes in Neo4j Browser

specified, but because no properties of the intermediate nodes or relationships are to be
returned, they do not need to be bound to query variables.

Hands-On Exercise

Write a Cypher query to find all customers that have rented a film with rating
”PG”:

1. Explore the graph visually in Neo4j browser, note the relationship types
(see Figure 4.9)

2. Consider the path from customer to film via rental and inventory
3. Design a pattern that starts with a customer node and ends with a film

node
4. Define an appropriate WHERE clause of property restrictions in node pat-

terns

Example: Find the mean and standard deviation of rental payments by country.

4.8. GRAPH QUERIES WITH CYPHER 119

MATCH (p:Payment)
-[:PAYMENT_RENTAL]->(r:Rental)
-[:RENTAL_CUSTOMER]->(c)
-[:CUSTOMER_ADDRESS]->()
-[:ADDRESS_CITY]->()
-[:COUNTRY_OF_CITY]->(ct)

WITH ct,
avg(p.amount) AS amountMean,
stDev(p.amount) AS amountSD

RETURN ct.country, amountMean, amountSD
ORDER BY amountMean DESC LIMIT 5

This example introduces aggregation. In contrast to aggregation in SQL where group-
ing variables must be declared in the GROUP BY cluase, grouping in Cypher is implicit
and uses all non-aggregated variables. In the following example, the non-aggregated
variables is ct (the country). The query also introduces the aggregation functions
avg() and stDev() that compute the average and standard deviation, respectively.
More information of aggregation functions can be found in the Neo4j documentation2.

Example: Find the sets of last names of the movie cast, and the total number of
actors.

MATCH (a:Actor)-[:ACTS_IN]->(f:Film)
RETURN f.title,

collect(a.lastName) AS cast,
count(*) AS numActors;

This example introduces aggregation into collections (lists) using the collect()
function. The query returns a list of actor last names as cast, together with the count
of actors that act in each movie. Grouping happens implicitly for each variable not
aggregated. In this example, that is the variable f, representing the film.

Example: Find the set of film titles by rental customer and the number of rentals.

MATCH (f:Film)-[:FILM_INVENTORY]-()
-[:RENTAL_INVENTORY]-(r:Rental)
-[:RENTAL_CUSTOMER]->(c:Customer)

RETURN c.lastName,
collect(f.title) AS filmRentals,
count(*) AS numRentals;

This example also uses aggregation with collection and a slightly more complex graph
pattern in the MATCH clause3.

2https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
3From https://neo4j.com/docs/getting-started/cypher-intro/results/

https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
https://neo4j.com/docs/getting-started/cypher-intro/results/

120 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

Example: Find the set of rental customers for each film and the rental count.

MATCH (f:Film)-[:FILM_INVENTORY]-()
-[:RENTAL_INVENTORY]-(r:Rental)
-[:RENTAL_CUSTOMER]->(c:Customer)

RETURN DISTINCT f.title,
collect(c.lastName" "+left(c.firstName,1)+".") AS custNames,
count(*) as rentalCount

This example introduces string functions and operators. Strings can be concatenated
with the ”+” operator. The function left(., n) returns the leftmost segment of n
characters of the string. In contrast to the last query, here the collection creates a list
of customers, grouped by films, rather than films, grouped by customer. The query
also introduces the DISTINCT key word that limits the result set to unique values of a
variable.

Example: Find the customers who rent films that are in inventory at multiple stores.

MATCH (c:Customer)<-[:RENTAL_CUSTOMER]-(r:Rental)
-[:RENTAL_INVENTORY]-()
-[:FILM_INVENTORY]-(f:Film)

WITH c, count{
MATCH (f)-[:FILM_INVENTORY]-()

-[:STORE_INVENTORY]-(s:Store)
RETURN DISTINCT s.storeID } AS storeNum

WHERE storeNum > 1
RETURN DISTINCT
c.lastName+" "+left(c.firstName,1)+"." AS custName,
storeNum

This example introduces sub-queries and the WITH clause. The WITH clause intro-
duces elements that will be passed to subsequent clauses. In this example, the result of
the subquery within the { ...} function is passed on in the variable storeNum in
the ”outer” query. This is then used in the WHERE clause of the outer query.

Example: Find Christian Akroyd’s co-actors.

MATCH (a:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
-[:ACTS_IN]->(f:Film)<-[:ACTS_IN]-(coActors)

RETURN coActors.firstName+" "+coActors.lastName AS Name;

This query example emphasizes path matching from a given node. Note the second
ACTS_IN relationship is traversed in reverse order, it’s arrow points ”left”.

4.8. GRAPH QUERIES WITH CYPHER 121

Example: Movies and actors up to 2 ”hops” away from Christian Akroyd.

MATCH (a:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
-[:ACTS_IN*1..2]-(others:Actor)

RETURN distinct others;

This query introduces quantified relationships. In the example, the ACTS_IN relation-
ship may be traversed between 1 and 2 two times on the way to other actor nodes. Note
that no Film nodes or other relationships need to be specified here.

Example: The shortest path of an acts-in relationship between Christian Akroyd and
Charlize Dench.

MATCH path=shortestPath(
(a1:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
-[:ACTS_IN*]-(a2:Actor {firstName:"CHARLIZE", lastName:"DENCH"}))

RETURN path;

This query introduces the use of built-in functions. In this case, the built-in func-
tion shortestPath() is a graph-theoretic function that computes the shortest path
along ACTS_IN relationships between two specific nodes. Graph databases are par-
ticularly useful and efficient for queries on such graph-theoretic functions, which are
very difficult to express in SQL.

Example: Find actors that Christian Akroyd hasn’t yet worked with, but his co-actors
have. Extend Christian Akroyd’s co-actors, to find co-co-actors who haven’t worked
with him.

MATCH (a1:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
-[:ACTS_IN]->(m)<-[:ACTS_IN]-(coActors),

(coActors)-[:ACTS_IN]->(m2)<-[:ACTS_IN]-(cocoActors)
WHERE NOT (a1)-[:ACTS_IN]->()<-[:ACTS_IN]-(cocoActors)

AND a1 <> cocoActors
RETURN cocoActors.firstName+" "+

cocoActors.lastName AS Recommended,
count(*) AS Strength

ORDER BY Strength DESC

This query example introduces the use of multiple patterns in the MATCH clause that
are separated by commas and are related in the sense that variables in one can be used
in the other and refer to the same node or relationship. The two patterns in the MATCH
clause are connected through the shared variable coActors. Note also that traversal
direction of the various relationships. Finally, this example also introduces the use
of patterns in the WHERE clause, allowing more complex filters on the results. The

122 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

patterns in the WHERE clause are also logically related to the patterns in the MATCH
clause, in this example they share the variable cocoActors.

Example: Find someone who can introduce Christian Akroyd to Susan Davis.

MATCH (a1:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
-[:ACTS_IN]->(m)<-[:ACTS_IN]-(coActors),

(coActors)-[:ACTS_IN]->(m2)
<-[:ACTS_IN]-(a2:Actor {firstName:"SUSAN", lastName:"DAVIS"})

RETURN a1, m, coActors, m2, a2

The example is similar to the one above with its use of multiple path patterns in the
MATCH clause. The query finds common co-actors of two named actors. Note the
traversal directions of the relationships.

Hands-On Exercises

The following hands-on exercises are designed to familiarize you with the
Cypher language and use the Pagila database.

1. Are there two customers that have the same address?
2. Which customers have rented the same set of films?
3. Find all films with a single actor
4. Calculate the rental revenue per customer. Who are the top 5? Bottom

5?
5. Calculate the rental counts for each country of customer. Are there coun-

tries with no rentals?
6. Create a graph that represents a product hierarchy.

4.9 Review Questions
1. What is a graph database, and how does it differ from traditional relational

databases?
2. Describe the different data models used in NoSQL databases. How does the

graph model specifically cater to certain types of data and applications?
3. Explain how data is represented in a graph database. What are nodes and rela-

tionships?
4. List and explain the key benefits of using graph databases over traditional rela-

tional databases.
5. How do graph databases handle relationships differently, and why is this advan-

tageous for certain applications?
6. Give examples of specific industries or applications where graph databases are

particularly useful. Explain why a graph database is chosen over other types of
databases in these scenarios.

4.9. REVIEW QUESTIONS 123

7. What are some of the prominent query languages used with graph databases?
Briefly describe their unique features.

8. How does Cypher, the query language for Neo4j, compare to SQL in terms of
syntax and capabilities?

9. Discuss the characteristics of Cypher as a query language. How does it enable
efficient querying and manipulation of graph data?

10. Reflect on a scenario or a problem where you think a graph database would be
more effective than a traditional relational database. Explain your reasoning.

11. Describe what a node represents in Neo4j and how it is represented in Cypher
syntax.

12. Explain how properties are associated with nodes in Neo4j. Give an example
using Cypher syntax.

13. Discuss the significance of relationship directionality in Neo4j. What is the dif-
ference between directed and undirected relationships in querying?

14. Define what a ’pattern’ is in Cypher and its role in querying the graph database.
15. Provide an example of a simple Cypher pattern and explain what it matches in

the graph.
16. Differentiate between the ‘CREATE‘ and ‘MERGE‘ statements in Cypher. Un-

der what circumstances would you use each?
17. Give an example of how to create a node with multiple labels and properties

using Cypher.
18. How would you create a relationship between two nodes, including setting prop-

erties on the relationship?
19. Explain the difference between modeling data as a property of a node versus as

a separate node connected by a relationship. Give an example to illustrate your
point.

20. In the context of Neo4j, why might it be more efficient to model certain data as
relationships between nodes rather than as properties of a single node? Provide
an example where this is the case.

21. Given a graph model where movie genres are modeled as properties of a movie
node, what are the limitations of this approach when trying to find movies with
shared genres?

22. Describe the process of translating a relational data model into a graph model in
Neo4j.

124 CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES

Chapter 5

Introduction to Data
Management with R

Learning Goals
After reading this chapter, you should be able to:

• Create and manipulate basic data structures in R, including arrays, matrices, and
data frames.

• Create summary information from R data frames and other data structures.

• Use the Tidyverse packages to retrieve information from R data frames, includ-
ing filtering, grouping, and aggregation of information.

• Use SQL to operate on R data frames to retrieve information, including filtering,
grouping, and aggregation of information.

5.1 Introduction
R is a highly acclaimed statistical software and programming language known for its
robust capabilities in data analysis, visualization, and statistical computing. It was
conceived in the early 1990s by Ross Ihaka and Robert Gentleman at the University of
Auckland, New Zealand. Drawing inspiration from the S language developed at Bell
Laboratories, R was designed to be a powerful and flexible tool for data analysis and
statistical modeling.

One of the key advantages of R is its open-source nature, making it freely available
to users worldwide. This accessibility has fostered a vibrant community of users and
developers, continuously enhancing its functionality through comprehensive packages
and extensions. The Comprehensive R Archive Network (CRAN), a repository of these

125

126 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

Figure 5.1: The R command line interface

packages, is a testament to R’s extensible architecture, offering tools for a myriad of
data analysis tasks.

R’s popularity stems not only from its wide range of statistical techniques, includ-
ing linear and nonlinear modeling, time-series analysis, classification, clustering, and
others, but also from its exceptional capabilities in data visualization. The software
provides an integrated suite of tools for data manipulation, calculation, and graphical
display, making it an invaluable asset for statisticians, researchers, and data scientists.

Moreover, R’s programming language aspect allows for automation and customization
in data analysis, which is highly beneficial for complex and repetitive tasks. Its com-
patibility with various data formats and integration with other programming languages
and tools further enhances its versatility.

5.2 Using R
R is a command-line oriented software, that is, users type commands to perform calcu-
lations or call functions of R packages. A sequence of R commands can be assembled
in a script file, so that they may be re-run when necessary. The advantage of this type of
software over one with a graphical user interface is in the repeatability and replicability
of the work. Ideally, data analysts will assemble an R script file for their entire data
analysis, from raw data sets to finished statistical analyses and visualizations, so that
all details of the analysis are available for replication and evaluation.

The R system can be launched simply by invoking the R command from the terminal
window, as shown in Figure 5.1. R will display its version information and prompt for
command entry with a > prompt.

5.3. R BASICS 127

To install R on Microsoft Windows or on MacOS, download the installation files from
CRAN (Comprehensive R Archive Network) at https://cran.r-project.org
and follow the instructions. R on Microsoft Windows and R on MacOS will show their
command prompts inside a window but otherwise function similarly to R on Ubuntu
that is installed in the course virtual machine.

Tip: A good, easy, and comprehensive introduction to R can be found here:
https://cran.r-project.org/doc/manuals/r-release/
R-intro.pdf

Tips for working efficiently with R: To make using R more efficient, con-
sider doing the following:

• Use the up-arrow key to retrieve earlier commands.
• The history() function shows your command history.
• Use a notepad app to assemble your commands, then copy/paste to R.
• Use a notepad app for your results, copy/paste from R.
• The Ubuntu terminal window uses SHIFT-CTRL-X , SHIFT-CTRL-C ,

SHIFT-CTRL-V for cut/copy/paste.
• Use multiple terminal and R windows (e.g. one for executing commands,

one for reading help documentation or for listing files).
• Don’t update packages in the middle of a project.
• Ensure you have a repeatable, automatable script for your entire data

analysis at the end of a project.

5.3 R Basics
The most basic way to use R is to simply use it as a calculator, as shown in the following
R code example. Type ”1+1” at the ”>” prompt, then press the RETURN key to
execute the statement. R will respond on the following line with the result:

> 1+1
[1] 2

A variable in R is a named storage space for numbers, characters, strings, and other
data elements. Traditionally, values are assigned to variables using the <- operator, but
one may also use the more ”normal” assignment operator =. Using the <- assignment
operator helps to clearly distinguish assignment from equality testing, which uses ==.

The following R code example introduces the R function called print() that does as
its name suggests. Most data types and data structures that can be assigned to variables
have a useful print function associated to them, so that on the interactive R command
line you can simply type their name to get their value. In interactive mode, R calls the

https://cran.r-project.org
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

128 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

print() function automatically, in an R script that you execute from file, you will
have to exiplictly use the print function.

> a <- 3
> b <- 2
> print(a * b)
[1] 6
> a
[1] 3

A common structured data type in R is a vector. A vector in R contains elements of
the same data type and is ordered. When assigning elements of different datatypes to a
vector, R will coerce the types of all elements to a common datatype.

> v <- c(1, 'a', TRUE)
> v
[1] "1" "a" "TRUE"
> v <- c(1, 2, 3, 4)
> v*3
[1] 3 6 9 12

Note that R automatically determined that multiplication with a scalar is an element-
wise operation and applies it to each element of the vector.

Useful functions to create vectors are the sequence function seq(), which accepts the
lower and upper limit and a step size as parameter, and the repetion function rep()
which repeats its first argument the number of times specified by its second argument.

> s <- seq(0, 6, by=.5)
> print(s)
> r <- rep(3.5, 5)
> print(r)

R provides useful functions for numerical vectors, to find their length, their maximum
and minimum value, the square root of their values, as well as the variance and standard
deviation of the elements. Note that R automatically determines whether functions are
applied to the whole vector, like var() or sd(), or whether functions are applied
element-wise to each element, like sqrt(). Vector concatenation, using the c()
function, automatically ”flattens” the vectors.

5.3. R BASICS 129

> length(v)
> max(v)
> min(v)
> sqrt(vv)
> var(v)
> sd(v)
> vv <- c(v, c(7, 8, 9), v)
> print(vv)

The most common way to select elements from vectors is by indexing with a boolean
vector. In the following example, the expression vv < 5 yields a vector of boolean
values. Indexing the variable vv with that vector determines which elements of vv to
select.

> vv < 5
> vv[vv < 5]
> vv[vv < 5] <- vv[vv < 5] + 5

Vectors can also be indexed numerically, selecting elements by their position. R al-
lows you to specify a sequence using the : operator and exclusion of elements using
-, sometimes called slicing. The first line in the following example selects elements
at positions 3 through 7, the second line selects elemtns except those at positions 3
through 7.

> vv[3:7]
> vv[-(3:7)]

Important:
• R begins indexing positions with 1, while other programming languages

begin at 0.

Tip:
• The boolean constants TRUE and FALSE can be abbreviated by T and F

R also has special symbols to denote infinity (inf) and results that are not a number
(NaN):

> 2 / 0
[1] Inf
> 0 / 0
[1] NaN

130 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

Importantly, NaN is not the same as a missing value, which is denoted by NA, as in the
following R code example. The is.na() function can be used to identify and index
NA and then filter them. Any NA typically yields an NA when an aggregate function is
applied. Many functions offer an option to remove NA values prior to applying them,
as shown for the sum() function in the following R code block.

> v[3] <- NA
> v*3
[1] 3 6 NA 12
> is.na(v)
[1] FALSE FALSE TRUE FALSE
> sum(v)
[1] NA
> sum(v, na.rm=TRUE)
[1] 7

The boolean logical and and or are represented by the operators & and | shown in the
R code block below.

> TRUE & FALSE
FALSE
> TRUE | FALSE
TRUE

Character strings in R are enclosed in single or double quotes (but not mixed quotes!).
Two useful functions are paste() which pastes its arguments together with an op-
tional separator between them and returns a characters string, and the strsplit()
function which accepts a string (or vector of strings) to split, and a separator character
that identifies where to split the string. It returns a list of vectors of strings.

> label1 = 'I Love R'
> label2 = 'and BUSI 4760'
> paste(label1, label2, sep=' ')
> strsplit('Hello World! My first string', ' ')

Because you can assign arbitrary values to variables in R, R provides functions to
test the value type and to change or coerce the value type. A factor data type in R
represents categorical data, encoded as different character strings or different numbers.
Categorical data is treated different from numerical or character string data in many
statistical analyses.

5.4. THE R ENVIRONMENT 131

> is.numeric(vv)
> is.integer(vv)
> mode(vv)
> as.character(vv)
> is.character(as.character(vv))
> as.factor(as.character(vv))
> levels(as.factor(as.character(vv)))

Important string functions are grep(), which checks whether strings contain a sub-
string that matches a regular expression, and agrep(), which calculates the Leven-
shtein distance between a regular expression and a set of strings. The Levenshtein
distance is defined as the sum of insertions, deletions, and substitutions of characters
to transform one string into another. The first use of grep() in the following R code
block matches a phone number, the second use of grep() matches a Canadian postal
code, while the last two examples of grep() and agrep() exemplify the difference
between exact matching with grep() and approximate matching with agrep().

> grep('^([0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$',
c('709 864 5000', 'abc def 9999', '709-865-5000'))

[1] 1 3
> grep('[A-V][0-9][A-V] [0-9][A-V][0-9]',

c('A0P 1L0', '0AB L2K', 'A0X 1Z0'))
[1] 1
> grep('apple', c('apricot', 'banana', 'grape', 'pineapple'))
[1] 4
> agrep('apple',

c('apricot', 'banana', 'grape', 'pineapple'),
max.distance=3)

[1] 1 3 4

5.4 The R Environment
The collection of variables, functions and libraries that exists in R at any one time
is called the R workspace. R provides many functions to manipulate objects in its
workspace, among them ls() and rm(), named after their Unix bash shell equiva-
lents. The following R code illustrates the use of these functions. Results may vary
depending on what variables have been created prior to these commands.

> ls()
[1] "a" "b" "v"
> rm(v)
> ls()
[1] "a" "b"

R comes with a built-in user manual that one can access with the help() function or

132 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

simply the ? operator. Help is available on any function in R, as shown in the following
example. For added convenience, R provides a web browser interface to its help pages
that is started by help.start().

> help()
> help(lm)
> ?lm
> ??lm
> help.start()

R has a working directory where it reads and writes files from and to. On Ubuntu Linux,
this is the directory from which the r command was issued. R provides functions to get
the working directory, to set (change) it, and to list the files in the working directory:

> getwd()
[1] "/home/busi4720"
> setwd('DataSets')
> getwd()
[1] "/home/busi4720/DataSets"
> list.files()

Tip: It is often more convenient to change the working directory in the ter-
minal, prior to invoking r.

A collection of related functions is called a library in R. While some libraries come
with the base R system, other packages will need to be downloaded and installed. The
CRAN (comrehensive R archive network) provides libraries in convenient form. To
install packages from CRAN, use the install.packages() which accepts the
name (or a vector of names) of packages to install from CRAN. On some systems, R
may prompt the user from which CRAN location to install packages. Normally, there
is little difference other than download speed.

Installed libraries can be attached to the R workspace with the library() function.
The library() function with an argument attaches the specified package and makes
its functions and data sets available for use. The library() function without any
arguments shows which libraries are installed. The search() function shows which
packages are currently attached to the workspace. Finally, installed.packages()
provides details of all installed packages.

> search()
> library(matrixcalc)
> search()
> library()
> install.packages('lavaan')
> library()
> installed.packages()

5.5. ARRAYS, MATRICES, LISTS, AND DATAFRAMES 133

It is sometimes useful to assemble a set of related R commands in a script file. As
noted earlier, script files are useful to improve the replicability of the data analysis.
The source() function will read and execute a file containing R commands. As
noted earlier, in a script file, you will need to use the print() function to print the
values of variables.

> source('MyFirstScript.R')

Finally, the quit() function ends an R session. When using quit() without argu-
ments, R will ask whether to save the workspace image. R stores its workspace in each
directory in a file called ”.RData” and will read it when restarted from that directory.
R also stores its command history in each directory in a file called ”.Rhsitory” and will
read it when restarted from that directory.

> quit()

5.5 Arrays, Matrices, Lists, and DataFrames

R arrays are multi-dimensional objects that can hold any primitive data type, usu-
ally numerical. A matrix is simply a two-dimensional array. The following example
shows how indexing generalizes from vectors to matrices and arrays simply by index-
ing each dimension with the same syntax as used for vectors. The array() creates
multi-dimensional arrays from existing data, the dim() function returns the number
of dimensions of an array.

A few important things to note in the following R code block example:

• Initially, the array is created from a range of numbers between 1 and 20, and the
dim argument specifies the dimensionality.

• A dimension need not be subsetted or indexed, as in a[,2] or a[,2:4] which
do not subset the first dimension

• Reversing the index reverses the result that is returned, as in a[3:1,2:4]
which reverses the indexing of the first dimension.

• An array with two columns is interpreted as a set of indexes, as in a[i] <- 0

134 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

> a <- array(1:20, dim=c(4,5))
> a

[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> dim(a)
[1] 4 5
> a[,2]
> a[,2:4]
> a[3,2:4]
> a[3:1,2:4]
> i <- array(c(1:3,3:1), dim=c(3,2))
> a[i] <- 0
> a

Constructing a matrix with the matrix() function is similar to constructing an array,
but instead of providing the dimensionality with dim, one must provide the number of
rows or colums (nrow or ncol) and how to fill the matrix from the elements provided
using the byrow argument. The t function returns the transpose of a matrix, that is, it
reverses rows and columns. Binding two matrices together by columns with cbind()
or by rows with rbind() requires compatible dimensions.

> b <- matrix(20:1, nrow=5, byrow=T)
> b

[,1] [,2] [,3] [,4]
[1,] 20 19 18 17
[2,] 16 15 14 13
[3,] 12 11 10 9
[4,] 8 7 6 5
[5,] 4 3 2 1
> is.matrix(b)
> is.matrix(a)
> t(b)
> cbind(a, t(b))
> rbind(t(a), b)

A list in R is an ordered collection of elements that, in contrast to vectors, may be of
different types. Lists are created using the list() function. Note the difference in
selecting elements: The [[]] operator returns the element at that position in the list,
whereas the [] operator contains a list that contains the element at that position in the
list.

5.5. ARRAYS, MATRICES, LISTS, AND DATAFRAMES 135

> l <- list('a', 3, 'b', 2, TRUE)
> l[[2]]
> l[2]
> is.list(l)
> is.list(l[[2]])
> is.list(l[2])
> as.list(vv)

A data frames are the most widely used data structure for data analytics and statistics in
basic R. It is essentially a table with a set of columns whose elements are of the same
type. Columns are named and columns can be selected using the $ symbol. Useful
functions on data frames are summary(), head() and tail(). The following R
code block creates a variable x as a vector of 50 normally distributed random values
using the rnorm() function. The variable y is created from vector x and additional
normally distributed random variables. The two are then combined into a data frame.
The colnames() function can retrieve the column names, but can also be used to
change/update the column names. The nrow() and ncol() functions return the
number of rows and columns, head() and tail() return the first few or last few
rows, and cov() is an example of a statistical function that returns the covariance
matrix of all columns in the data frame.

> x <- rnorm(50)
> y <- 2*x + rnorm(50)
> data <- data.frame(x, y)
> colnames(data)
> colnames(data) <- c('Pred', 'Crit')
> nrow(data)
> ncol(data)
> data$Pred
> summary(data)
> head(data)
> tail(data)
> cov(data)

Data frames may be written to CSV files and read from CSV files, as shown in the
following R code block. Both functions, write.csv() and read.csv() have a
range of options for reading/writing files with or without header lines, different sepa-
rators, for skipping rows, different decimal points, whitespace stripping, etc. Consult
the R built-in help system for details.

> write.csv(data, 'data.csv', row.names=FALSE)
> new.data <- read.csv('data.csv')
> colnames(new.data)

136 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

dplyr Manipulate data
forcats Work with categorical variables (factors)
ggplot2 Grammar of Graphics
lubridate Date and time parsing and arithmetic
purrr Functional programming
readr Read files in various formats
stringr Work with character strings
tibble A tibble is better than a table
tidyr Make data tidy

Table 5.1: Tidyverse packages for R

5.6 Tidyverse

The Tidyverse is a collection of R libraries designed for data science that share an un-
derlying design philosophy, grammar, and data structures. Developed by Hadley Wick-
ham and others, the Tidyverse libraries are built to work together seamlessly, making
data science tasks more straightforward and intuitive. At the core of Tidyverse’s phi-
losophy is the concept of ”tidy data,” which arranges data in a structured way that sim-
plifies analysis. This structure involves organizing data into rows and columns where
each variable is a column, each observation is a row, and each type of observational
unit forms a table.

Key libraries in the Tidyverse include ggplot2 for data visualization, dplyr for data
manipulation, tidyr for data tidying, readr for reading data, purrr for functional pro-
gramming, and tibble for providing a better version of a table data structure. In par-
ticular, ggplot2 allows for complex and aesthetically pleasing visualizations using a
layered grammar of graphics (hence the name), while dplyr provides a set of tools for
efficiently manipulating datasets, such as filtering rows, selecting columns, and aggre-
gating data. tidyr helps in transforming messy data into a tidy format, making it easier
to analyze and visualize. Table 5.1 contains a summary of the libraries.

The Tidyverse also emphasizes readability and expressiveness in code, which not only
makes data analysis easier to write but also easier to read and understand. It has become
a popular choice among data scientists and statisticians for its ease of use, efficiency,
and the cohesive way it handles data analysis tasks. The integration of these packages
under the Tidyverse umbrella simplifies the process of data manipulation, exploration,
and visualization, greatly enhancing the productivity and effectiveness of data analysis
in R.

Tip: An introduction to data science with the Tidyverse packages, directly
from their authors, can be found here: https://r4ds.hadley.nz/

https://r4ds.hadley.nz/

5.6. TIDYVERSE 137

Figure 5.2: Attaching the tidyverse packages in R

Loading and attaching the tidyverse library in R, using the library(tidyverse)
function, loads all the associated core packages, as shown in Figure 5.2.

This section can give only a very brief outline of the capabilities of the tidyverse pack-
ages. The extensive documentation and various ”cheat sheets1 provide additional de-
tails. This section focuses on the use of dplyr to analyze data from a set of CSV files
representing the data of the Pagila database. The Pagila database2 is a demonstration
database originally developed for teaching and development of the MySQL RDBMS
under the name Sakila3. Pagila is designed as a sample database to illustrate database
concepts and is based on a fictional DVD rental store. It originally consists of several
tables organized into categories like film and actor information, customer data, store
inventory, and rental transactions. For this section, the Pagila data was summarized in
a few related CSV files.

When reading CSV files with readr, the data is stored in a tibble, not a data frame.
A tibble provides a number of extensions and convenience operations that make it
significantly more capable than a data frame. When using data frames with dplyr, they
are automatically converted to tibbles.

The following R code reads a CSV file using the read_csv() function and prints
the first few lines and a summary. The output looks slightly different than that for data
frames, but accomplishes essentially the same things.

rentals <- read_csv('rentals.csv')
head(rentals)
summary(rentals)

Attaching a tibble or data frame with attach() means that its columns become vari-
ables in the R workspace and need not be selected from the tibble (or data frame) using
the $ operator. The following R code block transforms the data read from the CSV file

1https://posit.co/resources/cheatsheets/
2https://github.com/devrimgunduz/pagila,

https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt
3https://dev.mysql.com/doc/sakila/en/,

https://dev.mysql.com/doc/sakila/en/sakila-license.html

https://posit.co/resources/cheatsheets/
https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/sakila-license.html

138 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

into the rentals tibble into appropriate data types, then detaches the tibble and prints a
summary.

Fix the column datatypes:
attach(rentals)
rating <- as.factor(rating)
language <- as.factor(language)
customer_address <- as.integer(customer_address)
customer_store <- as.integer(customer_store)
rental_staff <- as.integer(rental_staff)
payment_staff <- as.integer(payment_staff)
rental_duration <- as.integer(rental_duration)
detach(rentals)
summary(rentals)

The tidyverse libraries make extensive use of the pipe operator in R. The pipe oper-
ator allows chaining of function calls and plugs the result of one function as the first
argument into the next function. Originally, tidyverse used the %>% pipe operator from
the magrittr library, but can now also be used with the new (since R version 4.1),
native R pipe operator |>. For simple usage, the two behave identically and can be
intermixed.

The following R code block demonstrates a simple sequence of data manipulation op-
erations using functions from the dplyr library. It begins with the data tibble which is
piped into the first function. The outputs of each function are piped into the following
function, ending with print(). Note that print output can also be piped into other
functions, allowing printing of intermediate results.

rentals |>
filter(if_any(everything(), is.na)) |>
select(last_name, rental_date, return_date, title, amount) |>
print(n=Inf, width=Inf)

• The filter(if_any(everything(), is.na)) function is the first in
the pipeline. It filters rows in the rentals data frame based on the presence of
NA (missing) values. The if_any() function checks each column (indicated
by everything()) for NA values. The filter function then retains only those
rows that have at least one NA value in any column.

• Next, the select() function specifies the columns to retain in the resulting
data frame. It narrows down the data frame to include only the last_name,
rental_date, return_date, title, and amount columns. This step reduces the dataset
to focus on these key variables, for easier analysis and reporting.

• Finally, the print(n=Inf, width=Inf) function displays the output. The
n=Inf argument tells R to print all rows of the data frame, instead of just the
first few rows as is the default behavior. Similarly, width=Inf ensures that all

5.6. TIDYVERSE 139

full_join Joins tibbles (also outer join, left_join, inner_join,
right_join)

filter filters by row
select selects columns to retain
mutate creates new columns
rename renames columns
distinct finds unique values
group_by groups data
nest nests data, tibbles in tibbles
arrange sorts data rows
relocate moves data columns
print prints a tibble

Table 5.2: Important dplyr functions

columns are printed without any being truncated, which is useful for wide tibbles
or data frames.

In summary, this R code example is used to filter a rentals table for rows containing
missing values in any column, and then to select and print specific columns of interest.
This kind of operation is typical in data cleaning and exploratory data analysis pro-
cesses. The result shows that some films have not been rented (i.e. there is no rental
date for them), and some rentals have not been returned (i.e. there is no return date for
them).

The following paragraphs show examples of further data analysis with Tidyverse, in-
troducing additional dplyr functions and their use. Dplyr functions are intended to
mirror the SQL queries from the earlier chapter on relational databases. The main
dplyr ”verbs” used in the examples are summarized in Table 5.2.

Example: Find all films and the actors that appeared in them, ordered by film cate-
gory and year, for those films that are rated PG.

140 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

actors <- read_csv('actors.categories.csv')

rentals |>
full_join(actors, by='title',
suffix=c('_customer', '_actor'),
relationship='many-to-many') |>

filter(rating == 'PG') |>
mutate(actor =
paste(last_name_actor, ', ', first_name_actor, sep='')) |>

rename(year=release_year) |>
select(actor, title, category, year) |>
distinct(actor, title, category, year) |>
group_by(category, year, title) |>
nest() |>
arrange(category, year, title) |>
relocate(category, year, title) |>
print(n=Inf, width=Inf)

This R code processes the rentals tibble and the actors tibbles through a sequence of
functions in a pipeline.

• The read_csv() function is used to read data from a CSV file named ”ac-
tors.categories.csv” into an R data frame called ”actors”.

• The ”rentals()” data frame is combined with the ”actors” data frame using a full
join. The join is performed on the ”title” column common to both data frames.
The suffix argument adds distinct suffixes to column names from each data
frame to avoid name clashes. The relationship=’many-to-many’ indi-
cates the nature of the join.

• The filter() on the combined data retains only rows where the ”rating” col-
umn has the value ”PG”.

• The mutate() function is used to create a new column named ”actor”, which
concatenates the actor’s last name and first name, separated by a comma and a
space.

• The ”release_year’ column is renamed to ’year’ using the rename function.

• The select() function is used to narrow down the data frame to only the
columns ”actor”, ”title”, ”category”, and ”year”.

• Following this, the distinct() function ensures that only unique rows are
retained, removing any duplicates.

• The data is grouped by ”category”, ”year”, and ”title”, and then nest is used to
create a nested data frame, i.e. a dataframe where the actors for each group are
in a list-valued columns.

• the arrange() sorts the data frame by ”category”, ”year”, and ”title”, while
relocate moves these columns to the front of the data frame for easier view-
ing.

5.6. TIDYVERSE 141

• Finally, the entire data frame is printed with all rows (n=Inf) and without trun-
cating any columns (width=Inf).

Example: Find the most popular actors in the rentals in each city.

This R code block below involves combining multiple data frames and then manipu-
lating and summarizing the data. It builds on the reantal and actor tibbles from the
previous example and includes address information.

addresses <- read_csv('addresses.csv')
addresses$phone <- as.character(addresses$phone)

full_data <-
rentals |>

inner_join(addresses, by=c('customer_address'='address_id')) |>
inner_join(actors, by='title',

suffix=c('_customer', '_actor'),
relationship='many-to-many')

full_data |>
mutate(actor =

paste(last_name_actor, ', ', first_name_actor, sep='')) |>
group_by(city, actor) |>
summarize(count=n()) |>
mutate(ranking = min_rank(desc(count))) |>
filter(ranking < 4) |>
arrange(city, ranking, actor) |>
print(n=25)

• The analysis starts by reading a CSV file containing addresses into a data frame.

• An inner join is first performed between these two data frames, matching them
on a specified key.

• This is followed by another inner join with an ‘actors‘ data frame. This sec-
ond join involves a many-to-many relationship and adds suffixes to overlapping
column names to distinguish them.

• With the full data set, a new column is created by concatenating the first and last
names of actors, forming complete names.

• The data is then grouped by city and actor.

• A new summary column is created that counts the number of occurrences (records)
for each group.

• To create rankings, a new column is added that ranks the groups based on the
count in descending order. The min_rank() function allows ties in the rank-
ing, use rank() to break ties with gaps in ranking or dense_rank() to break
ties with no gaps in ranking.

142 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

• The data is then filtered to include only those records with a ranking less than 4,
focusing on the top three ranks for each group.

• Finally, the data is sorted by city, ranking, and actor and then printed.

Example: Find the customers who spend the most on rentals, with their phone num-
bers and cities, and the number of rentals with the higest total rental payments for each
category grouped by rental duration.

full_data |>
mutate(customer= paste(first_name_customer, last_name_customer)) |>
select(customer, amount, rental_duration, category, phone, city) |>
group_by(category, rental_duration, customer) |>
mutate(payments=sum(amount), num_rentals=n()) |>
select(-amount) |>
group_by(category, rental_duration) |>
mutate(ranking = min_rank(desc(payments))) |>
slice(which.min(ranking)) |>
print(n=Inf, width=Inf)

By now, it should be clear what the functions in the analysis pipelines accomplish.
However, a few interesting things to note. First, there is no summarize() func-
tion because summarize() omits all non-grouped columns, but the example requires
phone numbers and citites of customers. Either these would need to be included some-
how in the summarize() function, or as is done in this R code, summary columns
are created with mutate(). Second, note the ”negative” argument to the select()
function, which is used to remove the ”amount” column. Third, the pipeline uses
multiple group_by() statements with different aggregate functions (sum(), n(),
min_rank()) for the different groups. Finally, the R code uses slice() to select
the rows with the smallest ranks.

Example: Get the total rental revenue, number of rentals, and the mean and standard
deviation of the rental amounts for each country.

full_data |>
group_by(country) |>
summarize(revenue=sum(amount),

numrentals=n(),
mean_amount=mean(amount),
sd_amount=sd(amount)) |>

arrange(desc(mean_amount),
desc(revenue)) |>

print(n=Inf, width=Inf)

The R code for this query demonstrates a number different aggregate summary func-
tions, sum(), n(), mean() and sd() (standard deviation). It also shows how to use
the desc() function to arrange or sort data in decreasing order.

5.6. TIDYVERSE 143

Example: Get the top 5 and the bottom 5 grossing customers for each quarter.

full_data |>
mutate(customer=paste(first_name_customer,last_name_customer)) |>
mutate(q=as.character(quarter(rental_date, with_year=T))) |>
select(customer, q, amount, rental_date) |>
group_by(q, customer) |>
mutate(payments=sum(amount)) |>
select(-amount) |>
distinct(customer, q, payments) |>
group_by(q) |>
mutate(rank_top = min_rank(desc(payments))) |>
mutate(rank_bot = min_rank(payments)) |>
filter(rank_top < 6 | rank_bot < 6) |>
arrange(q, desc(payments)) |>
relocate(q, customer, payments, rank_top, rank_bot) |>
print(n=Inf, width=Inf)

The code for this query again does not use a summarize() function. It also shows
the use of the quarter() function from the ”lubridate” library. The lubridate library
contains a large range of date and time related functions. Two ranking columns are
created using the mutate() and min_rank() functions, once in descending or-
der to get the top ranks, and again in ascending order to get the bottom ronks. The
code uses filter() instead of slice() to select the top and bottom 5 ranks, uses
arrange() to sort the data, and then uses relocate() to re-arrange the order of
columns prior to printing.

Example: Find the set of film titles by rental customer and the total number rentals
for each customer.

full_data |>
mutate(customer=paste(first_name_customer,last_name_customer)) |>
select(customer, title) |>
nest(titles=title) |>
rowwise() |>
mutate(rentals=nrow(titles)) |>
mutate(unique_titles=list(distinct(titles))) |>
select(-titles) |>
arrange(customer) |>
print(n=Inf, width=Inf)

The code for this query works with nested data, that is, data with columns that contain
lists, created using the nest() function. In this example, nest(titles=title)
creates a columns called ”titles” that contains a list of all the elements of the ”title”
column for each customer. The R code also demonstrates row-wise operations. Both
mutate() functions after rowwise() function operate by row. Specifically, the
first use of the mutate() function creates a new column ”rentals” which contains
the number of rows in the titles column for each row (recall that the ”titles” column

144 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

contains lists of film title). Similarly, the second use of the mutate() function creates
a new column ”unique_title”that contains a list of distinct film titles from the ”titles”
column for each row.

5.7 SQL and R
The ”sqldf” library in R allows users to perform SQL queries on R data frames. Es-
sentially, it provides a bridge between SQL and R. This integration allows users who
are familiar with SQL to leverage its powerful querying capabilities directly on R data
structures, without the need to switch between different tools or environments.

One of the main advantages of ”sqldf” is its ability to handle large data frames more ef-
ficiently than some of R’s native functions. By utilizing SQL queries, users can perform
complex data manipulations and aggregations with ease. The package supports vari-
ous SQL commands including SELECT, JOIN, ORDER BY, and GROUP BY, among
others, enabling a wide range of data operations that are familiar to SQL users.

Under the hood, ”sqldf” operates by temporarily converting data frames into databases,
typically by creating an in-memory SQLite database, or, alternatively, using an existing
database connection to any of a variety of RDBMS such as PostgreSQL. It then creates
a table for each data frame, moves the data to the database tables, and executes SQL
statements. It then moves the result set back into R as a data frame. This seamless
process allows for a smooth integration of SQL’s data processing capabilities within
the R environment.

”sqldf” is particularly useful for R users who are already comfortable with SQL syn-
tax and for complex data manipulation tasks that might be more cumbersome or less
intuitive in R’s native syntax. Its ability to handle data frames as if they were SQL
tables makes it a highly valuable tool for data analysts and statisticians who work with
large datasets and require the flexibility and power of SQL within the R programming
environment.

The following R code block shows a very simple example. Note that the SQL FROM
clause recognizes data frame names; any columns used in the SQL query must be
named columns from those data frames.

library(sqldf)
result_df <- sqldf('select distinct(title) from full_data')

When faced between the choice of data analytics using an SQL RDBMS or R/Tidyverse,
there are a number of issues to consider:

• Size of data: R is limited by the amount of main memory of the computer. While
large computers may offer 128GB or more, modern RDBMS can scale massively
larger, in particular when distributing databases across a cluster of computers.

5.7. SQL AND R 145

• Access speed: RDBMS have sophisticated indexing of tables and query planners
that optimize complex queries for performance. While a dplyr analysis pipeline
can also be optimized by carefully considering the order of function calls, the
onus is on the data analyst to do this, while an RDBMS offer this ”out-of-the-
box”.

• Currency: Using an RDBMS means that analytics can be performed on opera-
tional data, that is, the most current and up-to-date data. In contrast, the use of R
involves first exporting data from the operational system and then analyzing it at
a later time. However, while tempting, it is not generally recommended to per-
form complex analytics on an operational database, as it can significantly affect
performance.

• Transactions: An RDBMS ensures consistent views of data across multi-user,
concurrent updates. This means that, when using an operational database, the
analysis sees consistent data, whereas an exported snapshot of the data may not
necessarily be consistent, depending on the export mechanism.

• Tools: R has tools for statistical analysis and visualization, beyond mere report-
ing. So far, we have considered only simple descriptive analytics. However,
when the data is to be used for sophisticated statistics or predictive analytics, it
is no longer possible to do this on RDBMS.

These issues motivate the following recommendations:

• Do not ”hit” operational RDBMS for heavy-weight or frequent analytics. While
it may be fine to do the occasional summary analytics on an operational database,
this should not be normally done.

• Regularly export consistent data from RDBMS. If up-to-date data is needed,
automate the export from the database to occur at regular intervals. However,
note also that exporting data has a performance impact on operational databases.

• Sometimes, SQL may be the more intuitive language to specify the required
analysis. In these cases, use separate in-memory or on-disk RDBMS for analyt-
ics (e.g. with sqldf) if desired/required.

• Finally, if the size of data is too large to handle in R, consider distributed tools
such as Hadoop/Spark that are made for Big Data analytics.

146 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

Hands-On Exercises
The following hands-on exercises are designed to familiarize you with the
Tidyverse packages, especially the dplyr package. Use these exercises with
the Pagila CSV data set.

1. Find all films with a rating of ’PG’
2. List all customers who live in Canada (with their address)
3. Find the average actual rental duration for all films

• This requires date arithmetic, use the lubridate package
4. Find the average overdue time for each customer

• This requires date arithmetic, use the lubridate package
5. List all films that have never been rented
6. List the names of actors who have played in more than 15 films

Chapter 6

Introduction to Data
Management with Python

Learning Goals
After reading this chapter, you should be able to:

• Create and manipulate basic data structures in Python, includings lists, tuples,
and dictionaries.

• Create and manipulate arrays using the Numpy package for Python, in particular,
be able to use slicing to retrieve portions of an array.

• Create and manipulate series and data frames in the Pandas package for Python.

• Compute summary information and to retrieve portions of a Pandas data frame.

• Use Pandas to retrieve information from multiple data frames, including filtering,
grouping, and aggregation of information.

6.1 Introduction
Python is a high-level, interpreted programming language known for its simplicity and
readability. It was created by Guido van Rossum and first released in 1991. Python’s
design philosophy emphasizes code readability through the use of significant1 whites-
pace. This unique approach has contributed to Python becoming one of the most pop-
ular programming languages in the world.

Python’s standard library of functions is large and comprehensive, covering a range of
programming needs including web development, data analysis, artificial intelligence,

1”Significant” in this context does not mean lots, it means that spaces at the beginning of a line, that is,
line indentations, have meaning and Python code does not work the same way without those spaces.

147

148 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

scientific computing, and more. Its simplicity and versatility allow programmers to
express concepts in fewer lines of code compared to languages like C++ or Java. Ad-
ditionally, Python supports multiple programming paradigms, including procedural,
object-oriented, and functional programming.

One of the biggest advantages of Python is its strong community support and the vast
availability of third-party packages, which extend its capabilities even further. Frame-
works like Django for web development, Pandas for data analysis, and TensorFlow for
machine learning are just a few examples of Python’s extensive ecosystem.

Python’s popularity can be attributed to its wide range of applications in various fields,
such as web development, data science, artificial intelligence, scientific computing,
and scripting. It’s often used in academic and research settings due to its ease of learn-
ing and its ability to handle complex calculations and data manipulation. Major tech
companies and organizations use Python, showcasing its reliability and robustness.

In terms of benefits, Python is known for its efficiency, reliability, and speed of de-
velopment. It is often used for rapid prototyping and iterative development. Python’s
syntax is clean and its code is generally more readable and maintainable compared to
many other programming languages. This readability makes it easier for developers to
work on projects collaboratively.

Overall, Python’s combination of versatility, simplicity, and powerful libraries makes it
a preferred choice for both beginners and experienced developers across diverse fields.
Its continued evolution and adaptation to new technologies and paradigms ensure its
relevance in the fast-paced world of software development.

Intro Tutorial: A very good introduction to Python can be found at https:
//python.swaroopch.com/, or, as a downloadable PDF, at https://
github.com/swaroopch/byte-of-python/releases/

6.2 Python versus R
Python and R are two of the most popular programming languages used in data science,
each with its unique strengths and applications. Python, known for its general-purpose
nature, offers a more comprehensive approach to busienss analytics, allowing not just
data analysis and visualization, but also the integration of data science processes into
web applications, production systems, and more. Its simplicity and readability make it
a go-to language for a wide range of developers, including those who are not primarily
data scientists.

Python’s extensive libraries like Pandas for data manipulation, NumPy for numeri-
cal computations, Matplotlib and Seaborn for data visualization, and Scikit-learn for
machine learning make it a powerful tool for business analytics. Moreover, Python’s
capabilities in machine learning and deep learning, with libraries like TensorFlow and
PyTorch, make it a preferred choice for cutting-edge applications in AI.

https://python.swaroopch.com/
https://python.swaroopch.com/
https://github.com/swaroopch/byte-of-python/releases/
https://github.com/swaroopch/byte-of-python/releases/

6.3. USING PYTHON 149

On the other hand, R, originally designed for statistical analysis, is highly specialized
in statistical modeling and data analysis. It offers a rich ecosystem of packages for
statistical procedures, classical statistical tests, time-series analysis, and data visualiza-
tion. R is particularly favored for its advanced statistical capabilities and its powerful
graphics for creating well-detailed and high-quality plots.

The choice between Python and R often comes down to the specific requirements of
the project and the background of the business analytics team. Python is generally
more versatile and better suited for integrating business analytics into larger produc-
tion applications. It is also the more popular choice for machine learning projects.
R, meanwhile, is excellent for pure statistical analysis and visualizing complex data
sets. It’s often preferred in academia and research settings where complex statistical
methods are more commonly required.

Both languages have strong community support and a wealth of resources, making
them continually evolving tools in the field of business analytics. Many business ana-
lysts are proficient in both, choosing the one that best fits the task at hand. In collabo-
rative settings, it’s not uncommon to see teams utilizing both Python and R, leveraging
the strengths of each to achieve more comprehensive and powerful data analysis out-
comes.

6.3 Using Python
The Interactive Python Shell, Jupyter Notebooks, and PyCharm IDE represent different
environments for Python development, each with distinct features and use cases.

Interactive Python Shell The Python shell is the most basic and straightforward
environment for Python programming. Users can type Python code and see the results
instantly. The simplicity is the primary advantages of the Python shell. The immediate
feedback makes it excellent for experimentation, learning Python syntax, and quick
tests. There is no need for creating files or setting up a project environment. This
feature is especially beneficial for beginners who are just starting to learn Python, as
it provides a straightforward way to test out new concepts and functions without the
overhead of more complex development environments. Figure 6.1 shows a screenshot
of the Python shell.

While the Python shell supports all the features of the Python language. However, it
lacks advanced features found in full-fledged Integrated Development Environments
(IDEs), such as code completion, debugging tools, or project management, which are
essential for larger projects. Its simplicity is both a strength and a limitation: while it
is easy to use, it might not be the best choice for larger programming projects.

On Unbuntu Linux, simply type python in a terminal window to launch the Python
shell. On Windows and MacOS systems, you will find applications to launch the
Python shell in a window. The shell prompts you for commands with the > > >
prompt. Simply enter the command and press the ENTER key to execute a com-
mand. Use the quit() function to exit the shell. The Python shell remembers your

150 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Figure 6.1: The Interactive Python Shell

previous commands, so you can use the up and down arrow keys to recall commands
and edit them. The Python shell also performs code completion using the TAB key,
which helps speed up coding and reduce typing errors. Similar to an R session, you
should use a notepad editor application to assemble commands and then copy/paste
them into the Python shell, as copy/paste results into a notepad editor. This makes
editing long commands easier and ensures that your analysis will be repeatable.

Jupyter Notebooks Jupyter notebooks offer a more interactive and versatile plat-
form, particularly favored in data science and academic research. Jupyter Notebooks
allow users to create and share documents that can contain ”cells” where each cell
may contain Python code, text (using Markdown), equations (using LaTeX), or visu-
alizations. This mix of Python code, documentation, description, and results makes it
ideal for data exploration, visualization, and complex analyses where explaining the
process is as important as the code itself, allowing for a narrative approach to coading.
While Jupyter Notebooks support various programming languages, they are predomi-
nantly used with Python. Figure 6.2 shows a screenshot of a Jupyter notebook in the
JupyterLabs Desktop environment.

The immediate feedback upon code execution helps in quick hypothesis testing and
data manipulation. Furthermore, the integration of rich media alongside code makes
Jupyter Notebooks an excellent tool for creating comprehensive documentation, tuto-
rials, and educational materials.

Notebooks can be easily shared, making them popular in collaborative projects. The
ability to see the code, along with its output and accompanying explanation, in a sin-
gle document enhances understanding and teamwork. Jupyter Notebooks run in a web
browser, offering platform independence and eliminating the need for complex soft-
ware application setups.

6.3. USING PYTHON 151

Figure 6.2: Jupyter Notebook

When working with Jupyter Notebooks, the term ”kernel” denotes a particular version
of the Python programming language and environment (i.e. Python packages, etc.)
that runs your code. You can enter code in an empty cell and press CTRL-ENTER to
execute code in the cell. A cell can contain multiple lines of code. Jupyter Notebook
cells can be merged, split, moved, copied, and deleted, and you can save, import, and
export notebooks, among much other, advanced functionality.

PyCharm IDE: The PyCharm Integrated Development Environment (IDE) is a full-
featured software development environment designed specifically for Python. It offers
a wide range of tools and features for professional software development, including
code completion, debugging, project management, version control integration, and a
powerful code editor. PyCharm is more suited for larger and more complex software
projects. Its sophisticated environment, while powerful, might be overwhelming for
beginners or for those who require a simple platform for exploratory data analysis.
Figure 6.3 shows a screenshot of the PyCharm IDE.

One of the key strengths of PyCharm is its intelligent code editor, offering features like
code completion, code inspections, and automated refactoring. These features greatly
enhance productivity and reduce the likelihood of programming errors. Additionally,
PyCharm includes an integrated debugger and testing support, simplifying the process
of diagnosing and fixing issues in programming code. The IDE also offers seamless
integration with version control systems like Git, which is essential for collaborative
development and code management.

In summary, while the Interactive Python Shell is best for quick, simple tasks and learn-
ing the basics, Jupyter Notebooks are ideal for business analytics projects that benefit
from an interactive, explanatory, and exploratory approach. PyCharm is the most suit-

152 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Figure 6.3: PyCharm Integrated Development Environment (IDE)

able for comprehensive software development, offering robust tools and features for
managing complex codebases. The choice among these depends largely on the specific
requirements of the project and the preferences of the developer.

6.4 Python Basics

The basic Python code in the following example prints a character string. The print
function in Python is very versatile and provides different ways to print the values of
multiple variables. In particular, character strings have a format function that can be
used to substitute the {} placeholders with values, either by index/number, by name,
or by position, as shown in the following Python code block that defines two variables,
age and name and prints their values in a variety of ways:

print('hello world')

age = 19
name = 'Malina'
print('{0} is {1} years old'.format(name, age))
print('{name} is {age} years old'.format(name=name,age=age))
print('{} is {} years old'.format(name, age))
print(f'{name} is {age} years old')
print(name+' is '+str(age)+' years old')

6.4. PYTHON BASICS 153

Because Python commands can get quite long, Python allows for backslashes to break
long lines and continue the command on the following line. While not needed in this
case, the following code block illustrates how to use them:

print('This is a very long \
string and needs a second line')
i = \
5
print(i)

Multiline character strings are enclosed in triple quotes, and the line breaks form part
of the string, as shown in the following example. Note that the print(s) function
prints the line breaks in the character string.

s = '''This is line 1
and here is line 2
and now this is line 3'''
print(s)

As with R, you can use Python interactively as a calculator. It provides the usual arith-
metic operators and comparison operators The // operator is for integer division with
floor (rounding down), the % operator is the modulus (remainder) operator. Boolean
values are True and False in Python and cannot be abbreviated (unlike in R). The
following Python code block illustrates typical usage:

2 + 2
2**4
13 // 3
-13 // 3
13 % 3
-25.5 % 2.25
3 < 5
3 > 5
3 == 5
(3 < 5) and (4 < 2)
(3 < 5) or not (4 < 2)

The next code example shows some useful string functions. The startwith() func-
tion does what its name suggests and returns a boolean (True or False) value. The
find() function returns either the first position of a string in another string, or -1 if
the string is not found.

154 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

language = 'Innuktitut'
if language.startswith('Innu'):

print('Yes, the string starts with "Innu"')
if 'u' in language:

print('Yes, it contains the string "u"')
if language.find('nuk') != -1:

print('Yes, it contains the string "nuk"')

The join() and split() functions for character strings do as the their names sug-
gest and work with Python lists, illustrated in the code block below:

Joining and Splitting
delimiter = '_*_'
mylist = ['Nain', 'Hopedale', 'Makkovik', 'Rigolet']
mystring = delimiter.join(mylist)
print(mystring)
thelist = mystring.split(delimiter)
print(thelist)

Important: Note the use of leading whitespace or indentation in the lines af-
ter the if statement in the above code. In Python, this whitespace is required
for defining the program logic! In the above example, the indented lines indi-
cate the extent of the program block to be executed after the if statement. The
normal leading whitespace is four spaces.

Lists in Python are ordered collections of items, and use square brackets [] as delim-
iters. Lists are mutable, i.e. their contents can be changed. Lists may contain items of
different data types, including other lists or structured data types. Useful list functions
are len() which returns the number of items in a list, append(), which adds items
to the end of the list, and sort(), which sorts by value (only for compatible data
types in the list). Items can be removed by position using the del() or by value using
the remove() functions.

6.4. PYTHON BASICS 155

Inuit deities
gods = ['Sedna', 'Nanook', 'Akna', 'Pinga']
print('There are', len(gods), 'deities:')
for god in gods:

print(god, end=' ')

Appending to a list
gods.append('Amaguq')
print('\nThe list of deities is now', gods)

Sorting a list
gods.sort()
print('The sorted list is', gods)

Removing items from a list
print('The first deity is', gods[0])
olditem = gods[0]
del gods[0]
print('I removed', olditem)
print('The list is now', gods)
gods.remove('Pinga')
print('The list is now', gods)

The above example also shows the use of Python comments, beginning with # to the
end of the line. The example also shows iteration (”repeating”) with the for state-
ment. Similar to the earlier example illustrating the if statement, note the required
indentation (leading whitespace) in the line(s) after the for statement to indicate the
extent of the code block that is repeated.

Tuples in Phython are also ordered collections of items, but they are immutable, i.e.
their contents cannot be changed. Tuples use round brackets () as delimiters.

Inuit Nunangat
regions = ('Inuvialuit', 'Nunavut', 'Nunavik', 'Nunatsiavut')
print('Number of regions is', len(regions))

all_regions = 'NunatuKavummiut', 'Kalaallit', 'Inupiaq', regions
print('Number of all Inuit regions:',len(all_regions))
print('All Inuit regions are', all_regions)
print('Regions in Inuit Nunangat are', all_regions[3])
print('First region in Inuit Nunangat is', all_regions[3][1])
print('Number of all Inuit regions is', \

len(all_regions)-1+len(all_regions[3]))

Important: Indexing in Python is zero based, that is, the first element in a
list or tuple is number 0, while the last element is number len() - 1. This is
in contrast to R, where indexing starts at 1.

156 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Dictionaries (or short, ”dicts”) in Python are key-value pairs that map one element to
another. In other programming languages, this data structure is also called a map or
an associative array (because it associates keys with their values). Python uses curly
brackets {} as delimiters; the keys and values are separated using :. The value for a
key is retrieved using the square bracket operator []. Keys and values may be any data
type.

Largest citites
c = {

'Inuvialuit': 'Inuvik',
'Nunavut': 'Iqaluit',
'Nunavik': 'Kuujjuaq',
'Nunatsiavut': 'Nain'

}
print("Nunavik's largest city is", c['Nunavik'])

Keys and values can be retrieved separately using the function keys() and values().
Dicts are mutable, as the following example shows by removing an entry with del and
adding another entry.

Retrieving keys and values
print(list(c.keys()))
print(list(c.values()))

Deleting a key-value pair
del c['Nunavut']
print('\nThere are {} cities left\n'.format(len(c)))
for region, city in c.items():

print('{} is largest city of {}'.format(city, region))

Adding a key-value pair
c['Nunavut'] = 'Iqaluit'
if 'Nunavut' in c:

print("\nNunavut's largest city is", c['Nunavut'])

A useful function to create dicts from two lists is the zip() function, shown below.
The zip() function creates an iterator over fixed-length tuples that are passed into the
dictionary creation function dict() as key–value tuples:

towns = ['Hopedale', 'Makkovik', 'Nain', 'Postville', 'Rigolet']
pops = [596, 365, 1204, 188, 327]
pop_by_town = dict(zip(towns, pops))
print(pop_by_town)

In Python, lists, tuples, and character strings are examples of sequences. All sequences
provide membership tests using in or not in operators, as shown in some of the
examples above. Sequences also provide integer indexing and slicing. Note that the

6.4. PYTHON BASICS 157

end index in a slicing expression is not inclusive, that is, the slice extends up to but
does not include the final index. This makes it easy to write a slice like [:len(a)]
where a is some sequence (rather than having to write [:len(a)-1] as one would
in R or other programming languages where the end index is inclusive).

The following code shows some examples for slicing tuples. Note the negative end
index in the third example. A negative end index iterates from the end of a sequence
forwards”. The slice regions[1:-1] extends from the second element to the third
of the four elements.

regions = ('Inuvialuit', 'Nunavut',
'Nunavik', 'Nunatsiavut')

Slicing on a tuple
print('Item 1 to 3 is', regions[1:3])
print('Item 2 to end is', regions[2:])
print('Item 1 to -1 is', regions[1:-1])
print('Item start to end is', regions[:])

Slicing in Python is more advanced than slicing in R as not only the beginning and end
index can be specified, but also the step size, as shown in the next Python code block.
The final example slices backwards.

Slicing with step
print(regions[::1])
print(regions[::2])
print(regions[::3])
print(regions[::-1])

Character strings are also sequences, and they support slicing or indexing the same way
as other sequences in Python.

language = 'Innuktitut'
Slicing on a string
print('characters 1 to 3 is', language[1:3])
print('characters 2 to end is', language[2:])
print('characters 1 to -1 is', language[1:-1])
print('characters start to end is', language[:])

In the above example, pay careful attention to the use of negative indices in the slicing
expressions, both for the index as well as the step size.

Tip: To read and execute Python statements from a file, use the expression
exec(open(’filename.py’).read())

158 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Hands-On Exercise

1. Create a list containing the numbers 1 to 10. Use list slicing to create a
sublist with only the even numbers.

2. Using a for loop, sum all the items in the list.
3. Using a for loop, iterate over the list and print each number squared.
4. Write a program to append the square of each number in the range [1:5]

to a new list.

Hands-On Exercise

1. Create a tuple with different data types (string, int, float).
2. Demonstrate how tuples are immutable by attempting to change its first

element.
3. Write a program to convert the tuple into a list.

Hands-On Exercise

1. Create a dictionary with at least three key-value pairs, where the keys are
strings and the values are numbers.

2. Write a Python script to add a new key-value pair to the dictionary and
then print the updated dictionary.

3. Create a nested dictionary, that is, a dictionary whose values are dictio-
naries, and demonstrate accessing elements at various levels.

6.5 NumPy
NumPy, short for Numerical Python, is an essential package for the Python program-
ming language, widely used for scientific computing and data analysis. It provides
powerful numerical arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays. The cornerstone of NumPy is its
”ndarray” (n-dimensional array) object. These arrays are more efficient than Python’s
built-in lists, especially for numerical operations, due to their fixed type and contiguous
memory allocation.

NumPy arrays facilitate advanced mathematical and statistical operations, including
linear algebra, Fourier transform, and random number generation. The ndarray object
supports vectorized operations, broadcasting, and indexing capabilities. This means
that operations can be applied to entire arrays without the need for explicit loops, lead-
ing to cleaner and faster code.

One of the reasons for NumPy’s popularity in the scientific and data science commu-
nities is its seamless integration with other Python libraries. Libraries like Pandas for
data manipulation and analysis, Matplotlib for data visualization, and SciPy for scien-

6.5. NUMPY 159

ndarray.ndim Number of axes
ndarray.shape Typle describing the size of each axis (dimension)
ndarray.size Total number of elements
ndarray.dtype The datatype of the elements, for example

numpy.int32, numpy.int16, numpy.float32,
or numpy.float64

ndarray.itemsize Number of bytes for each element

Table 6.1: Attributes of NumPy ndarray

tific computing all build upon and work in conjunction with NumPy, creating a robust
ecosystem for scientific computing tasks.

Tip: The NumPy website provides two very good introductions, in the form
of the Quick Start and the NumPy for absolute beginners tutorials.

NumPy ndarrays have a set of useful properties or attributes, summarized in in Ta-
ble 6.1. Note that the terminology is ”axes”, rather than ”dimensions” as in the previ-
ous chapter on R, although the ndim property of an ndarray uses the term ”dimension”
in its name.

The following Python code block illustrates the use of these properties. Note the use
of the arange() function to create a one-dimensional array of 15 numbers (from 0
to 14), that is then reshaped into a 2-dimensional array with 3 rows and 5 columns.
Rows are axis 0, and columns are axis 1.

Import the numpy package
import numpy as np

Create an array
a = np.arange(15).reshape(3, 5)

print(a.shape)
print(a.ndim)
print(a.dtype.name)
print(a.size)
print(type(a))

The following Python code block shows element-wise operations and array operations
on a NumPy array. Python determines automatically which functions are array func-
tions (like sum()) and which ones are element-wise functions (like sqrt()). Note
the creation of the array with the array() function from a list of two tuples. Note
also the use of the axis pararmeter in the max function to specify whether to aggre-
gate by row or by column. The axis parameter can also be applied to other functions
like sum() or std().

https://numpy.org/doc/stable/user/quickstart.html
 https://numpy.org/doc/stable/user/absolute_beginners.html

160 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Create an array from Python lists and tuples
b = np.array([(1.5, 2., 3), (4, 5, 6)])

Elementwise operations
print(3 * b)
print(b + 5)
print(np.sqrt(b))

Array operations
print(np.max(b))
print(np.max(b, axis=0))
print(np.max(b, axis=1))
print(np.std(b))
print(np.cov(b))
print(np.sum(b))

In the above example, the std() function without axis parameter computes the stan-
dard deviation of all elements in the array, while cov treats each row of the array as
a vector and computes their variances and covariances. To treat array columns as vec-
tors, either transpose the array first, using the T operator or use the rowvar=False
parameter for the cov() function.

To create pre-initialized arrays, NumPy provides two convenience functions to create
arrays filled with 0s or 1s:

Create an array of zeros with shape (3,4)
x = np.zeros((3,4))
print(x)

Create an array of ones with shape (2,3,4)
y = np.ones((2,3,4))
print(y)

In a generalization of the slicing expressions for Python sequences, each axis of a
NumPy array can be sliced using the [:] or [::] expressions, as shown in the
following example of a two-dimensional array. The slicing expressions for different
dimensions are separated by commas.

b = np.array([[0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])

print(b[2, 3])
print(b[0:5, 1])
print(b[:, 1])
print(b[1:3, :])
print(b[-1])

6.5. NUMPY 161

When not all axes are supposed to be sliced, one can omit initial or final unsliced axes
in the slicing expression using the ellipsis ”...” as shown in the following Python code
block.

c = np.array([[[0, 1, 2],
[10, 12, 13]],
[[100, 101, 102],
[110, 112, 113]]])

print(c[1, ...])
print(c[1, : , :])
print(c[..., 2])
print(c[: , : , 2])
print(c[..., : , 1])

NumPy arrays also provide convenient iteration of their rows and their elements. Note
the use of the flat operator to ”flatten” a multi-dimensional array to a single dimen-
sion in the code block below.

for row in b:
print(row)

for element in b.flat:
print(element)

NumPy provides an easy way to reshape arrays to any dimension. However, it is im-
portant to be aware of where and how the elements move during such a reshape. The
order can be specified using an optional argument to rehshape; consult the NumPy
documentation for details. The following example also demonstrates the use of the de-
fault random number generator2 (rng) in NumPy to create an array of shape (3, 4)
filled with random numbers between 0 and 1.

Create a random number generator with seed 1
rg = np.random.default_rng(1)

Create an array of shape (3, 4) of random numbers
a = np.floor(10 * rg.random((3, 4)))

Show information about the array and reshape
print(a.shape)
print(a.flatten())
print(a.reshape(6, 2))
print(a.T)
print(a.T.shape)

2A random number generator in computer science is always a pseudo-random number generator that
creates a sequence of numbers according to a deterministic formula (because computers are deterministic),
starting from an initial ”seed” number. The sequence is repeatable when beginning with the same seed. A
good pseudo-random number generate will create sequences that are indistinguishable from true random
numbers, for example, those created by rolling dice.

162 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

The above example uses the flatten() function which returns a one-dimensional
array, whereas the flat property returns an iterator to be used in a for loop. The
T property returns the transpose of the array. In two dimensions, the transpose swaps
rows and columns. The NumPy transpose is also defined for more than two dimensions,
the axes are transposed such that a.T.shape==a.shape[::-1].

The next example illustrates concatenation or stacking operations to stack two arrays
either vertically, that is, by row, or horizontally, that is, by column. The arrays must be
of compatible shape for these stacking operations.

b = np.floor(5 * rg.random((3, 4)))
print(np.vstack((a, b)))
print(np.hstack((b, a)))

Arrays can be indexed also by boolean arrays. For example, in the following Python
code block, the expression a < 5 constructs a boolean array whose entries are True
when the corresponding element in a is less than 5. This boolean array is then used to
select or index the array a:

a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]])

print(a[a < 5])
print(a < 5)
print(a[a%2 == 0])
print(a%2 == 0)

Finally, NumPy provides easy ways to identify unique elements in an array and to count
how often particular elements occur in an array. The following example also demon-
strates another use of the zip() function, already introduced above, to construct a list
of tuples.

a = np.array([11, 11, 12, 13, 14, 15, 16,
17, 12, 13, 11, 14, 18, 19, 20])

print(np.unique(a))

Return the first index of a unique value
values, indices = np.unique(a, return_index=True)
print(list(zip(values, indices)))

Return the counts of each unique value
values, counts = np.unique(a, return_counts=True)
print(list(zip(values, counts)))

6.6. DATA MANAGEMENT WITH PANDAS 163

Hands-On Exercises

1. Create an array with random numbers in the shape indicated by the last
four digits of your student number (if your student number contains a 0,
use a 1 instead)

2. Construct a new array by swapping the first half of rows (axis 0) with the
second half of rows (axis 0)

3. Calculate all covariance matrices formed by the last two axes of your
array. Tip: Iterate over the first two axes/dimensions with a for loop

4. Subtract the mean of the array from each element in the array (mean
normalization)

5. Select all elements that are greater than the overall mean
6. Sort the selected elements from the previous step

6.6 Data management with Pandas
Pandas is a Python package widely used in data science, data analysis, and machine
learning. It is known for its powerful data manipulation and analysis capabilities. It
provides fast, flexible, and expressive data structures designed to make working with
structured (tabular, multidimensional, potentially heterogeneous) and time series data
both easy and intuitive.

Pandas is useful for data cleaning, data transformation, and data analysis. It offers func-
tions for reading and writing data in various formats such as CSV, Excel, JSON, and
SQL databases. The Pandas package simplifies handling missing data, merging and
joining datasets, reshaping, pivoting, slicing, indexing, and subsetting data. Its time se-
ries functionality is particularly robust, offering capabilities for date range generation,
frequency conversion, moving window statistics, date shifting, and lagging.

The library’s design and functionality are heavily influenced by data analysis needs in
finance, which is evident in its powerful group-by functionality for aggregating and
transforming datasets, as well as its high-performance merging and joining of datasets.
As part of the broader Python scientific computing ecosystem, which includes libraries
like NumPy, Matplotlib, and Scikit-learn, Pandas plays an important role in data anal-
ysis and machine learning workflows.

Tip: The Pandas website provides very good 10 Minutes to Pandas introduc-
tory tutorial for Pandas.

Central to Pandas are two primary data structures: the DataFrame and the Series. A
Series in Pandas is a one-dimensional array-like object that can hold any data type,
including integers, floats, strings, and Python objects. A DataFrame in Pandas is a
two-dimensional, size-mutable, and potentially heterogeneous tabular data structure
with labeled axes (rows and columns).

http://pandas.pydata.org/docs/user_guide/10min.html

164 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

The following Python code constructs a Pandas Series of random numbers. The axis
labels of a Series (and a DataFrame) are called ”index” and allow one to name the
elements. The example also shows how a Python dict can be converted into a series
with named elements.

Import the Pandas package
import pandas as pd

Create a series from a NumPy array of random numbers
s = pd.Series(np.random.randn(5))
print(s.index)

Provide indices (labels) when creating the series
s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
print(s.index)

Create a series from a Python dict that provides labels and values
d = {"a": 0.0, "b": 1.0, "c": 2.0}
print(pd.Series(d))

Create a series from a dict and reorder the entries
print(pd.Series(d, index=["b", "c", "d", "a"]))

Note that in the last line of the above example, renaming or reordering the elements of
the Series d introduces a NaN element for the index ”d”, because the dict contains no
value for the key ”d”.

Pandas series behave largely like NumPy arrays, but note that to access their elements
by numerical index, one has to use the iloc operator, as shown in the following Python
code block. This allows slicing the same way as for Python sequences or NumPy
arrays. The following example also shows that Series can behave like a Python dict, in
that values for a named index (”key”) can be retrieved. Series also provide membership
tests for ”keys” using in.

Series behave like an ndarray
print(s.iloc[0])
print(s.iloc[:3])
print(s[s > s.median()])
print(s.iloc[[4, 3, 1]])
print(np.exp(s))

Series behave like a dict
print(s['a'])
print(s['e'])
print('e' in s)
print('f' in s)

Series have a datatype and name
s.name = 'My First Series'
print(s.dtype)

6.6. DATA MANAGEMENT WITH PANDAS 165

Pandas DataFrames are two-dimensional objects. Their columns may have different
data types. Conceptually, DataFrames can be considered as a dict of Pandas Series, as
the following example demonstrates.

d = {
"one": pd.Series([1.0, 2.0, 3.0],

index=['a', 'b', 'c']),
"two": pd.Series([1.0, 2.0, 3.0, 4.0],

index=['a', 'b', 'c', 'd'])
}
df = pd.DataFrame(d)
print(df)
print(df.index)
print(df.columns)
print(pd.DataFrame(d, index=['d', 'b', 'a'],

columns=['two', 'three']))

Constructing the DataFrame df ”lines up” the two Series on their common indices,
and will introduce a ”NaN” for index ”d” in column ”one”, because that Series does
not contain a value for ”d”. Similarly, inserting a column named ”three” in the last line
of the above example yields a column filled with ”NaN” because the dict d does not
contain values for the key ”three”.

DataFrame columns can be accessed using their quoted name, and will yield a Pandas
Series with the usual operations. The following Python code example shows that new
columns can be added simply by defining them, as in the ”flag” column below or using
the assign() function, which works similarly to the mutate function in R/dplyr.
Columns can be removed using the del command or the pop() function. The latter
returns the deleted column as a Series.

print(df['one'])
df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
print(df)

del df['two']
three = df.pop('three')
df['foo'] = 'bar'
df['one_trunc'] = df['one'][:2]
df.insert(1, 'bar', df['one'])
print(df)

Similar to 'mutate' in R/Dplyr
df = df.assign(four = df['one'] * np.sqrt(df['bar']))
print(df)

Pandas DataFrames can be index by colum, by label, by integer location, or by boolean
vectors. Table6.2 shows an overview of the different methods and their return values.

166 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Select column df[’colname’] Series
Select row by label df.loc[’label’] Series
Select row by integer location df.iloc[loc] Series
Slice rows df[::] DataFrame
Select rows by boolean vector df[bool] DataFrame

Table 6.2: Methods for indexing Pandas DataFrames

As noted earlier, Pandas automatically aligns data by indices, that is, by row and col-
umn labels, for operations on dataframes. Note how the addition of two dataframes
of unequal shape introduces ”NaNs”. For convenience, NumPy operations can also be
used to operate on Pandas DataFrames, which are automatically converted to NumPy
ndarrays before and converted back after such an operation.

df = pd.DataFrame(np.random.randn(10, 4),
columns=["A", "B", "C", "D"])

df2 = pd.DataFrame(np.random.randn(7, 3),
columns=["A", "B", "C"])

print(df + df2)

Elementwise operators
print(df * 5 + 2)
print(1/df)
print(df**4)

Transpose
print(df.T)

Using Numpy functions
print(np.exp(df))
print(np.asarray(df))

To apply element-wise character string operations on Series or DataFrames it is useful
to use the str property:

String functions with 'str'
s = pd.Series(

["A", "B", "C", "Aaba", "Baca", np.nan,
"CABA", "dog", "cat"], dtype="string")

s.str.lower()

Pandas provides a number of useful functions to get information about the contents
of a DataFrame. The info() function provides information about the columns and
their data types, while head() and tail() print the first and last few lines of a
DataFrame.

6.6. DATA MANAGEMENT WITH PANDAS 167

df.info()
df.head()
df.tail(3)

The boolean reduction functions all() and any() operate by column on DataFrames
with boolean values. As their names suggest, all() returns Truewhen the all entries
in a column are true, whereas any() returns True if any of the entries in a column are
true. The last line of the following Python code block re-applies any() to the Series
that results from the first application of any().

Boolean reductions
(df > 0).all()
(df > 0).any()
(df > 0).any().any()

When making comparisons on DataFrames that include ”NaN”, it is important to real-
ize that two ”NaNs” are not equal when using the == operator, but they are equal when
using the equals function. The following example illustrates this difference.

NaN's are not the same
df.iloc[0,0] = np.nan
(df+df == df*2).all()
(df + df).equals(df*2)

Pandas provides useful functions for basic descriptive statistics and aggregation on
DataFrames. In particular, the describe() function is useful to get a basic infor-
mation on the data in a DataFrame. The mean() function takes as its optional first
argument the axis number (0 for rows, 1 for columns) and can skip missing values
when summing. Multiple aggregates can be formed using the agg() function. The
Python code block below illustrates the use of these functions.

Descriptive statistics
df.mean(0)
df.mean(1, skipna=False)
df_std = (df - df.mean()) / df.std()
df.describe()

Aggregation with 'agg'
df.agg(['sum', 'mean', 'std'], 0)

Pandas DataFrames can be sorted by columns, and the functions nlargest() and
nsmallest() can be used to select a DataFrame with only the n smallest or largest
values in a given column.

168 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Sort by values
df.sort_values(by=['A', 'B'])
df.nsmallest(3, 'A')
df.nlargest(3, 'A')

A very useful way to identify or select data in a Pandas DataFrame is the query()
function, which accepts a simplified boolean condition as argument. This allows one
to write much shorter and compact selection logic, as shown in the following example.
Note the two different forms of the same logical operator & and and.

df = pd.DataFrame(np.random.rand(10, 3),
columns=list('abc'))

Pure python
df[(df['a'] < df['b']) & (df['b'] < df['c'])]

Shorter with Query
df.query('(a < b) & (b < c)')
df.query('a < b & b < c')
df.query('a < b and b < c')
df.query('a < b < c')

The query() function can also be used for membership tests in Series and DataFrames
using the in operator. This also is much more compact and easy to read than the pure
Python isin() function. The following example code block shows the pure Python
selection followed by equivalent selection with query():

df = pd.DataFrame({'a': list('aabbccddeeff'),
'b': list('aaaabbbbcccc'),
'c': np.random.randint(5, size=12),
'd': np.random.randint(9, size=12)})

Pure Python versus Query
df[df['a'].isin(df['b'])]
df.query('a in b')

df[~df['a'].isin(df['b'])]
df.query('a not in b')

df[df['b'].isin(df['a']) & (df['c'] < df['d'])]
df.query('a in b and c < d')

df[df['b'].isin(["a", "b", "c"])]
df.query('b == ["a", "b", "c"]')

df[df['c'].isin([1, 2])]
df.query('[1, 2] in c')

Pandas DataFrames also offer easy functions to remove duplicates. The following

6.7. THE PAGILA DATABASE IN PANDAS 169

Python example code block shows how to identify rows that contain duplicate elements
in a list of columns, and then remove the duplicates, keeping either the first or the last
row. Note the different row indices in the retained results of drop_duplicates and
their different values columns ”c” and ”d”.

df2 = df.copy()

df2.duplicated(['a', 'b'])
df2.drop_duplicates(['a', 'b'], keep='last')
df2.drop_duplicates(['a', 'b'], keep='first')

Finally, Pandas provides many functions for reading and writing DataFrames from and
to a variety or serialization formats and even SQL RDBMS. See the Pandas IO user
guide for details.

6.7 The Pagila Database in Pandas

This section the use of Pandas for descriptive data analysis using the Pagila database
data as an example. The Pagila database3 is a demonstration database originally devel-
oped for teaching and development of the MySQL RDBMS under the name Sakila4.
Pagila is designed as a sample database to illustrate database concepts and is based
on a fictional DVD rental store. It originally consists of several tables organized into
categories like film and actor information, customer data, store inventory, and rental
transactions. For this chapter, the Pagila data was summarized in a few related CSV
files.

The following Python code block reads the rentals data of the Pagila database into a
Pandas DataFrame using the read_csv() function. It then converts the data type of
some columns from character strings to datetime types so that one can use date and
time operations and arithmetic later.

3https://github.com/devrimgunduz/pagila,
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

4https://dev.mysql.com/doc/sakila/en/,
https://dev.mysql.com/doc/sakila/en/sakila-license.html

https://pandas.pydata.org/docs/user_guide/io.html
https://pandas.pydata.org/docs/user_guide/io.html
https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/sakila-license.html

170 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Read CSV
rentals = pd.read_csv('rentals.csv')

Convert data types
rentals['rental_date'] = \

pd.to_datetime(rentals['rental_date'], utc=True)
rentals['return_date'] = \

pd.to_datetime(rentals['return_date'], utc=True)
rentals['payment_date'] = \

pd.to_datetime(rentals['payment_date'], utc=True)

Basic information
rentals.info()
rentals.describe()
rentals.index
rentals.columns
rentals.shape

When working with data, it is often useful to first identify and remove missing values.
The following Python code block first identifies columns (axis=1) in the dataset that
contain any (any()) missing values (isna()). Of these filtered rentals, only some
columns are selected.

filtered_rentals = rentals[rentals.isna().any(axis=1)]

selected_rentals = \
filtered_rentals[
['last_name', 'rental_date', 'return_date', 'title', 'amount']]

When printing DataFrames, Pandas by default abbreviates the output to manageable
size. The number of rows and number of columns to be printed is controlled by two
Pandas options that can be set as shown in the following example, which removes any
limits.

pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)

The remainder of this section shows how Pandas can be used to provide equivalent
results as obtained in the previous chapter using R/dplyr and in the chapter on relational
databases with SQL. Compare the Python code to the R code and the SQL code to
achieve similar results.

Example: Find all films and the actors that appeared in them, ordered by film cate-
gory and year, for those films that are rated PG.

6.7. THE PAGILA DATABASE IN PANDAS 171

actors = pd.read_csv('actors.categories.csv')

result = pd.merge(rentals, actors, on='title',
suffixes=('_customer', '_actor'), how='outer')

result = result[result['rating'] == 'PG']
result['actor'] = result['last_name_actor'] + \

', ' + result['first_name_actor']

result.rename(columns={'release_year': 'year'}, inplace=True)

result = result[['actor', 'title', 'category', 'year']]

result.drop_duplicates(['actor', 'title', 'category', 'year'],
inplace=True)

result.sort_values(['category', 'year', 'title'], inplace=True)

grouped = result.groupby(['category', 'year', 'title'])

g_result = grouped['actor'].apply(list).reset_index()

print(g_result)

This Python code block above performs a series of data manipulation operations using
Pandas. The operations merge, filter, transform, and group data from the Pagila movie
rental dataset.

• Reading Data: The code reads a CSV file named ’actors.categories.csv’ into a
DataFrame called ”actors”.

• Merging DataFrames: It then merges two DataFrames: ”rentals” and ”actors”,
based on the ”title” column that is common to both DataFrames. The suffixes
parameter is used to differentiate columns with the same name in both DataFrames,
by adding either ”_customer” or ”_actor” to the column names. The how=’outer’
parameter ensures that all records from both DataFrames are included in the re-
sult, even if there are no matching titles in one of them.

• Filtering Data: After merging, the script filters the resulting DataFrame to in-
clude only rows where the ”rating” column contains the value ”PG”.

• Creating a New Column: A new column, ”actor”, is created by concatenating the
”last_name_actor” and ”first_name_actor” columns, separated by a comma.

• Renaming a Column: The ”release_year” column is renamed to ”year”.

• Selecting and Rearranging Columns: The DataFrame is then reduced and rear-
ranged to include only the columns ”actor”, ”title”, ”category”, and ”year”.

• Dropping Duplicates: Duplicate rows based on the combination of ”actor”, ”ti-
tle”, ”category”, and ”year” are removed. This ensures that each combination is
unique in the dataset.

172 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

• Sorting Data: The DataFrame is sorted by ”category”, then ”year”, and finally
”title”.

• Grouping Data and Creating a List: The data is grouped by ”category”, ”year”,
and ”title”. For each group, the ”actor” values are aggregated into a list. This
creates a list of actors for each movie title, categorized by year and category.

• Resetting Index: After the grouping and aggregation, the index is reset to turn
the grouped data back into a regular DataFrame.

• Printing the Final Result: Finally, the processed DataFrame is printed.

Example: Find the most popular actors in the rentals in each city.

The Python code block below combines the data frames from the multiple CSV files
that make up the Pagila data set, because the combined, full data is used for other
analysis examples below.

• The Python code merges the ”rentals” DataFrame with the ”addresses” DataFrame
based on the columns ”customer_address” in ”rentals” and ”address_id” in ”ad-
dresses” to linking rentals with corresponding customer addresses.

• The script then merges the resulting DataFrame with the ”actors”, based on the
”title” column.

addresses = pd.read_csv('addresses.csv')
addresses['phone'] = addresses['phone'].astype(str)

full_data = pd.merge(rentals, addresses,
left_on='customer_address',
right_on='address_id')

full_data = pd.merge(full_data, actors, on='title',
suffixes=('_customer', '_actor'))

The following Python code block performs the required analysis to on the full data
constructed above, using the following steps:

• The code groups the data by ”city” and ”actor” and calculates the size of each
group. This results in a count of how many times each actor’s movies were rented
in each city. The result is reset into a DataFrame ”grouped” with a new column
”count” representing these sizes.

• Within each city, actors are ranked based on the ”count” column, with the rank-
ing stored in a new column ”ranking”. The rank method is set to ’min’,
which means actors with the same count will have the same rank, and it ranks in
descending order of count.

• The code filters the DataFrame to select the top 3 actors (or ties) in terms of
rental counts in each city.

6.7. THE PAGILA DATABASE IN PANDAS 173

• The filtered data is then sorted by ”city”, ”ranking”, and ”actor” before being
printed.

full_data['actor'] = full_data['last_name_actor'] + ', ' + \
full_data['first_name_actor']

grouped = full_data.groupby(['city', 'actor']).size() \
.reset_index(name='count')

grouped['ranking'] = grouped.groupby('city')['count'] \
.rank(method='min', ascending=False)

filtered = grouped[grouped['ranking'] < 4]

sorted_df = filtered.sort_values(by=['city', 'ranking', 'actor'])

print(sorted_df)

Example: Find the customers who spend the most on rentals, and the number of
rentals with the highest total rental payments for each category grouped by rental du-
ration.

full_data['customer'] = full_data['first_name_customer'] + ' ' + \
full_data['last_name_customer']

selected_data = full_data[['customer', 'amount', 'rental_duration', \
'category', 'phone', 'city']]

grouped_data = selected_data \
.groupby(['category', 'rental_duration', 'customer']) \
.agg(payments=('amount', 'sum'), num_rentals=('amount', 'count')) \
.reset_index()

grouped_data['ranking'] = grouped_data \
.groupby(['category', 'rental_duration'])['payments'] \
.rank(method='min', ascending=False)

top_entries = grouped_data.loc[
grouped_data.groupby(['category', 'rental_duration'])['ranking'] \

.idxmin()]

print(top_entries)

By now, it should be clear what most of the functions in the analysis accomplish. How-
ever, two important new things to note. First, the agg() function computes aggregates
of the values in its first argument using the function in its second argument and stores
the aggregate values in a new column. For example, the code below creates a new col-
umn ”payments” with the ”sum” of the values of the ”amount” column of the grouped
data, and a new column ”num_rentals” with the ”count” of the values of the ”amount”

174 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

column. Second, the idxmin() function within the loc[] operator of the dataframe
selects the smallest index, i.e. the smallest (highest) ranking when the data is grouped
by category and rental duration.

Example: Get the top 5 and the bottom 5 grossing customers for each quarter.

This example demonstrates the Pandas date and time function to_period(). The
argument Q returns quarters. Other frequently used arguments are ’D’ for days, ’W’ for
weeks, ’M’ for months, ’Y’ for years, ’H’ for hours, and ’T’ for minutes. The use of
the sort_values() function demonstrates ”mixed” sorting, ascending by quarter,
and descending by payments.

full_data['customer'] = full_data['first_name_customer'] + ' ' + \
full_data['last_name_customer']

full_data['q'] = pd.to_datetime(full_data['rental_date']).dt \
.to_period("Q")

selected_data = full_data[['customer', 'q', 'amount', 'rental_date']]

grouped_data = selected_data.groupby(['q', 'customer']) \
.agg(payments=('amount', 'sum')).reset_index()

distinct_data = grouped_data \
.drop_duplicates(['customer', 'q', 'payments'])

distinct_data['rank_top'] = distinct_data \
.groupby('q')['payments'].rank(method='min', ascending=False)

distinct_data['rank_bot'] = distinct_data \
.groupby('q')['payments'].rank(method='min', ascending=True)

filtered_data = distinct_data[(distinct_data['rank_top'] < 6) |
(distinct_data['rank_bot'] < 6)]

sorted_data = filtered_data \
.sort_values(by=['q', 'payments'], ascending=[True, False])

print(sorted_data)

Example: Find the set of film titles by rental customer and the total number rentals
for each customer.

The code below introduces Lambda functions. Lambda functions are unnamed, in-line
functions, here it is a function that converts its parameter x to a set (i.e. it removes
duplicates), and then converts the set to a list. The Lambda function is used as an
argument to the apply function, that is, it is applied to all elements of the ”titles”
column in the grouped data. Recall that the ”titles” column was introduced earlier in
the script when the list function was applied to the ”title” column of the grouped
data and contains a list of film titles.

6.7. THE PAGILA DATABASE IN PANDAS 175

full_data['customer'] = \
full_data['first_name_customer'] + ' ' + \
full_data['last_name_customer']

selected_data = full_data[['customer', 'title']]

grouped_data = selected_data \
.groupby('customer')['title'] \
.apply(list) \
.reset_index(name='titles')

grouped_data['rentals'] = grouped_data['titles'].apply(len)

grouped_data['unique_titles'] = grouped_data['titles'] \
.apply(lambda x: list(set(x)))

grouped_data = grouped_data.drop(columns=['titles'])
sorted_data = grouped_data.sort_values(by='customer')

print(sorted_data)

Hands-On Exercise

1. Find all films with a rating of ’PG’
2. List all customers who live in Canada (with their address)
3. Find the average actual rental duration for all films

• This requires date arithmetic
4. Find the average overdue time for each customer

• This requires date arithmetic
5. List all films that have never been rented
6. List the names of actors who have played in more than 15 films

176 CHAPTER 6. INTRODUCTION TO DATA MANAGEMENT WITH PYTHON

Chapter 7

Data Visualization in R and
Python

Learning Goals
After reading this chapter, you should be able to:

• Explain different purposes for information visualization.

• Identify deceptive visualization techniques and avoid such techniques in your
own visualizations.

• Understand different types of color palettes and be able to choose a color palette
for a given visualization purpose.

• Understand the impact of color vision deficiency and its implications for creating
meaningful visualization.

• Select a type of plot that is appropriate for a given purpose.

• Create different types of plots in R and Python, including customization of col-
ors, axes, labels, and titles.

7.1 Introduction
Data visualization, the practice of transforming information into a visual context, has
become an indispensable part of modern data analysis and communication. This field
intersects art and science, requiring both creativity and analytical skills to convert com-
plex data sets into comprehensible, insightful visual representations. The motivations
for visualizing data are multifaceted. Primarily, it enhances understanding by simpli-
fying complex information, making patterns, trends, and correlations more apparent
than they would be in raw data. It also aids in storytelling, where data-driven narratives

177

178 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

can be compellingly presented to a broad audience, regardless of their expertise in data
analysis.

The purpose of visualization is to simplify, summarize and abstract complex infor-
mation into an easy to understand format for human consumption, for understanding,
persuasion or explanation, or for decision making. Visualizations can help to compare
different objects or things, they can help identify trends, patterns, and relationships. In
general, visualizations help in understanding data and gaining insight into a domain or
pheonomenon.

The recent history of data visualization is marked by rapid advancements fueled by
technology. In the last few decades, the advent of powerful computing and sophisti-
cated software tools has revolutionized this field. Where once it was the domain of
experts and specialists, data visualization has become accessible to a broader audience.
Tools ranging from simple spreadsheet applications to advanced data visualization soft-
ware have democratized the creation and interpretation of visual data. The rise of big
data and machine learning has further escalated the importance of data visualization.
As data sets have grown in size and complexity, the need for effective visualization
tools has become more pronounced, leading to innovative methods and approaches. In-
teractive visualizations, real-time data mapping, and the use of virtual and augmented
reality are some of the cutting-edge trends redefining how we see and interact with data
today. This evolution continues as we find new ways to visually interpret the vast and
growing ocean of data that characterizes the digital age.

Visualization is important because humans are very good at visual pattern recognition.
In fact, humans are too good at this, as they tend to also recognize patterns where
none exist. This makes it easy to deceive oneself or others with data visualizations.
Hence, visualization should always be undertaken with and supported by statistical
data analysis.

Visual Discovery
Visual discovery refers to the use of interactive visualization tools to uncover hidden
patterns, trends, and insights in data. This approach is a crucial aspect of modern data
analysis, emphasizing the power of human visual perception. Visual discovery lever-
ages the human brain’s innate ability to process visual information rapidly. By trans-
lating complex data sets into graphical representations, it enables quicker and more
intuitive understanding. Users can spot trends, outliers, and patterns more easily than
they could through rows of numbers or text.

Visual discovery is a highly iterative and dynamic process. Analysts rapidly create
or change data visualizations, such as charts, graphs, and maps, to explore different
aspects of the data. This interactivity allows for real-time exploration and analysis,
making it easier to drill down into specifics or zoom out for a broader view.

Visual discovery may be purely exploratory, without any prior knowledge by the data
analyst, or it may seek to confirm or verify the beliefs or hypotheses that the data
analyst has formed about the particular domain. However, even this confirmation is

7.1. INTRODUCTION 179

never final, but only a way to new insights and exploration. In this process, the analyst
explores the data, forms some beliefs or hypotheses based on the exploration, tries to
support it with a different visualization, and updates their beliefs or hypotheses based
on the later visualization.

Declarative Visualization (”Storytelling”)

In contrast to visual discovery, declarative visualization is purpose-driven and aims to
provide explanations to a particular audience. It is not interactive or dynamic. Visual-
izations are intended to affirm or support a conclusion and to convince an audience or
group of stakeholders. Information is not so much explored, as it is merely presented
and explained in visualization. Declarative visualization is used to support decision
making and is mainly static.

Operational Visualization (Monitoring)

In operational visualization, graphs and charts are used for supervision or monitoring
of the operation of a system. They provide system supervisors or controllers with a
real-time view of the state of key system properties and are used to spot situations or
trends that require intervention in the system’s operation, that is, operational decision
making.

Quantitative Messages

Good visualizations are focused on the quantitative message they are intended to con-
vey. For example, to present information about a time-series, that is, time-dependent
behaviour of one or more variables, a line chart is a good type of visualization. How-
ever, that line chart would not be as useful to convey relative rankings of items or
objects. For this purpose, a bar chart may be better suited. On the other hand, to
describe part-whole relationships, a pie chart may be useful to show what part of the
whole is contributed by its parts. Deviations from a mean or other standard, whether
positive or negative, can be easily understood from a bar chart as well. To understand
frequency distributions, one might use boxplots or histograms. Boxplots show median
values, and measures of the ”spread” or variability of the data. Histograms can show
a one or two dimensional frequency distribution of values. To understand correlations
of variables, a scatterplot is useful, where individual data points are plotted in a two
or three dimensional coordinate system, often augmented with statistical information
about their relationship. Finally, geographic information may use map data for visual-
ization. This is sometimes called a ”cartogram”. Points may be overlaid on a map, or
areas of a map may be colored or otherwise highlighted. In summary, it is important to
consider the message to convey or the insight to be gained from a visualization when
selecting the type of graph or chart.

180 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

7.2 Honesty in Visualization

For a number of reasons, it is easy to deceive with misleading visualizations. Humans
are prone to see trends or patterns where none exist. A misleading visualization can
use exploit this propensity in order to suggest relationships between objects or vari-
ables that do not exist. Humans recognize some aspects of visualization better, earlier,
and easier than others. For example, humans recognize the length of a line easier than
the area of a surface, and recognize variations in color better than they interpret textual
labels. A misleading visualization can exploit these cognitive effects to make the in-
terpreter focus on particular, misleading aspects in the visualization. Finally, because
visualizations are intended to abstract from the data itself and provide a summary, vi-
sualizations may not include sufficient information about the data or its processing to
allow the reader to understand what is shown, making it easy to suggest interpretations
that are misleading.

Here are some general guidelines for using visualizations:

• Do not deceive the target audience

• Do not diminish or hide relationships or trends

• Do not exaggerate relationships or trends

• Do not obfuscate, confuse, or hide information

The term ”dark pattern” has been coined to describe the opposite of best practices in
a field, practices intended to deceive, mislead, or frustrate others. There are many of
such dark patterns in visualizations:

• Use an inappropriate graph or chart type to hide or obfuscate relationships or
trends. As noted above, different types of graph are suitable to convey different
types of messages. An example is shown in Figure 7.1 that illustrates that a
bar or column chart is more useful for comparisons of objects than pie charts,
so the use of a pie chart could hide or obfuscate trends that may otherwise be
prominent.

• Graph unrelated data to suggest non-existent relationships. The viewer of a visu-
alization expects that data that is graphed together has a meaningful relationship.
Simply by graphing data together, the analyst suggests a relationship where none
may exist.

• Scale multiple vertical axes to suggest correlations. Scaling a graph with mul-
tiple vertical axes so that lines better align shows visual similarities that are not
borne out by the data.

• Use confusing colors. For example, a color palette whose perceived color differ-
ences do not map linearly to the actual differences in the data may be misleading.
For another example, using different shades of the same color for values that are
very different will visually diminish the difference.

7.2. HONESTY IN VISUALIZATION 181

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.1: Comparing Pie Charts

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.2: Truncated Axes

• Omit summary statistics. For example, showing only the mean or median values,
e.g. in a line or bar chart, omits the uncertainty in the data. It is better to also
include error bars, information about quartiles or outliers in the chart to show
variability or uncertainty, especially when there is significant uncertainty about
differences or absolute values.

• Truncate or scale axes to hide or exaggerate trend. Truncating or scaling axes
leads to increased slopes of lines or perceived differences between points or lev-
els. This exaggerates differences or trends. Figure 7.2 shows an example of how
small differences (right) can be exaggerated (left) in a bar chart. Similarly, Fig-
ure 7.3 shows how scaling or the use of different aspect ratios can be used to
visually exaggerate or diminish trends or relationships between variables.

• Scale in multiple dimensions. The relative change or difference should be repre-
sented by a single dimension only. For example, in a bar or column chart, only

https://en.wikipedia.org/wiki/Misleading_graph
https://en.wikipedia.org/wiki/Misleading_graph

182 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.3: Scaling Axes and Aspect Ratios

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.4: 3D Pie Charts

the height or length of bar/column should change, not its width or area as well.
This issue is often connected to the use of 3-dimensional graphics. While visu-
ally appealing, they exaggerate the apparent visual area of a foreground object,
as illustrated in Figure 7.4. A related issue is the use of images in graphs, shown
in Figure 7.5. In the improper scaling, the image is enlarged in two dimensions,
suggesting a larger difference than there actually exists in the data.

• Plot cumulative growth to hide trend. A cumulative trend will always a positive
trend, even as the contribution of individual items decreases sharply.

• Use maps for non-geographic data. Maps represent geographical area, rather
than population or some other variables of interest. For example, coloring a
map by voter preference visually overemphasizes thinly populated but large ge-
ographic areas.

• Use incomplete data (”cherry-picking”). This includes examples such as show-
ing only the previous year’s data, instead of data for the previous five years to
hide a trend, showing quarterly data instead of weekly data to hide volatility, or
showing every data for every second month instead of for every month to hide
specific data points or trends. Figure 7.6 shows an example of this dark pattern.

https://en.wikipedia.org/wiki/Misleading_graph
https://en.wikipedia.org/wiki/Misleading_graph

7.3. SPECIAL TYPES OF DATA AND VISUAL ANALYTICS 183

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.5: Scaling Multiple Dimensions

https://en.wikipedia.org/wiki/Misleading_graph

Figure 7.6: Incomplete Data

• Use invalid data. When data is known to be unreliable, that is, its quality is low,
its uncertainty may be high, and it has a large error rate, it is misleading to use it
to convey a quantitative message.

The comics in Figure 7.7, taken from the popular XKCD website1 shows some of these
visualization dark patterns in a humorous way.

In summary, misleading charts and visualizations can be particularly problematic be-
cause they exploit the visual nature of human perception, making the deception less
noticeable. It is crucial for both creators and consumers of data visualizations to be
aware of these pitfalls and to approach data representation and interpretation with a
critical eye.

7.3 Special Types of Data and Visual Analytics

Streaming Data
Visualizing streaming data, also known as real-time data visualization, involves the
dynamic representation of data that is continuously updated as new data arrives. This

1All XKCD comics are copyright by their creator (www.xkcd.com) and licensed under CC-BY-NC.

https://en.wikipedia.org/wiki/Misleading_graph
https://en.wikipedia.org/wiki/Misleading_graph
www.xkcd.com

184 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

XKCD comics are copyright by their creator (www.xkcd.com) and licensed under CC-BY-NC

Figure 7.7: Visualization Comics by XKCD

www.xkcd.com

7.3. SPECIAL TYPES OF DATA AND VISUAL ANALYTICS 185

type of visualization is essential in contexts where timely and rapid data interpretation
is critical, such as in financial trading, or network monitoring.

Streaming data presents some specific challenges for visualization. One of the primary
challenges is managing the high velocity and volume of streaming data. The system
must process and visualize data quickly enough to keep up with the incoming stream.
Typically, only a limited window of data is available while older data is discarded. This
means that, since the focus is on real-time data, it can be challenging to provide suffi-
cient historical context for users to understand the current data in a broader temporal
perspective. Moreover, due to the highly dynamic nature of the data, presenting stream-
ing data in a way that is not overwhelming to the user is challenging. The visualization
must strike a balance between providing enough detail and overloading the user with
information, in particular information about changes, and between providing respon-
sive graphs and overloading the user with such rapid changes they lose the ability to
understand the data.

Spatial Data

Visualizing geospatial or geographical data involves representing information that has
a spatial component on a map or in a spatial context. While this type of visualization
can be powerful for revealing patterns and insights related to location and geography,
it presents some unique challenges. Geospatial data is often complex and multidi-
mensional, encompassing not only locations but also attributes like time, elevation,
population density, and more. Geospatial datasets can be very large, especially with
the advent of satellite imagery, IoT (Internet of Things) sensors, and other sources of
big data. Moreover, the granularity of physical space can range from very small areas
of a few square meters to very large areas, such as provinces or states. For example,
postal-code level data can produce very large data sets, even in small jurisdictions.

A specific problem is the choice of areal unit to use for data analysis or visualization.
For example, location data points can be aggregated by counties or districts, by postal
code areas, by school districtcs or school intake areas, by police or fire service cov-
erage, or many others. Each of these different areal units will lead to different data
summaries and therefore also to different visualizations. Choosing the type of area to
use as the basis for visualization can have a large impact on the insights gained or the
messages conveyed to the audience. A simple example is shown in Figure 7.8 that
shows how aggregate statistics depend on the type of areal unit or boundary.

Another particular challenge with spatial data is mapping the three-dimensional Earth
onto a two-dimensional surface. This mapping inevitably involves some form of pro-
jection, which can distort spatial relationships. Choosing an appropriate map projection
that minimizes distortion for the specific data and use case is a critical challenge. There
are many such projections2, that distort or leave undistorted various properties such as
lengths, areas, or angles. Figure 7.9 shows some of these issues in a humorous way.

2https://en.wikipedia.org/wiki/Map_projection

https://en.wikipedia.org/wiki/Map_projection

186 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

https://en.wikipedia.org/wiki/File:Maup_rate_numbers.png

Figure 7.8: Different types of spatial divisions lead to different interpretations

Network and Graph Data
Visualizing network or graph data involves representing entities as nodes and the re-
lationships between them as edges in a graphical format. This type of visualization is
crucial for understanding complex structures in various fields like social network anal-
ysis, biology, computer science, and more. Typically, nodes are represented as boxes,
circles, or textual labels, while edges are represented as lines or curves. Directed graphs
use arrowheads on lines or curves to indicate the directionality of an edge.

Network visualization poses several unique challenges. Networks, especially large
ones, can become very complex and cluttered when visualized. As the number of nodes
and edges increases, the visualization can quickly become a tangled mess, making it
difficult to discern meaningful patterns or relationships.

To effectively explore graph data, especially large graphs, interactive features like
zooming, panning, and highlighting are essential. Finally, graphs often contain large
sets of attributes for nodes and edges. Representing these attributes effectively with-
out cluttering the visualization or overwhelming the viewer is challenging. Techniques
like color coding, sizing, or shaping nodes and edges are commonly used but require
careful design.

In densely connected networks, edges can overlap, and nodes can occlude each other,
leading to a loss of information and making it difficult to trace relationships or identify
individual elements. Choosing an appropriate layout algorithm is therefore crucial for
network visualization. There exist many different ways to visually layout a graph to
make it visually clear and easy to understand and generally of high quality.

One of the most commonly-used types of algorithms position graph vertices based
on physical metaphors of attractive and repulsive forces, for example an imaginary
system of physical springs, sometimes called a force-directed graph layout. Adjacent

https://en.wikipedia.org/wiki/File:Maup_rate_numbers.png

7.3. SPECIAL TYPES OF DATA AND VISUAL ANALYTICS 187

XKCD comics are copyright by their creator (www.xkcd.com) and licensed under CC-BY-NC

Figure 7.9: Map Visualization Comics by XKCD

vertices are modelled with an attractive force, while all vertices have a repulsive force.
The graph layout algorithm then tries to produce a layout in which an overall energy
function is minimized. Figure 7.10 shows an example of such a graph layout.

Another commonly used graph layout algorithm is the simple circular layout, where
nodes are arranged equidistantly around a circle with edges drawn as lines or arrows.
Figure 7.11 shows an example this type of graph layout.

In an arc diagram, as shown in Figure 7.12, the nodes are arranged on a straight line
while edges are drawn as semicircles between nodes. In this layout, it is important to
arrange the nodes to minimize the number of crossings of edge semicircles.

A common type of layout for directed and acyclic graphs is the layered graph, typically
layed out from top to bottom or from left to right. The layout begins at the root node
or nodes, and increments the layer for each edge between adjacent nodes, as shown in

www.xkcd.com

188 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

https://commons.wikimedia.org/wiki/File:SocialNetworkAnalysis.png

Figure 7.10: Force-directed graph layout example

https://commons.wikimedia.org/wiki/File:BGP_FSM_3.svg

Figure 7.11: Circular graph layout example

Figure 7.13.

When assessing the quality of the graph layout, a number of considerations are impor-
tant:

• Number of crossings of lines or curves. Such crossings are visually confusing
and should be minimized. In fact, this is such an important criterion that graph
theory has defined a planar graph as one that can be visualized in two dimensions
without any line crossings. Another qual

• Area of the graph. Graphs should be drawn in the minimal amount of space
while still being easy to read and understand.

• Symmetries. Being able to exploit symmetries in the underlying graph data and

https://commons.wikimedia.org/wiki/File:SocialNetworkAnalysis.png
https://commons.wikimedia.org/wiki/File:BGP_FSM_3.svg

7.3. SPECIAL TYPES OF DATA AND VISUAL ANALYTICS 189

https://commons.wikimedia.org/wiki/File:Goldner-Harary-linear.svg

Figure 7.12: Arc graph layout example

https://commons.wikimedia.org/wiki/File:DC%2B%2B_derivatives.svg

Figure 7.13: Layered graph layout example

represent or highlight them in the graphical layout makes the graph visualization
easier to understand.

• Shape homogeneity. A particular problem when using node labels, e.g. for names
or node attributes, is the size of the node shape in the graph visualization. It
is preferrable to maintain equal size, despite differences in label length. Lines
should have the lowest or an equal number of bends.

• Angular resolution. In graphs with many edges from nodes, it is important to
draw lines in such a way that the edges can be clearly differentiated. This is very
important in circular layouts, but also plays a large role in other types of graph
layouts.

https://commons.wikimedia.org/wiki/File:Goldner-Harary-linear.svg
https://commons.wikimedia.org/wiki/File:DC%2B%2B_derivatives.svg

190 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

7.4 Color Palettes
The use of color in data visualization is crucial, serving not only to enhance the visual
appeal of a graphic but also to improve its clarity and interpretability. Color choices
in data visualizations, determined by the selected color palettes, play a significant role
in distinguishing different data points or categories, setting the tone of the presentation
(for example, formal versus informal presentations), ensuring accessibility for viewers
with color vision deficiencies, and enhancing the overall aesthetic appeal. Desirable
characteristics of color palettes are:

• Range of Values: Colorful palettes are required when many different values have
to be represented and distinguished.

• Perceptual Unformity: The relative perceived differences between colors in the
palette should mirror the relative differences in the data values represented by
the colors.

• Robustness to Color Vision Deficiency: Colour vision deficiency (CFD), collo-
quially called ”color blindness” impacts almost 10% of the population and must
therefore be a consideration when choosing color palettes so that the data visu-
alization can be properly perceived and interpreted by everyone.

• Consistency: When using multiple plots, their color palette should be the same
or at least consistent so as not to cause confusion in interpretation and require
less effort for understanding by the reader.

• Aesthetic Appeal: Finally, a colour palette should also be ”pretty”.

Types of Color Palettes
Color palettes can be distinguished by the number of colours they use, and whether the
colors span a continuous color space or are a discrete set.

Sequential color palettes

Sequential color palettes, like the one in Figure 7.14a, use a single color and vary the
hue or depth of the color. They are best used for data that has an inherent order, as
they clearly show progression or gradation. However, they are not suitable for data
that lacks a natural ordering. The monochromatic color palette is a special case of a
sequential palette. This may be suitable when it is likely that the output will be printed
on media without the use of color.

Diverging color palettes

Diverging color palettes, like the one in Figure 7.14c, on the other hand, use two colors
as anchors and use gradations either through white, as in Figure 7.14c, or through
black. They are ideal for emphasizing deviations from a median or mean value, or for
highlighting extremes on either side of a critical midpoint. However, these palettes may
be misleading if used for data without a meaningful center.

7.4. COLOR PALETTES 191

Sequential

(a) Sequential color palette

Diverging

(b) Monochromatic color palette

Diverging

(c) Diverging color palette

Spectral

(d) Spectral color palette

Figure 7.14: Types of Color Palettes

Spectral color palettes

Spectral color palettes, like the one in Figure 7.14d use a variety of different colors
without any implicit ordering. They are used to represent discrete categories without
inherent ordering, and are useful for differentiating distinct groups of data. The down-
side is that they can become confusing with too many categories.

Sequential and diverging color palettes may be discrete, like the ones shown in Fig-
ure 7.14, or continuous, while spectral palettes are always discrete.

192 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Color Vision Deficiency
The human eye contains three different types of color receptor cells, called ”S-cones”
that perceive the color blue, ”M-cones” that perceive the color green, and ”L-cones”
that perceive the color red. Color vision deficiency (CVD) is a biological impairment
where some color receptor cells in the eye are missing, less frequent, or their function
is diminished. In protanopia, the S-cones are missing or impaired, in deuteranopia, the
M-cones are missing or impaired, and in tritanopia, the L-cones are impaired. When
all are missing or non-functional, one speaks of monochromatism. CVD is a fairly
common disability, afflicting approximately 1 in 12 men and 1 in 200 women, with an
overall incidence rate in Canada of more than 5%.

To show the different types of color deficiencies, consider the images in Figure 7.15.
Figure 7.15a shows the original image as it is perceived by a person who does not suffer
from CVD. The remaining four images show how the photo appears to persons with
different types of CVD.

Realizing the prevalence and the effects of CVD means that the color palette that is
chosen for data visualization should be interpretable for and lead to the same inter-
pretation even for readers with CVD. For example, the Viridis color palette available
in many visualization software packages was designed with CVD readability in mind.
Compare the popular ”Color Brewer Paired” palette in Figure 7.16 to the Viridis palette
in Figure 7.17. The figures show that the Viridis palette is readable and interpretable
with any CVD condition, whereas the Paired palette is not because some colors cannot
be distinguished under various CVD conditions.

In summary, the thoughtful application of color in data visualization is not merely
an artistic decision but a strategic one. It influences how effectively the data is com-
municated and understood, ensuring that visualizations are not only informative and
accurate, but also inclusive and engaging to a diverse audience.

7.4. COLOR PALETTES 193

Copyright Memorial University of Newfoundland

(a) Original Image (MUN Faculty of Education Class Room)

(b) Monochromatism (c) Protanopia

(d) Deuteranopia (e) Tritanopia

Figure 7.15: Simulated Color Vision Deficiencies

194 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Brewer Paired

Original

Deuteranope

Protanope

Tritanope

Desaturated

Figure 7.16: Example: Colourbrewer Palette ”Paired”

Viridis Palette

Original

Deuteranope

Protanope

Tritanope

Desaturated

Figure 7.17: Viridis Colour Palette

7.5. COMMON TYPES OF PLOTS 195

7.5 Common Types of Plots
Depending on the number of variables to visualize, whether they are discrete or contin-
uous, and the quantitative message to convey, different types of plots may be chosen.
While the list of plot types presented here is not comprehensive, and new ways of vi-
sualizing data are constantly being invented, these are widely used plot types that are
available in most visualization software packages and can be created with little effort.

• Plots for One Variable

– Continuous

* Area: Degree of change over time, or relationship of parts to aggregate

* Density, Dot, Frequency, Histogram: Show frequency distribution
of data

– Discrete

* Bar: Connections among individual things, compare items of different
groups

* Pie: Relationships of parts to aggregate

• Plots for Two Variables

– Both Continuous

* Point: Connections among numeric values, show multiple groups of
data

* Lines, Local Regression: Relationships/correlations among multiple
data series or over time

* Text / Label: Frequency of labels in content/document

– One Discrete, One Continuous

* Column: Correlations among things or information changes over time

* Box, Dot, Violin: Compare distributions between many groups, dis-
play spread and skew of data

– Both Discrete

* Points/Counts: Magnitude of counts

* Jitter: Plots of data points

– Distributions of Two Variables

* Bin2D, Density2D, Hex: Shows frequency of values over two contin-
uous variables

• Plots for Three Variables

– Continuous

196 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

* Contour, Raster and Tile: Shows relationships among three data se-
ries

• Visualizing Errors and Uncertainty

– Give a general idea of how precise a value is, or how far a value might be
from the true value

– Typically used to augment a given visualization

– Common Visualization Styles:

* Crossbar

* Errorbar

* Range (line, point)

7.6 Graphics Libraries and Frameworks

R
The R software system offers several powerful data visualization packages, each with
unique features and strengths. Among the most prominent are ggplot2, Plotly for R,
ggvis, and Shiny, which collectively cater to a wide range of visualization needs.

At the forefront is ggplot2, a package based on the Grammar of Graphics, which pro-
vides a coherent system for describing and building graphs. Its strength lies in its
ability to create complex, multi-layered graphics with a syntax that is both powerful
and expressive. ggplot2’s approach allows users to build plots layer by layer, making it
easier to handle and modify the components of a graphic. Its extensive customization
options and the ability to handle a wide variety of graphical forms make it popular for
static graphics.

Plotly for R integrates the functionality of the Plotly JavaScript library into R, enabling
the creation of interactive, web-based graphs. This package extends the interactive
capabilities of R visualizations, allowing users to produce graphics that can be zoomed,
panned, and hovered over to reveal additional information. Its integration with R makes
it a popular choice for adding an interactive element to data presentations, bridging the
gap between static and dynamic visualizations.

ggvis, another package in the R visualization landscape, combines the concepts of gg-
plot2 with the interactivity of the web. It is designed to integrate well with R’s reactive
programming package, Shiny, and the dplyr package, enabling a smooth workflow for
interactive data exploration. ggvis focuses on web-based, interactive visualizations,
providing a syntax similar to ggplot2 but with additional capabilities to interactively
change the data display and explore data in real-time.

Shiny, distinct from the traditional visualization packages, is an R package for building
interactive web applications. It allows users to turn their analyses into interactive web

7.6. GRAPHICS LIBRARIES AND FRAMEWORKS 197

applications without requiring HTML, CSS, or JavaScript knowledge. Shiny applica-
tions have the power to not only display complex visualizations but also to interact with
the user, making it possible to dynamically change the data, the types of plots, filters,
and other aspects of the visualization based on user input. This interactivity makes
Shiny particularly useful for creating data dashboards, where users need to explore and
interact with data in a flexible manner.

Together, these packages provide R users with a comprehensive toolkit for creating
static and interactive visualizations. From detailed and layered static plots with ggplot2
to dynamic, user-driven applications with Shiny, the R ecosystem enables a vast array
of data visualization possibilities, catering to both simple and complex, interactive data
exploration and presentation needs.

Python
The Python programming environment also offers a rich landscape of data visualization
packages, each tailored to different needs and preferences.

Matplotlib is the foundational library for data visualization in Python, offering a wide
array of functionalities to create static, animated, and interactive plots. It is highly cus-
tomizable and capable of creating virtually any type of chart or graph. The versatility
of Matplotlib allows for detailed control over plot elements, but this can also lead to
more complex code for intricate visualizations.

Seaborn builds on Matplotlib and simplifies the creation of beautiful, informative sta-
tistical graphics. It integrates closely with Pandas, a data manipulation library in
Python, and provides a high-level interface for drawing attractive and informative sta-
tistical graphics. Seaborn’s strength lies in its ability to create complex visualizations
like heatmaps, time series, and violin plots with relatively straightforward commands.

Plotnine is inspired by R’s ggplot2 library and brings the Grammar of Graphics to
Python. It offers a similar layer-based approach to visualization, making it a familiar
choice for users transitioning from R to Python. Plotnine is particularly effective for
creating complex, multi-layered graphics with a syntax that emphasizes the declarative
nature of the visualization process.

Plotly Express is a high-level interface for the Plotly library, designed to make it easy to
create complex, interactive, and beautifully rendered visualizations. It offers a simple
syntax for creating a wide variety of chart types and is particularly adept at handling
large and complex datasets. Plotly Express’s strength lies in its integration with Dash,
another Plotly product, for building interactive web applications.

Plotly Graph Objects is the lower-level interface of the Plotly library, providing more
granular control over the visualization elements. It’s ideal for users who need to cre-
ate highly customized visualizations or who require fine-tuning beyond what Plotly
Express offers.

Plotly Dash is a framework for building interactive web applications with Python (and
R and Julia). Dash is unique in its ability to create richly interactive, web-based data

198 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

visualizations and dashboards without requiring advanced knowledge of web develop-
ment. It integrates seamlessly with Plotly’s suite, allowing for the creation of sophisti-
cated data visualization interfaces.

Bokeh, another prominent Python library, excels in creating interactive and real-time
streaming visualizations. It is particularly well-suited for web-based dashboards and
applications, offering both simplicity in creating complex interactive plots and the
power to handle streaming datasets.

In summary, Python’s ecosystem for data visualization is diverse and robust, ranging
from Matplotlib’s comprehensive capabilities for static plots to the interactive and web-
based functionalities of Plotly and Bokeh. Each library offers unique strengths, whether
it be in creating complex statistical visualizations, interactive web applications, or real-
time data streams, catering to a wide range of data visualization needs and preferences.

JavaScript/Web
JavaScript, being the standard language of web development, boasts several powerful
data visualization libraries that are integral for creating interactive and dynamic visual-
izations on the web. Among these, D3.js, Chart.js, and Google Charts are particularly
noteworthy, each with their unique capabilities and strengths.

D3.js stands out as the most sophisticated and flexible JavaScript library for data vi-
sualization. Its core strength lies in its ability to bind arbitrary data to a Document
Object Model (DOM), and then apply data-driven transformations to the document.
D3 allows for extremely detailed and sophisticated visualizations by giving developers
direct control over the SVG or HTML output. This level of control enables the creation
of complex, interactive, and highly customizable visualizations. However, this power
comes with a steep learning curve and can be overkill for simpler visualizations.

Chart.js is a more lightweight and user-friendly alternative, specifically designed for
creating simple yet beautiful and interactive charts. It uses HTML5 Canvas for render-
ing, which makes it efficient in terms of performance. Chart.js supports a variety of
chart types, including bar, line, pie, radar, and more, all of which are responsive and
mobile-ready by default. Its simplicity and ease of use make it a popular choice for
developers who need to implement standard charts quickly and without the complexity
of D3.js.

Google Charts provides an even simpler way of incorporating charts into web pages.
It offers a wide array of chart types and is particularly known for its integration with
other Google services, like Google Spreadsheets. Google Charts is designed to be easy
to use, and it handles a lot of the heavy lifting behind the scenes, such as drawing the
charts, which makes it an appealing option for users who prefer a more straightforward
and less code-intensive approach. The downside is that it offers less customization
compared to D3.js and is reliant on external Google services, which might raise privacy
concerns or issues with data control.

Each of these libraries serves different needs within the web development and data vi-
sualization community. D3.js is ideal for creating complex, interactive visualizations

7.7. MAPPING DATA TO PLOT ELEMENTS 199

where control and customization are paramount. Chart.js offers a balance between sim-
plicity and functionality, suitable for standard web-based charts. Google Charts, with
its ease of use and integration with Google products, is excellent for straightforward
visualizations where ease of implementation is a priority. The choice among these
libraries largely depends on the specific requirements of the project, the complexity
of the visualizations needed, and the developer’s proficiency with JavaScript and web
technologies.

7.7 Mapping Data to Plot Elements

Creating a basic visualization in two dimensions, such as bar chart, a line chart, or a
bubble chart, means that data elements or data series must be mapped to visualization
elements. This is the core of the visualization task, and the most fundamental choice
the data analyst has to make. Table 7.1 shows plot elements that data variables can
be mapped to. In principle, a different data variable can be mapped to each of these,
resulting in potentially being able to represent more than a dozen variables in one
diagram. However, in practice, the number of concurrent variables to represent should
be limited to no more than 3, in order for the visualization to remain interpretable and
not to require too much cognitive effort on the part of the reader.

X, Y, Z axes
Colour (of points, lines, areas, shapes)
Transparency (”alpha”)
Patterns (within areas, shapes)
Size, Weight/Width (of points and lines)
Shape, Style (of points and lines)

Table 7.1: Plot elements that can be mapped to data variables

7.8 Visualization in R using ggplot2

This section provides an introduction to data visualization using the ggplot library in
R. The example dataset for this section is the Fuel Consumption Ratings for battery
electric vehicles, provided the Government of Canada through its Open Government
Portal3. At the time of writing, the dataset was last updated on October 10, 2023. The
dataset contains the variables shown in Table 7.2.

Reading and preprocessing the data is straightforward in R, shown in the following
code block:

3https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64

https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64

200 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Column Data Type Definition

Make Discrete Manufacturer
Model Discrete Model name
Year Numeric Model year
Category Discrete Small, Midsize, Large, Pickup, SUV, Station Wagon, etc.
City Numeric Consumption in l/100km equiv.
Hwy Numeric Consumption in l/100km equiv.
Comb Numeric Consumption in l/100km equiv.
Range Numeric Driving range in km

Table 7.2: Fuel efficiency data set variables

Import libraries
library(tidyverse)
Read CSV
e <- read.csv('https://evermann.ca/busi4720/fuel.csv')
Pre-process for data types
e$Year <- as.numeric(e$Year)
e$Category <- as.factor(e$Category)
e$Fuel <- as.factor(e$Fuel)
e$City <- as.numeric(e$City)
e$Hwy <- as.numeric(e$Hwy)
e$Comb <- as.numeric(e$Comb)
e$Range <- as.numeric(e$Range)
e$Annual <- as.numeric(e$Annual)
e.clean <- e

Next, load the required graphics libraries. A number of extensions to the core ggplot2
library have been developed to provide additional capabilities, such as radar plots, pat-
tern fills, providing more control over scales and axes, etc.

library(ggplot2)
library(ggpattern)
library(ggstream)
library(ggsci)
library(scales)
library(ggrepel)
library(ggradar)

The core ggplot() function can be used in a dplyr pipeline and accepts the processed
data tibble. The core argument to ggplot() is the ”aesthetic” that maps plot elements
to data variables. The actual plots themselves are then added through the use of various
”geoms”. Such geoms respresent commonly used plot types. The geoms ”inherit” the
aesthetic specified in ggplot() and can add to it by including more variables mapped

7.8. VISUALIZATION IN R USING GGPLOT2 201

to different plot elements. More than one geom can be added to a plot, allowing the
analyst to overlay plot types or combine plots for multiple data series or data sets. The
final graph can be saved in a variety of different image formats.

The first example below introduces the histogram geom. Histograms show the count of
values in a certain range. The ggplot() function’s aesthetic maps the ”Range” vari-
able of the tibble to the x axis of the plot. The argument to the geom_histogram()
function indcates that 50 bins should be formed, i.e. the data is divided in 50 separate
regions for counting and plotting. The ggsave() function saves the last plot in a file
with the specified height and width.

e.clean |>
ggplot(aes(x=Range)) +

geom_histogram(bins=50)

ggsave("histogram.pdf",
height=5, width=7.5, units='in')

0

10

20

30

40

200 400 600 800
Range

co
un

t

A density plot using the geom_density() function, is similar to a histogram in
that it indicates the frequency of values. However, a density plot shows a continuous
probability distribution of the data values, and as such is limited in range between 0
and 1.

The example below adds a number of elements to the basic density plot. The function
labs() allows specification of labels for all plot elements. The geom_vline()
geoms add vertical lines. Note that these geoms do not receive the data from the pipe,
but the data is specified using the data argument. The aesthetics of a vertical line map
the x axis intercept to a data variable. Different line types are used for the different
lines. The annotate() function adds text annotations to the plot. Each annotation
prints a label at a set of x and y coordinates in the plot, with a specific size and hor-
izontal justification. For example, hjust=0 means the text is left-justified. Consult

202 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

the documentation for further details.

Prepare summary statistics

mean_v <- e.clean |>
summarize(mean_v = mean(Range),

median_v = median(Range),
lower95=quantile(Range, .025),
upper95=quantile(Range, .975),
maxdensity = max(density(Range)$y))

e.clean |>
ggplot(aes(Range)) +
geom_density(kernel='gaussian',

fill='lightblue') +
labs(x = 'Range (km)',

y = 'Proportion of Vehicles',
title='Density Plot - Electric Vehicle Range',
subtitle='Years 2012 to 2024',
caption='Lower and Upper 95 percentile, \

median and mean') +
geom_vline(data=mean_v,

aes(xintercept=mean_v),
linetype='dashed') +

geom_vline(data=mean_v,
aes(xintercept=median_v),
linetype='dotdash') +

geom_vline(data=mean_v,
aes(xintercept=lower95),
linetype='dotted') +

geom_vline(data=mean_v,
aes(xintercept=upper95),
linetype='dotted') +

annotate('text',
label=paste(' L95=\n ',round(mean_v$lower95),sep=''),
x = mean_v$lower95, y = mean_v$maxdensity/2,
size=3.5, hjust=0) +

annotate('text',
label=paste(' Med=\n ',round(mean_v$median_v),sep=''),
x = mean_v$median_v, y = mean_v$maxdensity*3/4,
size=3.5, hjust=0) +

annotate('text',
label=paste(' Mean=\n ',round(mean_v$mean_v),sep=''),
x = mean_v$mean_v, y = mean_v$maxdensity*5/8,
size=3.5, hjust=0) +

annotate('text',
label=paste(' U95=\n ',round(mean_v$upper95),sep=''),
x = mean_v$upper95, y = mean_v$maxdensity/2,
size=3.5, hjust=0)

7.8. VISUALIZATION IN R USING GGPLOT2 203

 L95=
 109

 Med=
 417

 Mean=
 411

 U95=
 660

0.000

0.001

0.002

0.003

0.004

200 400 600 800
Range (km)

P
ro

po
rt

io
n

of
 V

eh
ic

le
s

Years 2012 to 2024

Density Plot − Electric Vehicle Range

Lower and Upper 95 percentile,
 median and mean

The next example shows how histograms and density plots can be combined. The R
code fragment below indicates only the relevant changes to the previous example.

...
geom_histogram(aes(y=..density..), bins=50,

alpha=0.5, fill='white', color='black',) +
geom_density(kernel='gaussian',

alpha=0.25, fill='lightblue') +
...

 L95=
 109

 Med=
 417

 Mean=
 411

 U95=
 660

0.000

0.002

0.004

200 400 600 800
Range (km)

P
ro

po
rt

io
n

of
 V

eh
ic

le
s

Years 2012 to 2024

Density Plot − Electric Vehicle Range

Lower and Upper 95 percentile,
 median and mean

An area plot is essentially a line plot where the area under the line filled. However,
in contrast to a line plot, when plotting multiple data variables in an area plot, the
area plot is cumulative, that is, data are stacked on top of each other. The following
example first uses dplyr functions to compute a summary statistic, and then pipes the

204 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

result into the ggplot() function. geom_text() is another way to add annota-
tions to the data. This geom uses its own aesthetic in the example below. Note that
position=’jitter’ indicates that overlapping points (i.e. points with the same
data values) should be randomly moved a little bit to show them separately.

e.clean %>%
group_by(Year) %>%
summarize(meanRange = mean(Range)) %>%
ungroup() %>%
ggplot(aes(Year, meanRange)) +
geom_area(fill='purple') +
geom_text(aes(label=round(meanRange)),

size=5, position='jitter') +
labs(x='Year', y='Mean Range (km)',

title='Vehicle Range by Year',
subtitle='Years 2012-2024')

108

219 210
239

312
332 335

381
412409

440
467

445

0

100

200

300

400

2015 2020
Year

M
ea

n
R

an
ge

 (
km

)

Years 2012−2024

Vehicle Range by Year

The next example shows a column chart. Again, dplyr functions are used to create suit-
able summary statistics to plot, and the summarized data is then piped to ggplot().
The variable ”metric” is mapped to the ”fill” element of the plot, that is the color with
which columns are filled. The position=’dodge’ argument to the the geom_col()
function indicates that columns are located next to each other, instead of being stacked
on top of each other.

This example also shows customization of the scales. Here, the fill scale (that is, the
colour) is customized, first by specifying a colour palette, and then by providing la-
bels for the different categories. The legend is automatically added to the right of the
column plot.

7.8. VISUALIZATION IN R USING GGPLOT2 205

e.clean %>%
group_by(Year) %>%
summarize(meanCity = mean(City), meanHwy = mean(Hwy)) %>%
ungroup() %>%
pivot_longer(cols=c('meanCity', 'meanHwy'),

names_to='metric',
values_to='consumption') |>

ggplot(aes(Year, consumption, fill=metric)) +
geom_col(position='dodge') +
scale_fill_brewer(palette="Paired") +
scale_fill_discrete(labels=c("City", "Highway")) +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l/100km equivalent)',
fill='',
title='Electric Vehicle Range',
subtitle='Years 2012 to 2024')

0

1

2

3

2015 2020 2025
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

(l/
10

0k
m

 e
qu

iv
al

en
t)

City

Highway

Years 2012 to 2024

Electric Vehicle Range

When it is clear that a plot is likely to be printed in black and white, it may be useful
to omit the use of colours and instead use different fill patterns. They are provided by
the ggpattern package that provides the geom_col_pattern geom. As shown
in the code below, the aesthetics for this geom can map data values to different aspects
of a fill pattern, such as the pattern type and the pattern angle.

This example also customizes the scale for the ”pattern” geom to provide values for
the different pattern types and labels for the two data series. Note that more then the
required two values for patterns are listed in the example to showcase the different
options provided by the ggpattern package. Additionally, the guides() function
is used to omit the legend for the pattern angle (because the same data is mapped to
pattern type and pattern angle) and the theme() function customizes the layout of the
legend.

206 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

e.clean %>%
group_by(Year) %>%
summarize(meanCity = mean(City),

meanHwy = mean(Hwy)) %>%
ungroup() %>%
pivot_longer(

cols=c('meanCity', 'meanHwy'),
names_to='metric',
values_to='consumption') %>%

ggplot(aes(Year, consumption)) +
geom_col_pattern(

aes(pattern_type=metric, pattern_angle=metric),
pattern='polygon_tiling',
pattern_fill='white',
pattern_scale=0.5,
position='dodge',
pattern_key_scale_factor=0.4) +

scale_pattern_type_manual(
values = c('hexagonal', 'rhombille', 'pythagorean',

'truncated_square', 'rhombitrihexagonal',
'truncated_trihexagonal'),

labels=c("City", "Highway")) +
labs(x = 'Year', y='Mean Fuel Consumption',

pattern_type='',
title='Electric Vehicle Range',
subtitle='Years 2012 to 2024') +

guides(pattern_angle=FALSE,
pattern_type=guide_legend(nrow=1)) +

theme(legend.key.size=unit(1.5, 'cm'),
legend.position='bottom')

0

1

2

3

2015 2020 2025
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

City Highway

Years 2012 to 2024

Electric Vehicle Range

A box plot, also known as a box-and-whisker plot, is a way of displaying the distribu-
tion of data based on 5 summary statistics: the minimum, first quartile (Q1), median,
third quartile (Q3), and the maximum. A box plot provides a visual summary of the

7.8. VISUALIZATION IN R USING GGPLOT2 207

spread, central tendency, and symmetry of the data. Boxplots contain the following
elements:

• The Box:’indexBox (in Box plot) The bottom and top edges of the box represent
the first quartile (Q1, the 25th percentile) and the third quartile (Q3, the 75th per-
centile), respectively. The box therefore describes the interquartile range (IQR),
i.e. the distance between the first and third quartiles.

• The Median: Inside the box, there is usually a line that denotes the median (the
50th percentile) of the dataset. By comparing the placement of the median line
to the extent of the first and third quartiles, one can judge whether the data is
skewed.

• Whiskers: Extending from the box are lines called whiskers. One common
method is to extend the whiskers to the furthest data point within 1.5 times the
IQR from the quartiles. This means that the lower whisker extends to the small-
est data point greater than Q1 - 1.5 * IQR and the upper whisker extends to the
largest data point less than Q3 + 1.5 * IQR.

• Outliers: Data points that fall outside of the whiskers are often considered out-
liers and may be plotted as individual points.

Box plots are particularly useful for displaying the distribution of data, comparing
multiple distributions, and identifying outliers.

The following example introduces the stat_summary() function to add a summary
statistic in the form of a text label to the plot. The label is computed by the stat(y)
function, which in turn calls fun.y specified within the stat_summary() function
itself. The function as used in this example determines how to label the outlier points
in the box plot, using the text geom and its label.

e.clean %>%
pivot_longer(cols=c('City', 'Hwy'),

names_to='metric',
values_to='consumption') %>%

ggplot(aes(x=as.factor(Year), y=consumption, fill=metric)) +
geom_boxplot() +
stat_summary(

aes(label = round(stat(y), 1)),
geom = "text",
size=2,
fun.y = function(y) {

o<-boxplot.stats(y)$out;
if(length(o)==0) NA else o}) +

scale_fill_brewer(palette="Paired") +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l/100km equivalent)',
fill='',
title='Electric Vehicle Range',
subtitle='Years 2012 to 2024') +

theme(legend.key.size=unit(1, 'cm'),
legend.position='top')

208 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2.2

3.2
3.3
3.2

2.9

3.1

2.9

3.53.53.5

33

3.33.33.3
3.4

3.93.9

4.9

5.4

4.64.6

4.9

3.8

4

4.9

5.15.1
5.2

5.55.5
5.4

2

3

4

5

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

(l/
10

0k
m

 e
qu

iv
al

en
t)

City Hwy

Years 2012 to 2024

Electric Vehicle Range

Violin plots are another way to visualize the spread and distribution of the data. Their
width is determined by the frequency/distribution of data points. The following exam-
ple introduces the geom_violin geom and the geom_jitter geom. As the name
suggests, the jitter geom plots and ”jitters” the data points, by moving them slightly
to avoid overlap. The arguments provided to geom_jitter() set the width, the
color and size of the points, the fill color and the transparency level (”alpha”). the plot
indicates the distribution of data, which is reinforced by the visual ”density” of the
individual data points in the plot.

e.clean %>%
ggplot(aes(x=as.factor(Year), y=Comb)) +
geom_violin(fill='lightblue') +
geom_jitter(width=0.15, color='black',

size=1, fill=NA, alpha=0.5) +
scale_fill_brewer(palette="Paired") +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l/100km equivalent)',
fill='',
title='Electric Vehicle Range',
subtitle='Years 2012 to 2024')

7.8. VISUALIZATION IN R USING GGPLOT2 209

2

3

4

5

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

(l/
10

0k
m

 e
qu

iv
al

en
t)

Years 2012 to 2024

Electric Vehicle Range

A dot plot is useful for showing individual data points. In this example, the data are
binned along the y axis (that is, by combined fuel economy). The stack ratio determines
the horizontal separation of points.

e.clean %>%
ggplot(aes(x=as.factor(Year), y=Comb)) +

geom_dotplot(binaxis='y',
stackdir='center',
stackratio=0.5,
binpositions='all',
dotsize=0.5,
color='black',
fill='orange') +

scale_fill_brewer(palette="Paired") +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l/100km equiv)',
fill='',
title='Electric Vehicle Range',
subtitle='Years 2012 to 2024')

210 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2

3

4

5

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

(l/
10

0k
m

 e
qu

iv
)

Years 2012 to 2024

Electric Vehicle Range

Instead of using a jitter plot with a violin plot, it is sometimes better to combine a violin
plot with a dot plot, as in the following example.

e.clean %>%
filter(Year > 2019) %>%
ggplot(aes(x=as.factor(Year), y=Comb)) +
geom_dotplot(binaxis='y',

stackdir='center', stackratio=0.5,
binpositions='all', dotsize=0.5,
color='black', fill='orange') +

geom_violin(color='black', fill=NA) +
stat_summary(fun.data=mean_sdl,

fun.args=list(mult=1),
size=1, color='blue',
geom="pointrange") +

scale_fill_brewer(palette="Paired") +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l/100km equiv)',
fill='',
title='Electric Vehicle Range',
subtitle='Years 2020 to 2024') +

theme(legend.position='none')

7.8. VISUALIZATION IN R USING GGPLOT2 211

2

3

4

5

2020 2021 2022 2023 2024
Year

M
ea

n
F

ue
l C

on
su

m
pt

io
n

(l/
10

0k
m

 e
qu

iv
)

Years 2020 to 2024

Electric Vehicle Range

A count plot is useful to show the count of data values as the size of a point. In the
following example, the point size is determined by the count of values in each combi-
nation of ”Year” and ”Category”. All points have the same color, and the area is scaled
to a maximum size of 10 using 6 different sizes. Additionally, this examples shows
further customization of the plot legend using the theme() function, by surrounding
the legend with a black rectangle without fill (transparent). The guides() function
omits a legend for the color.

e.clean %>%
ggplot(aes(as.factor(Year), as.factor(Category))) +

geom_count(color='darkolivegreen4')+
scale_size_area(max_size=10, n.breaks=6) +
scale_color_brewer(palette="Paired") +
scale_y_discrete(

labels=c('Compact', 'Large', 'Mid-Size', 'Pickup truck',
'Subcompact', 'Two-seater', 'SUV (standard)',
'SUV (small)', 'Station Wagon (small)')) +

guides(color=FALSE) +
labs(x = 'Year',

y='Category',
fill='',
title='Electric Vehicle Models by Category',
subtitle='Years 2012 to 2024') +

theme(legend.background=element_blank(),
legend.box.background=element_rect(color='black',fill=NA),
legend.key.size=unit(1, 'cm'))

212 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Compact

Large

Mid−Size

Pickup truck

Subcompact

Two−seater

SUV (standard)

SUV (small)

Station Wagon (small)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

C
at

eg
or

y
n

10

20

30

Years 2012 to 2024

Electric Vehicle Models by Category

A similar effect can be achieved with jitter plot, where the size of the points ”cloud”
indicates is used analogous to the size of the point. Visually, the following plot achieves
a similar goal as the previous dot plot. Here, the same variable is mapped to both the
x axis as well as the color element, but the guides function omits a legend for the
colour element.

e.clean %>%
ggplot(aes(x=as.factor(Year),

y=as.factor(Category),
color=as.factor(Year))) +

geom_jitter(width=0.2, height=0.2) +
scale_color_manual(values=c25) +
scale_y_discrete(
labels=c('Compact', 'Large', 'Mid-Size',

'Pickup truck', 'Subcompact',
'Two-seater', 'SUV (std)',
'SUV (sm)', 'Station Wagon (sm)')) +

guides(color=FALSE) +
labs(x = 'Year',

y='Category',
fill='Make',
title='Electric Vehicle Models by Category',
subtitle='Years 2012 to 2024')

7.8. VISUALIZATION IN R USING GGPLOT2 213

Compact

Large

Mid−Size

Pickup truck

Subcompact

Two−seater

SUV (std)

SUV (sm)

Station Wagon (sm)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

C
at

eg
or

y

Years 2012 to 2024

Electric Vehicle Models by Category

A points plot, sometimes called a bubble chart, generalizes the count plot. Whereas
the count plot uses the number of data values to determine the size of the point, the
points plot allows one to provide an explicit mapping for the point size. However, the
following example also maps the size of the point to the count of values by ”Year” and
”Category”, while the colour is mapped to the ”Category” variable.

The point size scale is continuous in the range from 0 to 20, the color scale is set to the
”tron” colour palette, while the y axis is continuous. The colous are mapped to specific
labels for displaying in the legend. Note that the legend contains information both for
the size as well as the colour of the points.

e.clean %>%
group_by(Year, Category) %>%
summarize(totalcount=n(), meanRange=mean(Range)) %>%
ungroup () %>%

ggplot(aes(x=as.factor(Year), y=meanRange,
size=totalcount, color=Category)) +

geom_point(alpha=0.8) +
scale_size_continuous(range=c(0, 20)) +
scale_color_tron() +
scale_y_continuous(labels=scales::comma) +
scale_color_discrete(

labels=c('Compact', 'Large', 'Mid-Size', 'Pickup truck',
'Subcompact', 'Two-seater', 'SUV (dtd)',
'SUV (sm)', 'Station Wagon (sm)')) +

labs(x = 'Year', y='Range',
fill='Make', size='Number of Models',
title='Electric Vehicles by Year and Category',
subtitle='Years 2012 to 2024',) +

guides(color=guide_legend(position='right'),
size=guide_legend(position='right')) +

theme(legend.background=element_blank(),
legend.box.background=element_rect(color='black', fill=NA),
legend.key.size=unit(1, 'cm'))

214 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

200

400

600

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

R
an

ge

Category

Compact

Large

Mid−Size

Pickup truck

Subcompact

Two−seater

SUV (dtd)

SUV (sm)

Station Wagon (sm)

Number of Models

10

20

30

Years 2012 to 2024

Electric Vehicles by Year and Category

The next example uses two geoms, geom_line() to show a line plot and geom_point()
to also include the data points themselves. While visually not very informative in this
case, the example illustrates an aesthetic that maps variables to five different plot ele-
ments. However, the same variable ”Category” is here mapped to three different plot
elements, the colour (of both points and lines), the shape of a point, and the style or
type of the line. The code R fragment below omits specification of labels and theme
information for the legend, which may be assumed similar to the above example.

e.clean %>%
filter(Year >= 2022 & Year <= 2023) %>%
filter(Comb <= 4) %>%
filter(Category != 'PL') %>%
filter(Category != 'T') %>%

ggplot(aes(Comb, Range,
color=Category,
shape=Category,
linetype=Category)) +

geom_line(size=1) +
geom_point(size=4) +
scale_color_manual(values=c25,
labels=c('Compact', 'Large', 'Mid-Size',

'Subcompact', 'SUV (std)',
'SUV (sn)', 'Station Wagon (sm)')) +

scale_linetype(
labels=c('Compact', 'Large', 'Mid-Size',

'Subcompact', 'SUV (std)',
'SUV (sm)', 'Station Wagon (sm)')) +

scale_shape(
labels=c('Compact', 'Large', 'Mid-Size',

'Subcompact', 'SUV (std)',
'SUV (small)', 'Station Wagon (sm)')) +

...

7.8. VISUALIZATION IN R USING GGPLOT2 215

200

400

600

800

2.0 2.5 3.0 3.5
Combined l/100km

R
an

ge

Category

Compact

Large

Mid−Size

Subcompact

SUV (std)

SUV (sm)

Station Wagon (sm)

Category

Compact

Large

Mid−Size

Subcompact

SUV (std)

SUV (sm)

Station Wagon (sm)

Years 2012 to 2024

Electric Vehicle Fuel Consumption

To add ”steps” to the line, one can use the geom_step() instead of geom_line(),
as in the following example.

...
geom_step(size=1) +

...

200

400

600

800

2.0 2.5 3.0 3.5
Combined l/100km

R
an

ge

Category

Compact

Large

Mid−Size

Subcompact

SUV (std)

SUV (sm)

Station Wagon (sm)

Category

Compact

Large

Mid−Size

Subcompact

SUV (std)

SUV (sm)

Station Wagon (sm)

Years 2012 to 2024

Electric Vehicle Fuel Consumption

A pie chart is produced in ggplot2 by taking a stacked bar chart, and ”bending” it by
plotting on a polar coordinate system. The following example uses the coord_polar()
function to specify a coordinate system where the ”y” axis is mapped to the angle of
rotation, direction=-1 indicates clock-wise rotation and start=0 indicates to
begin the chart at the top of the ”pie”. The geom_text() geom is used to spec-
ify labels and compute their position in the pie chart. It provides its own aesthetic

216 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

for the label’s color and position. Note that it assumes a stacked bar chart so that
position_stack(vjust=0.5) positions the label vertically in the center of the
area. When plotted in the polar coordinate system, this translates to the label centered
in the pie slice.

e.clean %>%
filter(Year==2023) %>%
group_by(Make) %>% summarize(totalcount = n()) %>%
filter(totalcount >= 5) %>%
ungroup() %>%

ggplot(aes(x='', y=totalcount, fill=Make)) +
geom_bar(stat='identity',

color='black', size=0.25, width=1) +
coord_polar('y', direction=-1, start=0) +
geom_text(aes(

label=ifelse(totalcount >= 5,totalcount,'')),
color='lightgrey',
position = position_stack(vjust=0.5)) +

scale_y_continuous(labels=NULL) +
scale_color_brewer(palette="Paired") +
labs(x = '', y = '', fill='Make',

title='Electric Vehicle Offerings by Make',
subtitle='2023, Makes with >= 5 models') +

theme_void() +
theme(legend.key.size=unit(1, 'cm'))

6

17

11

8

8

9
12

9

32

17

Make

Audi

BMW

Ford

Hyundai

Kia

Lucid

Mercedes−Benz

Porsche

Rivian

Tesla

2023, Makes with >= 5 models

Electric Vehicle Offerings by Make

A donut chart is simply a pie chart with a hole in the center. As the pie chart in ggplot2
is a ”bent” bar chart, the hole is achieved by adding ”whitespace” to the right of the
stacked bars (that is, by moving the x axis limits), which will end up getting ”bent” into
the hole in the center (recall that the coord_polar() function bends clock-wise).

7.8. VISUALIZATION IN R USING GGPLOT2 217

holesize <- 2

....

ggplot(aes(x=holesize, y=totalcount, fill=Make)) +
geom_col() +
xlim(c(0.2, holesize+0.5)) +

...

6

17

11

8

8

9

12

9

32

17
Make

Audi

BMW

Ford

Hyundai

Kia

Lucid

Mercedes−Benz

Porsche

Rivian

Tesla

2023, Makes with >= 5 models

Electric Vehicle Offerings by Make

A radar plot, sometimes called a spiderweb plot, is useful to show a comparison of
different objects on a range of variables. In R, the radar plot is produced by its own
library, ggradar. In contrast to ggplot, ggradar requires its data in ”wide” for-
mat, that is, rather than a single column that provides values for different categories,
the values for each category must be provided in their own column.

The following example computes some summary statistics, and scales the resulting
variables to a range between 0 and 1, i.e. it standardizes them using the mutate_at()
function. The radar plot does not require an aesthetic specification, as it is based on the
number of columns in the data frame or tibble provided from the pipe.

218 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

e.clean %>%
filter(Year == 2023) %>% group_by(Make) %>%
summarize(meanCity = 1/mean(City),

meanHwy = 1/mean(Hwy),
meanRange = mean(Range)/100,
nModels = n()) %>%

filter(nModels >= 5) %>% ungroup() %>%
select(-nModels) %>%
mutate_at(vars(-Make), rescale) %>%
ggradar(axis.labels=

c('City', 'Highway', 'Range (100km)'),
values.radar='',
group.line.width=0.75,
group.point.size=3) +

scale_color_ucscgb() +
labs(x = '', y = '', fill='Make',

title='Canadian Fuel Consumption Data',
subtitle='2023, Makes with more than 5 models')

Range (100km)

City

Highway

Audi

BMW

Ford

Hyundai

Kia

Lucid

Mercedes−Benz

Porsche

Rivian

Tesla

2023, Makes with more than 5 models
Canadian Fuel Consumption Data

Sometimes, it is useful to compare trends of variables that use different scales. How-
ever, beware of the potential for misuse; that is, it is easy to visually suggest correlations
where none exist. The following example includes three line plots (geom_line())
and specifies a secondary y axis using sec.axis=sec_axis(...). In ggplot2,
the secondary axis cannot be arbitrary but must be a scaled version of the primary
axis. In this example, it is scaled by multiplying by one hundred using the formulat

7.8. VISUALIZATION IN R USING GGPLOT2 219

.*100. Accordingly the data is provided by dividing by a hundred using mutate().

e.clean %>%
group_by(Year) %>%
summarize(meanCity = mean(City),

meanHwy = mean(Hwy),
meanRange = mean(Range)) %>%

ungroup() %>%
mutate(meanRange2 = meanRange/100) %>%

ggplot(aes(x=Year)) +
scale_color_manual(name='Region',

values=c('Mean City' = 'red',
'Mean Highway' = 'blue',
'Mean Range' = 'orange')) +

geom_line(aes(y=meanCity, color='Mean City')) +
geom_line(aes(y=meanHwy, color='Mean Highway')) +
geom_line(aes(y=meanRange2, color='Mean Range')) +
scale_y_continuous(labels=scales::comma,

name="Fuel Consumption\n(l/100km equiv)",
sec.axis=sec_axis(~ .*100,

labels=scales::comma,
name="Mean Range (km)")) +

scale_x_continuous(breaks=seq(from=2012,to=2024,by=1)) +
labs(x = 'Year', color='',

title='Canadian Fuel Consumption Data',
subtitle='2012 to 2024') +

theme(legend.key.size=unit(1.5, 'cm'),
axis.text.x = element_text(angle=45, hjust=1))

1

2

3

4

100

200

300

400

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

F
ue

l C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

al
en

t) M
ean R

ange (km
)

Region

Mean City

Mean Highway

Mean Range

2012 to 2024

Canadian Fuel Consumption Data

So called ”trendlines” can be added to plots easily with the geom_smooth geom.
Different options to compute the trendlines exist, but the most frequently used one is the
local polynomial regression, where the slope of the line is determined by a regression
that uses data points in the vicinity of the line, weighted by their proximity. As with
any regression, there is uncertainty around the estimated slope parameter (standard

220 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

deviation or variance) and this uncertainty can be visualized as well, as shown in the
plot below by the gray area around the trendline. Note that the uncertainty is greater in
areas where there are fewer data points, as would be expected.

e.clean %>%
ggplot(aes(Year, Range)) +
geom_point() +
geom_smooth() +
scale_y_continuous(labels=scales::comma) +
labs(x = 'Year', color='', y = 'Mean Range (km)',

title='Canadian Fuel Consumption Data',
subtitle='2012 to 2024')

200

400

600

800

2015 2020
Year

M
ea

n
R

an
ge

 (
km

)

2012 to 2024

Canadian Fuel Consumption Data

The next three examples augment the previous plot with indicators for the variability or
spread of the data. First, a red point range indication is overlayed (geom="pointrange")
using the stat_summary() function. This shows mean and standard deviation. An-
other way to visualize variability is with the error bars or cross bars. All show the same
information, but in different ways:

e.clean %>%
ggplot(aes(Year, Range)) +
geom_point() +
geom_smooth() +
stat_summary(

fun.data=mean_sdl,
fun.args=list(mult=1),
color='red',
geom="pointrange") +

...

7.8. VISUALIZATION IN R USING GGPLOT2 221

200

400

600

800

2015 2020
Year

M
ea

n
R

an
ge

 (
km

)

2012 to 2024

Canadian Fuel Consumption Data

...
stat_summary(

fun.data=mean_sdl,
fun.args=list(mult=1),
color='red',
geom="errorbar") +

...

200

400

600

800

2015 2020 2025
Year

M
ea

n
R

an
ge

 (
km

)

2012 to 2024

Canadian Fuel Consumption Data

222 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

...
stat_summary(

fun.data=mean_sdl,
fun.args=list(mult=1),
color='red',
geom="crossbar",
width=0.4) +

...

200

400

600

800

2015 2020
Year

M
ea

n
R

an
ge

 (
km

)

2012 to 2024

Canadian Fuel Consumption Data

The one-dimensional density plots seen earlier can be generalized to show the two-
dimensional joint distribution of values of two variables. The following example uses
two geoms for this, one to show the density lines (geom_density_2d()), and one
to fill the lines in shades of color (geom_density_2d_filled()). Additionally,
individual data points are plotted using the point geom.

e.clean %>%
ggplot(aes(x=Hwy, y=City)) +
geom_point(color="black", size=1,

position='jitter') +
geom_density_2d_filled(alpha=0.5) +
geom_density_2d(linewidth=0.25, colour='black') +
scale_x_continuous(labels=scales::comma) +
labs(x = 'Highway Consumption\n(l/100km equiv)',

y = 'City Consumption\n(l/100km equiv)',
title='Density Plot-Fuel Consumption Ratings',
subtitle='Years 2015 to 2024') +

theme(legend.position='none')

7.8. VISUALIZATION IN R USING GGPLOT2 223

2

3

4

5

2 3 4 5
Highway Consumption

(l/100km equiv)

C
ity

 C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

)

Years 2015 to 2024

Density Plot−Fuel Consumption Ratings

When one is interested in discretizing the two variables, one may show the frequencies
or counts in a two-dimensional bin plot. Again, individual data points are shown using
the point geom. A somewhat different version is shown below in two-dimensional hex
plot, using hexagonal tiles and a different color scale. However, the same information
is visualized.

e.clean %>%
ggplot(aes(x=Hwy, y=City)) +

geom_point(color="black", size=1,
position='jitter') +

geom_bin2d(alpha=0.5, bins=5) +
scale_x_continuous(labels=scales::comma) +
labs(x = 'Highway Consumption\n(l/100km equiv)',

y = 'City Consumption\n(l/100km equiv)',
fill='Count',
title='Density Plot-Fuel Consumption Ratings',
subtitle='Years 2012 to 2024')

224 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2

3

4

5

2 3 4 5 6
Highway Consumption

(l/100km equiv)

C
ity

 C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

)

50

100

150

Count

Years 2012 to 2024

Density Plot−Fuel Consumption Ratings

...
geom_hex(alpha=0.5, bins=5) +
scale_fill_distiller(palette=4, direction=-1) +

...

2

3

4

5

2 3 4 5
Highway Consumption

(l/100km equiv)

C
ity

 C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

)

50

100

Count

Years 2012 to 2024

Density Plot−Fuel Consumption Ratings

Note that the above two plots are essentially plots of two variables. If, instead of count
or density, a third variable is to be shown, one can use the raster geom geom_raster().
This requires the aesthetic to specify a data variable mapping for the color element of
the plot, as in the following example. Again, individual data points are included with
the point geom.

7.8. VISUALIZATION IN R USING GGPLOT2 225

e.clean %>%
ggplot(aes(x=Hwy, y=City)) +

geom_point(color="black", size=0.5,
position='jitter') +

geom_raster(aes(fill=Range), alpha=0.7,
interpolate=TRUE) +

scale_fill_distiller(palette=4, direction=-1) +
scale_x_continuous(labels=scales::comma) +
labs(x = 'Highway Consumption\n(l/100km equiv)',

y = 'City Consumption\n(l/100km equiv)',
fill='Range',
title='Raster Plot-Fuel Consumption Ratings',
subtitle='Years 2012 to 2024')

2

3

4

5

2 3 4 5
Highway Consumption

(l/100km equiv)

C
ity

 C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

)

200

400

600

800

Range

Years 2012 to 2024

Raster Plot−Fuel Consumption Ratings

The last example shows the use of so-called ”rugs” that show marginal distributions of
the plot variables. They can be added to different types of plots, including 3D raster
plots as done here, as well as 2D bin and hex plots, or one-dimensional histograms.
Rugs are added by using the geom_rug() function.

e.clean %>%
ggplot(aes(x=Hwy, y=City)) +

geom_point(color="black", size=0.5,
position='jitter') +

geom_raster(aes(fill=Range), alpha=0.7,
interpolate=TRUE) +

geom_rug(position='jitter') +
scale_fill_distiller(palette=4, direction=-1) +
scale_x_continuous(labels=scales::comma) +
labs(x = 'Highway Consumption\n(l/100km equiv)',

y = 'City Consumption\n(l/100km equiv)',
fill='Range',
title='Raster Plot-Fuel Consumption Ratings',
subtitle='Years 2012 to 2024')

226 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2

3

4

5

2 3 4 5
Highway Consumption

(l/100km equiv)

C
ity

 C
on

su
m

pt
io

n
(l/

10
0k

m
 e

qu
iv

)

200

400

600

800

Range

Years 2012 to 2024

Raster Plot−Fuel Consumption Ratings

Hands-On Exercises Using the Pagila database files from the previous chap-
ter on data analysis with R, create the following plots using ggplot2/R. Use the
appropriate ggplot2 functions to add informative labels for axes, useful legends
to the plots, and use suitable color palettes.

1. A histogram and/or density chart of film length by film category
2. A column chart of the mean rental payments for films by film category

• Add error bars to this chart
3. A scatter plot of total rental payments by week

• Add a local regression line to this plot
4. A pie or donut chart of rental counts by film rating

7.9 Visualization in Python using Plotly Express

This section demonstrates visualization in Python using Plotly Express. Plotly Express
by default produces web-based, i.e. JavaScript based, interactive plots. On the Python
side, the diagram is expressed in more primitive graphical descriptions, serialized in a
JSON document, which is sent to the web browser, where the Plotly JavaScript library
renders them. Interactivity includes the ability to zoom and pan the plot, and to hover
over plot elements to get tooltip overlays, e.g. specific values of points or lines in the
plots.

The examples in this section use the same data set as the R examples above, and as
much as possible try to provide similar diagrams. The first Python code fragment
imports the required packages and loads the data set.

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 227

import pandas as pd
import plotly.express as px
import plotly.io as pio
pio.kaleido.scope.mathjax = None

Read data
fuel = pd.read_csv('https://evermann.ca/busi4720/fuel.csv')

The histogram function does as its name suggests, and produces a histogram. The
figure must the shown and can be written to a file using a variety of format. By default
show() opens the standard web browser to show the figure. In this mode, the figures
are interactive, and can be manually saved to a PNG file.

Create histogram
fig = px.histogram(fuel, x='Range', nbins=50)

Show histogram, by default show in web browser
fig.show()

Save figure to image
fig.write_image("px.histogram.pdf", height=500, width=750)

100 200 300 400 500 600 700 800
0

10

20

30

40

50

Range

co
un
t

Similar to the R example earlier, summary information can be added to figures. This
is done using the add_vline() functions, in the example below with different line
styles, annotation text, and annotation positions. The example below also uses update_layout()
for adding a plot title and providing more informative labels for the x and y axes.

228 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Calculating summary statistics
mean_v = fuel['Range'].mean()
median_v = fuel['Range'].median()
lower95 = fuel['Range'].quantile(0.025)
upper95 = fuel['Range'].quantile(0.975)

Creating the density plot
fig = px.histogram(fuel, x='Range',

color_discrete_sequence=['pink'])

Adding vertical lines and annotations
fig.add_vline(x=mean_v, line_dash='dash',

annotation_text=f'Mean = {round(mean_v)}',
annotation_position='top right')

fig.add_vline(x=median_v, line_dash='dot',
annotation_text=f'Median = {round(median_v)}',
annotation_position='bottom right')

fig.add_vline(x=lower95, line_dash='dot',
annotation_text=f'L95 = {round(lower95)}',
annotation_position='top left')

fig.add_vline(x=upper95, line_dash='dot',
annotation_text=f'U95 = {round(upper95)}',
annotation_position='bottom left')

fig.update_layout(
title='Density Plot - Years 2012 to 2024',
xaxis_title='Range (km)',
yaxis_title='Proportion of Vehicles')

100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Density Plot - Years 2012 to 2024

Range (km)

P
ro

po
rti

on
 o

f V
eh

ic
le

s

Mean = 411

Median = 417

L95 = 109

U95 = 660

The following column chart example uses the mean fuel consumption information.
The fuel_grouped DataFrame is prepared by aggregating within groups using the
NamedAgg() function of Pandas dataframes, forming new columns in the DataFrame
for the aggregated information. These columns are then ”melted” using the melt func-
tion so that instead they become rows with names ”metric” and ”consumption” instead,

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 229

where ”metric” contains they type of value (city or highway fuel consumption) and
”consumption” contains the actual numeric value. The values in the ”metric” column
are then mapped to new values using the map() function on the DataFrame column.
This is done so that the chart legend shows ”nice” labels. The resulting DataFrame is
then used in the px.bar() function to produce a bar chart with columns next to each
other (barmode=’group’), informative labels and a title. Note that labels are set in
px.bar to ensure that tooltip labels on hover are displayed nicely. Finally the figure
layout is updated with x and y axes titles.

fuel_grouped = fuel.groupby('Year').agg(
meanCity=pd.NamedAgg('City', 'mean'),
meanHwy=pd.NamedAgg('Hwy', 'mean')).reset_index()

fuel_long = pd.melt(fuel_grouped,
id_vars=['Year'],
value_vars=['meanCity', 'meanHwy'],
var_name='metric',
value_name='consumption')

fuel_long['metric'] = fuel_long['metric'] \
.map({'meanCity': 'City', 'meanHwy': 'Highway'})

fig = px.bar(fuel_long, x='Year', y='consumption',
color='metric', barmode='group',
labels={'consumption': 'Mean Cons\n(l/100km equiv)', 'metric': ''},
title='Electric Vehicle Range (2012 to 2024)',
color_discrete_map={'City': 'blue', 'Highway': 'green'})

fig.update_layout(
xaxis_title='Year',
yaxis_title='Mean Cons\n(l/100km equiv)')

2012 2014 2016 2018 2020 2022 2024
0

0.5

1

1.5

2

2.5

3 City
Highway

Electric Vehicle Range (2012 to 2024)

Year

M
ea

n
C

on
s

(l/
10

0k
m

 e
qu

iv
)

Patterns are easier to do in Plotly Express than in R. Below is the same plot, but using

230 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

the pattern_shape attribute for the fuel efficiency metric. As for the R example
earlier, the sequence of pattern shapes for different categories is provided. Here too,
more than the required two are shown to demonstrate the full set of options. The
template is set to simple_white so as not to show the grid lines or filled background
that can be seen in the above plots. The update_yaxes() function sets the tick
labels to two significant digits, right justified. The update_traces() function sets
the pattern to black, the fillmode to transparent and

fig = px.bar(fuel_long, x='Year', y='consumption',
pattern_shape = 'metric', barmode='group',
pattern_shape_sequence = ['.', 'x', '+', '|', '-', '/'],
title = 'Electric Vehicle Range {2012 to 2024)',
text_auto=True,
template="simple_white",
labels={'consumption': 'Mean Cons\n(l/100km equiv)', 'metric': ''})

fig.update_yaxes(tickformat=',.2r')
fig.update_traces(

marker=dict(color='black', line_color='black',
pattern_fillmode='replace'))

2.0

2.3 2.2

2.2

2.3 2.3

2.1

2.2

2.2

2.3

2.4

2.5

2.7

2.5

2.5 2.4 2.4

2.4 2.3 2.3

2.4

2.4

2.5

2.6

2.8

3.0

2012 2014 2016 2018 2020 2022 2024
0.0

0.50

1.0

1.5

2.0

2.5

3.0 City
Highway

Electric Vehicle Range {2012 to 2024)

Year

M
ea

n
C

on
s

(l/
10

0k
m

 e
qu

iv
)

A box plot is created using the px.box() function. Again, the DataFrame is first
”melted” from wide format to long format to be able to compare city and highway fuel
consumption numbers in the box plot. The example below uses the update_layout()
function to provide extra information for placing the legend in horizontal format at the
top of the plot and centered along the x axis.

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 231

fuel_long = pd.melt(fuel,
id_vars=['Year'], value_vars=['City', 'Hwy'],
var_name='metric', value_name='consumption')

fig = px.box(fuel_long,
x=fuel_long['Year'].astype(str),
y='consumption', color='metric',
labels={'consumption': 'Mean Cons\n(l/100km)', 'metric': ''},
title='Electric Vehicles (2012 to 2024)')

fig.update_layout(
xaxis_title='Year',
yaxis_title='Mean Cons\n(l/100km equiv)',
legend_title_text='',
legend=dict(orientation="h",

yanchor="top", y=1,
xanchor="center", x=0.5))

2021 2024 2023 2020 2019 2018 2017 2022 2016 2015 2014 2013 2012

1.5

2

2.5

3

3.5

4

4.5

5

5.5 City Hwy

Electric Vehicles (2012 to 2024)

Year

M
ea

n
C

on
s

(l/
10

0k
m

 e
qu

iv
)

A violin plot is constructed similarly to a box plot. Because only the combined fuel
consumption numbers are to be shown, there is no variable to be mapped to the ”color”
plot attribute, and the DataFrame does not need to be transformed first. The update_traces()
function is used to set the color of the ”violins” to black and make them somewhat
transparent (opacity=0.5). Individual points are shown with a slight jitter to make
them distinguishable.

232 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

fig = px.violin(fuel,
x=fuel['Year'].astype(str),
y='Comb', box=True,
points='all')

fig.update_traces(jitter=0.15, pointpos=0,
marker=dict(color='black', size=1, opacity=0.5))

fig.update_layout(xaxis_title='Year',
yaxis_title='Mean Consumption\n(l/100km)',
title='Electric Vehicle (2012 to 2024)',
legend_title_text='')

2021 2024 2023 2020 2019 2018 2017 2022 2016 2015 2014 2013 2012
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Electric Vehicle (2012 to 2024)

Year

M
ea

n
C

on
su

m
pt

io
n

(l/
10

0k
m

)

For a count plot, the data frame is first grouped, and the size (that is, the count of
values) of each group is recorded in a new column ”counts”. This transformed data
frame is then used for a scatter plot that maps the ”counts” variable to the size of the
points in the px.scatter() function.

count_df = fuel.groupby(['Year', 'Category']) \
.size().reset_index(name='counts')

fig = px.scatter(count_df,
x='Year', y='Category', size='counts',
color_discrete_sequence=['darkolivegreen'],
labels={'Category': '', 'Year': 'Year', 'counts': 'Count'},
title='EV Models by Category (2012 to 2024)')

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 233

2012 2014 2016 2018 2020 2022 2024

PL

T

US

WS

UL

C

L

M

S

EV Models by Category (2012 to 2024)

Year

C
at

eg
or

y

The following points plot is another example of the use of the px.scatter() func-
tion, which adds a fourth variable to the plot: The vehicle category is mapped to the
color plot element. Note also that update_layout() is used to provide axis title,
create a legend for the ”Category” variable (that is mapped to colour), and make the
legend horizontal at the top of the plot, right-justified above the x axis.

grouped_fuel = fuel.groupby(['Year', 'Category']).agg(
totalcount=pd.NamedAgg('Range', 'size'),
meanRange =pd.NamedAgg('Range', 'mean')).reset_index()

fig = px.scatter(grouped_fuel,
x='Year', y='meanRange', size='totalcount',
color='Category', hover_name='Category',
labels={'meanRange': 'Range', 'totalcount': 'Number of Models'},
title='EV by Year and Category (2012 to 2024)',
size_max=20, opacity=0.8)

fig.update_layout(
xaxis_title='Year',
yaxis_title='Range',
legend_title_text='Category',
legend=dict(orientation="h", yanchor="bottom",

y=1.02, xanchor="right", x=1))

234 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2012 2014 2016 2018 2020 2022 2024

100

200

300

400

500

600

Category M S C L T WS UL US PL

EV by Year and Category (2012 to 2024)

Year

R
an

ge

To reduce the amount of information in the following line plot, the data frame is fil-
tered to limit the data set. The px.line() function creates the line plot, the option
markers=True adds the points to the lines. Again, the horizontal legend for the
”Category” variable is moved to the top of the plot, right-justified above the x axis.

filtered_fuel = \
fuel[(fuel['Year'] >= 2022) & (fuel['Year'] <= 2023)]

filtered_fuel = filtered_fuel[filtered_fuel['Comb'] <= 4]
filtered_fuel = \

filtered_fuel[~filtered_fuel['Category'].isin(['PL', 'T'])]

fig = px.line(filtered_fuel,
x='Comb', y='Range', color='Category',
line_group='Category', markers=True,
labels={'Range': 'Range', 'Comb': 'Combined Fuel Consumption'},
title='EV (2012 to 2024)')

fig.update_layout(
xaxis_title='Combined Fuel Consumption',
yaxis_title='Range',
legend_title_text='Category',
legend=dict(orientation="h", yanchor="bottom",

y=1.02, xanchor="right", x=1))

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 235

2 2.5 3 3.5
100

200

300

400

500

600

700

800

Category M L US WS S UL C

EV (2012 to 2024)

Combined Fuel Consumption

R
an

ge

Pie charts in Plotly Express are created using the px.pie() function. To reduce the
number of pie slices to show, the data frame is first filtered for those vehicle makes
with 5 or more models and limited to the 2023 model year. The pie chart then shows
the number of models for each manufacturer. Labels in the pie chart must be set in-
dividually for each pie slice using a for loop over the grouped DataFrame rows. For
each group (row), an annotation is added to the figure using add_annotation that
shows the ”totalcount” value. Finally, the figure layout is updated to show the legend
at the top, right-justified above the x axis.

fuel_2023 = fuel[fuel['Year'] == 2023]
fuel_grouped = \

fuel_2023.groupby('Make').size().reset_index(name='totalcount')
fuel_grouped = fuel_grouped[fuel_grouped['totalcount'] >= 5]

fig = px.pie(fuel_grouped,
names='Make', values='totalcount', hole=0,
title='EV Offerings by Make (2023, >= 5 models)',
labels={'totalcount': 'Number of Models'})

for i, row in fuel_grouped.iterrows():
fig.add_annotation(text=str(row['totalcount']),

x=row['Make'], y=row['totalcount'],
showarrow=False, font_color='lightgrey')

fig.update_layout(legend=dict(orientation="h", yanchor="bottom",
y=1.02, xanchor="right", x=1),
showlegend=True, legend_title_text='Make')

236 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

24.8%

13.2%

13.2%

9.3%

8.53%

6.98%
6.98%

6.2%

6.2%

4.65%

Make Rivian BMW Tesla Mercedes-Benz Ford Lucid Porsche Hyundai Kia Audi
EV Offerings by Make (2023, >= 5 models)

A donut chart is easily created simply by providing the hole argument to px.pie(),
as in the following example:

...
fig = px.pie(fuel_grouped,

names='Make', values='totalcount', hole=0.4,
title='EV Offerings by Make (2023, >= 5 models)',
labels={'totalcount': 'Number of Models'})

...

24.8%

13.2%

13.2%

9.3%

8.53%

6.98%
6.98%

6.2%

6.2%

4.65%

Make Rivian BMW Tesla Mercedes-Benz Ford Lucid Porsche Hyundai Kia Audi
EV Offerings by Make (2023, >= 5 models)

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 237

A radar plot is created as a line plot on a polar coordinate system, using the px.line_polar()
function. First, the data frame is grouped by vehicle make and aggregate statistics are
computed. The grouped data is then filtered to reduce the number of information shown
in the radar plot. The aggregate values are then scaled to values between 0 and 1, using
the MinMaxScaler from the sklearn package. Finally, the data frame is ”melted”
into long format and then used for creating the radar plot shown below.

from sklearn.preprocessing import MinMaxScaler

fuel_2023 = fuel[fuel['Year'] == 2023]
grouped = fuel_2023.groupby('Make').agg(

meanCity =pd.NamedAgg('City',lambda x: 1/x.mean()),
meanHwy =pd.NamedAgg('Hwy',lambda x: 1/x.mean()),
meanRange=pd.NamedAgg('Range',lambda x: x.mean()/100),
nModels =pd.NamedAgg('Make','size'))

grouped = grouped[grouped['nModels'] >= 5]

grouped[['meanCity', 'meanHwy', 'meanRange']] = \
MinMaxScaler().fit_transform(

grouped[['meanCity', 'meanHwy', 'meanRange']])

melted = grouped.reset_index().melt(
id_vars='Make', var_name='metric',
value_vars=['meanCity', 'meanHwy', 'meanRange'])

fig = px.line_polar(melted,
r='value',
theta='metric',
color='Make',
line_close=True,
labels={'metric': '', 'value': '', 'Make': 'Make'},
title='EV Data (Makes with more than 5 models)')

238 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

meanCity

meanHwymeanRange

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Make
Audi
BMW
Ford
Hyundai
Kia
Lucid
Mercedes-Benz
Porsche
Rivian
Tesla

EV Data (2023, Makes with more than 5 models)

A scatter plot can be created with the px.scatter() function which can include
trendlines computed using different methods. The most commonly used local regres-
sion estimation is specified with the trendline=’lowess’ argument, as in the
example below.

fig = px.scatter(fuel,
x='Year', y='Range', trendline='lowess',
labels={'Range': 'Mean Range (km)'},
title='EV Range by Year')

fig.update_layout(xaxis_title='Year',
yaxis_title='Mean Range (km)')

7.9. VISUALIZATION IN PYTHON USING PLOTLY EXPRESS 239

2012 2014 2016 2018 2020 2022 2024

100

200

300

400

500

600

700

800

EV Range by Year

Year

M
ea

n
R

an
ge

 (k
m

)

Two-dimensional density plots can be created with the px.density_heatmap()
function, as shown in the following example. This example also uses the marginal_x
and marginal_y options to add histograms for each marginal distribution along the
x and y axis. Some other useful options for marginal plots are ”rug” and ”box”.

fig = px.density_heatmap(fuel,
x = 'City', y = 'Hwy',
nbinsx=20, nbinsy=20,
color_continuous_scale=px.colors.sequential.Viridis,
marginal_x="histogram",
marginal_y="histogram",
title='EV Fuel Consumption Data',
labels={"range" : "Range",

"Hwy": "Highway Economy",
"City": "City Economy"})

240 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

2 3 4 5

2

3

4

5

0

10

20

30

40

count

EV Fuel Consumption Data

City Economy

H
ig

hw
ay

 E
co

no
m

y

Hands-On Exercises

Using the Pagila database files from the previous chapters, create the following
plots using Plotly Express/Python. Use the appropriate Plotly Express func-
tions to add informative labels for axes, useful legends to the plots, and use
suitable color palettes.

1. A histogram and/or density chart of film length by film category
2. A column chart of the mean rental payments for films by film category

• Add error bars to this chart
3. A scatter plot of total rental payments by week

• Add a local regression line to this plot
4. A pie or donut chart of rental counts by film rating

7.10 Review Questions
The following review questions are intended to check your understanding of the mate-
rial on visualization.

1. Explain the significance of data visualization in modern data analysis and com-
munication.

2. How does data visualization blend artistic creativity with analytical skills?
3. List and explain the main reasons why data visualization is used.
4. What is visual discovery in the context of data visualization?
5. Contrast declarative visualization with visual discovery in terms of their purpose

and interactivity.
6. Define operational visualization and its role in monitoring and decision making.
7. Explain the importance of focusing on quantitative messages in visualization.

Provide examples of how different types of graphs or charts convey different

7.10. REVIEW QUESTIONS 241

types of data or relationships.
8. Discuss some of the challenges or pitfalls that can occur in data visualization,

especially regarding pattern recognition and data interpretation.
9. Explain how the choice of a specific type of data visualization depends on the

message or insight that needs to be conveyed.
10. What are ”dark patterns” in the context of data visualization? Provide examples

of common dark patterns used to deceive or mislead viewers.
11. How can cognitive biases be exploited in creating misleading data visualizations?
12. Explain how scaling and truncating axes in graphs can mislead the viewer. Pro-

vide examples.
13. How can the choice of an inappropriate graph type lead to misleading conclu-

sions? Give specific examples.
14. Describe how the use of color in data visualization can be misleading. What are

the best practices in choosing colors for visualizations?
15. Discuss the problems associated with using 3D elements or images in graphs.

How can these elements distort the data representation?
16. Describe the unique challenges of visualizing streaming or real-time data. How

do these challenges impact the design of such visualizations?
17. What are the specific challenges of visualizing network or graph data? How do

these challenges influence the choice of visualization techniques?
18. Describe the different types of graph layouts (force-directed, circular, arc, lay-

ered) and their use cases. What are the benefits and drawbacks of each layout?
19. Why are interactive features like zooming, panning, and highlighting important

in graph visualizations, especially for large datasets?
20. List and explain the criteria for assessing the quality of a graph visualization.

Why are these criteria important?
21. Discuss the challenges associated with projecting three-dimensional Earth onto

a two-dimensional surface in map visualizations. How do different projections
affect the representation of spatial data?

22. Discuss the techniques used to represent attributes of nodes and edges in network
visualizations. How can these techniques enhance or hinder the understanding
of the network?

23. Explain how different areal units (e.g., counties, postal codes, districts) can im-
pact the interpretation of geospatial data visualizations.

24. Explain why color choice is crucial in data visualizations and list the desirable
characteristics of color palettes.

25. Describe sequential color palettes and discuss their appropriate use cases. Pro-
vide an example where a sequential palette is suitable.

26. What are diverging color palettes and when are they most effectively used in data
visualization? Illustrate with an example.

27. Explain spectral color palettes and their application in visualizing data. Discuss
the potential drawbacks of using spectral palettes.

28. Discuss the importance of considering color vision deficiency (CVD) in choosing
color palettes for data visualizations.

29. How do the different types of color vision deficiencies (e.g., protanopia, deuter-
anopia, tritanopia) affect the perception of colors in data visualizations?

242 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

30. Define and discuss the importance of perceptual uniformity in color palettes.
How does it impact the interpretation of data?

31. What are monochromatic color palettes and in what situations might they be
preferred?

32. What is a box plot and what are the key summary statistics it displays?
33. Explain the concept of the interquartile range (IQR) in a box plot. How is it

calculated and what does it represent?
34. Describe the significance of the median line in a box plot. How can the median

line’s placement provide insights into data skewness?
35. What do the whiskers in a box plot represent? Explain the common method for

determining their length.
36. How are outliers represented in a box plot? What criteria is typically used to

classify a data point as an outlier in this context?
37. How can you determine if a dataset is symmetric or skewed based on its box

plot?
38. Compare and contrast box plots and histograms. In what scenarios might one be

preferred over the other?
39. Compare and contrast box plots and violin plots. In what scenarios might one be

preferred over the other?

Chapter 8

Business Process Analytics

Learning Goals
After reading this chapter, you should be able to:

• Read and understand the contents of a business process event log, differentiate
between events and activities and between trace and event attributes.

• List and describe the aim of different types of business process analytics.

• Filter an event log and summarize basic statistics from an event log.

• Discover a business process model from an event log.

• Evaluate the quality of a discovered process model using fitness and precision.

• Mine process performance metrics from an event log.

• Mine organizational characteristics from an event log.

8.1 Introduction
Business process analytics is concerned with using event data to improve the opera-
tional efficiencies of business processes. A business process is how an organization
creates value for its customers. Improvements to operations may yield better customer
service and increase customer satisfaction, it may also reduce the time it takes to com-
plete a business process, it may reduce employee workload and improve employee
satisfaction, it may reduce cost, or free up capacity.

Every organization manages and executed a multitude of business processes. An im-
portant business process in many organizations is the order-to-cash process, which is
the sequence of activities that begins when a customer submits an order and ends when
the money has been received and a receipt has been issued. Another important process

243

244 CHAPTER 8. BUSINESS PROCESS ANALYTICS

is issue-to-resolution, which begins when a customer contacts the organization with
a problem about a product or service, and ends when the problem has been resolved
to the satisfaction of the customer. Business processes exist in all kinds of organi-
zations, from for-profit manufacturing or service enterprises, to healthcare clinics and
hospital, to education and government services, to non-profit and charity organizations.
Typically, a business process is characterized by its business object. For example, the
business of for the order-to-cash process is the customer order, the business object for
the issue-to-resolution process is the customer complaint.

8.2 Business Processes and Business Process Models
A business process is defined as a sequence of activities that are executed in a defined
order to create some type of value for a customer. Besides activities, a business pro-
cess also includes the resources that carry out activities. Resources may be human
resources, that is people or employees, or they may be machines or computer systems.
Resources typically play one or more roles in organization, such as accountants, ware-
house workers, service technician, etc.

A business process may also contain events. Events can trigger or start a business pro-
cess or they may occur within a business process. Typical events are customer orders
arriving, customer inquiries arriving, goods or materials arriving, goods or materials
being dispatched, etc.

A business process may also contain decisions. For example, in an order-to-cash pro-
cess, a decision may need to be made how to source a part, or how to ship a part,
or whether to invoice a customer, etc. In a healthcare process, decisions may involve
treatment options, medical tests, or hospital admissions.

Business processes are typically defined using business process models or business
process diagrams. A common way to describe processes is with the Business Process
Modelling Notation (BPMN), the industry standard developed by the OMG (Object
Management Group)1 and adopted as the ISO/IEC 19510 standard. Figure 8.1 shows
an example of a business process model in BPMN.

In this model, the circles represent events, rectangles represent activities, diamond
shapes represent ”gateways” and arrows represent process flow dependencies. Depen-
dencies describe what must happen before something else can happen, or, alternatively,
what can follow once something is completed.

The diamond with the ”×” symbol represents an exclusive gateway, which means that a
decision is made and only one outgoing path can be taken by the process. For example,
after the activity ”Check Stock Availability”, either the activity ”Check Raw Materials
Availability” is carried out, or the ”Retrieve product from warehouse” activity.

In contrast, the ”+” symbol represents a parallel gateway, which means that the pro-
cess proceeds along all outgoing paths, in any order, or possibly at the same time. For

1https://www.omg.org/bpmn/

https://www.omg.org/bpmn/

8.3. BUSINESS PROCESS EVENT LOGS 245

Source: Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers (2018) ”Fundamentals of Business Process
Management”, 2nd edition, Springer Verlag. Figure 3.12.

Figure 8.1: Example BPMN model

example, after the ”Confirm order” activity, both the ”Get shipment address” and the
”Send invoice” activities are carried out, in any order and possibly at the same time.

Finally, the ”⃝” symbol represents an inclusive gateway. The process may proceed
along any number of outgoing paths. For example, after the ”Check Raw Materials
Availability” activity, the process may proceed with the ”Request raw materials from
supplier 1” activity, or the ”Request raw materials from supplier 2” activity, or both of
them.

8.3 Business Process Event Logs
A case is one instance of a business process. For example, the execution of the order-
to-cash process and its activities for the order number 1234 is one case (instance);
executing the process for order number 2345 is another case (instance).

A trace is the sequence of events for one case. An event in this context is usually
the execution of an activity instance (for example, ”Check Stock Availability” for or-
der 1234) or the occurrence of an outside event (for example, ”goods have arrived at
warehouse”). However, activity instances themselves can have a complicated lifecycle.
Figure 8.2 shows an example of the lifecycle model of the XES standard2 for event log
data. The XES standard defines how event data is represented in an XML document.

Each arrow in this figure represents a lifecycle transition and each box represents a
lifecycle state. For example, an activity instance is first scheduled, then assigned to a
resource, then started by the resources, and finally completed successfully. However,
other lifecycles are possible in the XES lifecycle model. For example a resource may
be repeatedly reassigned before being started, it may be suspended and resumed, and it
may be skipped or aborted. Each of these lifecycle transitions may be captured by an
event in an event log.

2https://www.tf-pm.org/resources/xes-standard

https://www.tf-pm.org/resources/xes-standard

246 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Source: https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/

lifecycle/standard

Figure 8.2: Process Activity Lifecycle

Each event may be associated with additional information, either about the particular
activity instance or about the case. These are called event attributes or case attributes.
Case attributes in an order-to-cash process instance may be name of the customer,
the list of ordered products, etc. An example of an event attribute for a ”Confirm
order” activity instance completion event is the confirmation number that is generated
by the activity instance. Each event is also typically associated with information about
the resource that executed the activity instance that the event refers to, as well as a
timestamp of when the event occurred.

An event log is a collection of one or more traces for one process. Hence, an event log
describes the execution of one or more cases of the same process. Note that event logs
may contain incomplete cases (e.g. cases that have not been completed when the event
log was collected), may be randomly sampled from the complete event log data, etc.

Event logs are typically generated by process-aware information systems such as ded-
icated workflow-management systems, but many other corporate information systems,
such as Enterprise Resource Planning (ERP) systems, Supply Chain Management (SCM)
systems, Customer Relationship Management (CRM) systems, and other, keep track
of who did what when, which is the basic information in any event log. Additionally,
event logs may be collected from any web-based information system as web-servers
routinely keep log information about user interaction with the web site.

To be usable for process analytics, the event log information from source information
systems must typically be extracted, transformed and then loaded into a format that
is used by process analytics software. This is known as an ETL process: Extraction–
Transformation–Load. ETL processes are required for many analytics applications that

https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/lifecycle/standard
https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/lifecycle/standard

8.3. BUSINESS PROCESS EVENT LOGS 247

take their raw data from a variety of sources.

The standardized interchange format for event log data is the XES file format. XES
stands for eXtensible Event Stream and is an XML based format. Another com-
mon format used for event log data are CSV files, where each row typically corre-
sponds to one activity instance (not one event!). Below is an example of an XES
file that uses the standard XES activity lifecycle model, defines three case attributes
(”REG_DATE”, ”AMOUNT_REQ”, and ”concept:name”) and three event attributes
(”time:timestamp”, ”lifecycle::transition” and ”concept:name” and then contains traces
with their events. The XML code below is an excerpt of an XES file and illustrates how
traces and events are encoded in XML.

<?xml version="1.0" encoding="UTF-8" ?>
<log xes.version="1.0" xes.features="nested-attributes"

openxes.version="1.0RC7"
xmlns="http://www.xes-standard.org/">

<extension name="Lifecycle" prefix="lifecycle"
uri="http://www.xes-standard.org/lifecycle.xesext"/>

<extension name="Organizational" prefix="org"
uri="http://www.xes-standard.org/org.xesext"/>

<extension name="Time" prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Concept" prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>

<global scope="trace">
<date key="REG_DATE" value="1970-01-01T00:00:00.000+01:00"/>
<string key="AMOUNT_REQ" value="UNKNOWN"/>
<string key="concept:name" value="UNKNOWN"/>

</global>
<global scope="event">

<date key="time:timestamp" value="1970-01-01T00:00:00.000+01:00"/>
<string key="lifecycle:transition" value="UNKNOWN"/>
<string key="concept:name" value="UNKNOWN"/>

</global>
<classifier name="Activity classifier"

keys="concept:name lifecycle:transition"/>
<classifier name="Resource classifier"

keys="org:resource"/>
<trace>

<date key="REG_DATE" value="2011-10-01T09:45:37.274+02:00"/>
<string key="concept:name" value="173706"/>
<string key="AMOUNT_REQ" value="18000"/>
<event>

<string key="org:resource" value="112"/>
<string key="lifecycle:transition" value="COMPLETE"/>
<string key="concept:name" value="A_SUBMITTED"/>
<date key="time:timestamp" value="2011-10-01T09:45:37.274+02:00"/>

</event>
<event>

<string key="org:resource" value="112"/>
<string key="lifecycle:transition" value="COMPLETE"/>
<string key="concept:name" value="A_PARTLYSUBMITTED"/>
<date key="time:timestamp" value="2011-10-01T09:45:37.363+02:00"/>

</event>
...

248 CHAPTER 8. BUSINESS PROCESS ANALYTICS

</trace>
...

</log>

The file below is an excerpt of a CSV file that contains event log information (line
breaks have been added to fit this into the width of the page but are not in the actual
file). Note how ”Start Timestamp” and ”Complete Timestamp” exist for each row. This
means that one row captures two events, the starting and the completion of an activity
instance.

Case ID,Start Timestamp,Complete Timestamp,Activity,Resource,Role
339,2011/02/16 14:31:00.000,2011/02/16 15:23:00.000,

Create Purchase Requisition,Nico Ojenbeer,Requester
339,2011/02/17 09:34:00.000,2011/02/17 09:40:00.000,

Analyze Purchase Requisition,Maris Freeman,Requester Manager
339,2011/02/17 21:29:00.000,2011/02/17 21:52:00.000,

Amend Purchase Requisition,Elvira Lores,Requester
339,2011/02/18 17:24:00.000,2011/02/18 17:30:00.000,

Analyze Purchase Requisition,Heinz Gutschmidt,Requester Manager

8.4 Types and Goals of Process Analytics
The diagram in Figure 8.3 shows four important activities in process analytics. Auto-
mated process discovery discovers a process model from an event log. This is useful
to understand how a process is actually executed. The discovered process can then be
analyzed for weaknesses or compared to a normative process model, e.g. as part of an
audit. Many organizations also do not have well-defined processes, so that automated
discovery is an important first step in understanding their own operations in detail.

Conformance checking compares an event log to a given input process model. It checks
whether the actual operations, as captured in the event log, conform to or comply with
a normative process model, a set of business rules, or a set of process constraints. This
is typically done as part of an audit to demonstrate compliance, for example in the
financial services industry, healthcare, or for quality management certifications.

Performance mining enhances a process model (which could be an automatically dis-
covered one) with information about the duration of activities and waiting times be-
tween activities, as captured in an event log. From there, process analysts can identify
bottlenecks in the process, that is, activities where cases have to wait to be processed,
activities that take a long time, activities with high variability in their processing time,
or similar process problems. Further information can then be collected to identify the
causes of and remedies for these problems.

Finally, variants analysis compares two different event logs of the same or similar pro-
cesses to understand differences in execution. This may be useful when organizations

8.4. TYPES AND GOALS OF PROCESS ANALYTICS 249

/Event log

Discovered model

Automated
discovery

Conformance
checking

Variants
analysis

Difference
diagnostics

Performance
mining

Input model

Event log'

Enhanced
process
model

C

B

D EA

C DA B E

C

1.5h

B

15h

D
E

2h

A

3m

35h 30h

15m

10m

10min

5m5m 10m30m

Source: Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers (2018) ”Fundamentals of Business Process
Management”, 2nd edition, Springer Verlag. Figure 11.3

Figure 8.3: Overview of Process Analytics with Event Logs

execute the same business processes in different locations, or in different business units.
This could be used to identify best practices for an organization.

In addition to these four, process prediction has become an important aspect of business
process analytics. Process prediction uses an event log to train a statistical model in
order to predict the future course or outcome of a currently running case. Typical
prediction targets are the remaining time to completion of the case, the most likely
next activity, the probability of a negative or positive outcome, the waiting time before
the next activity starts, etc. Process prediction is useful to allow process managers to
proactively intervene in a case before a problem arises, or before a case becomes late or
overdue. Process prediction can also serve to provide information to customers about
the how their case will likely be handled or completed.

Overall, the purposes of process analytics are multiple:

• Discover actual operations

• Check actual process against desired process

• Identify operational (performance) problems

• Improve operational processes

• External compliance analysis and reporting

• Identify implicit or de-facto organizational groups and relationships

• Support, reinforce, or break organizational relationships

250 CHAPTER 8. BUSINESS PROCESS ANALYTICS

8.5 Process Analytics Tools
Since the inception of the field of process analytics circa early 2000s, a range of
commercial and open-source tools have been developed to support process analysts.
Among the widely-used commercial tools are Celonis, Signavio, Fluxicon, ARIS and
Apromore.

Celonis Celonis3 is a leading process mining software that excels in helping orga-
nizations analyze and optimize their business processes through powerful data visual-
ization and analytics. This tool extracts and leverages data from various IT systems to
provide real-time insights into process performance, identify bottlenecks, and uncover
inefficiencies. Celonis facilitates extensive process discovery, conformance checking,
and predictive modeling, empowering users to drive significant improvements in pro-
cess efficiency and effectiveness. Its capabilities are enhanced by features like machine
learning and automation, making Celonis a pivotal tool for enterprises aiming to exe-
cute large-scale digital transformation strategies and achieve operational excellence.

Signavio Process Manager Signavio4 Process Miner, part of the Signavio Busi-
ness Transformation Suite, enables organizations to analyze and optimize business
processes by visualizing actual workflows and identifying deviations from ideal mod-
els. This tool automatically generates process models from data logs, performs con-
formance checks to ensure regulatory compliance, and analyzes process performance
metrics such as duration, frequency, and costs. Its integration with Signavio’s broader
suite allows for a seamless workflow from process discovery through modeling to ex-
ecution, making it a valuable tool for continuous process improvement and alignment
across organizational departments.

Fluxicon Disco Fluxicon Disco5 is a user-friendly process mining software that ex-
cels in providing fast and intuitive insights into business processes. It is designed for
ease-of-use, allowing users to quickly load data and start analyzing with minimal setup.
Disco supports a range of features including automated process discovery, performance
analysis, and bottleneck identification, making it ideal for users seeking immediate and
actionable insights. With its strong focus on visual analytics, Fluxicon Disco offers de-
tailed, interactive process maps and a variety of filters to explore process variations and
issues efficiently. This tool is popular among both academic researchers and industry
professionals for its simplicity and powerful analytical capabilities.

ARIS ARIS Process Mining6 is a robust tool designed to help organizations discover,
measure, and analyze their business processes in order to identify inefficiencies and op-
timize performance. It enables users to visualize complex process flows and pinpoint

3https://www.celonis.com/
4https://www.signavio.com/
5https://www.fluxicon.com/
6https://aris.com/process-mining/

https://www.celonis.com/
https://www.signavio.com/
https://www.fluxicon.com/
https://aris.com/process-mining/

8.5. PROCESS ANALYTICS TOOLS 251

deviations, bottlenecks, and vulnerabilities by extracting data from IT systems and re-
constructing the actual processes that take place. ARIS offers comprehensive analytics
capabilities, including conformance checking, root cause analysis, and simulation for
predicting process behavior and outcomes. This integration with digital transformation
initiatives makes ARIS an important tool for businesses aiming to achieve operational
excellence and continuous improvement in their processes.

Apromore Apromore7 is a leading cloud-based process mining tool known for its so-
phisticated analytics capabilities and user-friendly interface. It provides advanced pro-
cess mining techniques such as automated process discovery, conformance checking,
and predictive analytics. Apromore is designed to handle large and complex datasets
efficiently, offering deep insights into business processes to help organizations identify
inefficiencies, ensure compliance, and enhance operational performance. Its collabora-
tive features support multi-user environments, making it a good choice for enterprises
aiming to undertake continuous process improvement and drive operational excellence
through detailed data-driven insights.

Among the widely-used open-source tools are ProM (a system for research) and BupaR
(for R) and PM4PY (for Python).

ProM ProM8 is a versatile open-source process mining tool that stands out for its ex-
tensive range of plugins supporting a diverse array of process mining tasks, including
discovery, analysis, and enhancement of business processes. Developed primarily for
academic and research purposes, ProM offers functionalities for detailed process dis-
covery, conformance checking, and social network analysis among others. It is highly
regarded for its flexibility, allowing researchers and professionals to experiment with
new algorithms and techniques through its modular and extensible architecture. ProM’s
ability to handle various types of event logs and its rich collection of tools make it a
good choice for in-depth process mining investigations and experiments.

bupaR bupaR9 is an R-based open-source library specifically designed for process
mining and business process analysis. It offers a comprehensive suite of tools that
enable users to perform detailed process discovery, conformance checking, and perfor-
mance analysis directly within the R programming environment. bupaR leverages the
extensive data manipulation and visualization capabilities of R, allowing users to inte-
grate process analysis with statistical and predictive analytics seamlessly. This makes
it a good choice for statisticians and data scientists looking to conduct in-depth process
analysis, create interactive process visualizations, and derive actionable insights from
process data, all within the familiar and powerful R ecosystem.

PM4Py PM4Py10 is a Python library that offers a comprehensive suite of process
mining tools, making it a powerful resource for performing process discovery, con-

7https://apromore.com/
8https://github.com/promworkbench
9https://bupar.net/

10https://processintelligence.solutions/pm4py

https://apromore.com/
https://github.com/promworkbench
https://bupar.net/
https://processintelligence.solutions/pm4py

252 CHAPTER 8. BUSINESS PROCESS ANALYTICS

formance checking, and process enhancement. Tailored for the Python ecosystem,
PM4Py facilitates the analysis of complex process data by integrating seamlessly with
popular data science tools such as pandas and numpy. Its capabilities extend to gener-
ating process models from event logs, analyzing process performance, and providing
insights into workflow efficiencies and bottlenecks. Ideal for both academic research
and practical applications, PM4Py is known in the process mining community for its
accessibility, scalability, and the ease with which users can implement and customize
process mining algorithms.

8.6 Process Mining in Python with PM4Py
This section illustrates process analytics using the PM4Py framework for Python. In
a first step, we import an event log in CSV format into a Pandas data frame11. This
event log is a fictitous log of a purchasing or procurement process. There are no case
or event attributes other than the basic information aboutr activity names, resources,
and timestamps.

import pandas as pd
import pm4py

Load the event log and parse date columns
log = pd.read_csv('https://evermann.ca/busi4720/PurchasingExample.csv',

parse_dates=['Start Timestamp', 'Complete Timestamp'],
infer_datetime_format=True)

In order for any process analytics tool to work with event log data, it must know which
column in the data set is the case identifier, so that it knows which events belong to
each case. It must also know what the name of the activity of each event is, the correct
timestamp for sequentially ordering events within a case, and the resource that executed
the activity referred to by the event. PM4Py by default uses attribute names similar to
those in the XES file above, although others can be explicitly specified. The following
Python code block defines the expected columns in the data set with the appropriate
names and types.

Tell PM4PY about which columns represent case ID, activity name,
and timestamp. Case ID and activity. Names must be string type
log['case:concept:name']=log['Case ID'].astype('string')
log['concept:name']=log['Activity'].astype('string')
log['time:timestamp']=log['Complete Timestamp']
log['org:resource']=log['Resource']

Reading an XES file into PM4Py is also easy, but because it does not use the Pandas
library, XES files must be on a local filesystem (although they may be compressed). As

11The event log is originally taken from here: http://files.fluxicon.com//Datasets/
Purchasing-Example.csv

http://files.fluxicon.com//Datasets/Purchasing-Example.csv
http://files.fluxicon.com//Datasets/Purchasing-Example.csv

8.6. PROCESS MINING IN PYTHON WITH PM4PY 253

illustrated above, an XES file contains sufficient meta-data to identify case ID, event
name, timestamp, and resource, so that these need not be specified upon import.

log2 = pm4py.read_xes('BPI_Challenge_2012.xes.gz')

Basic Log Information
Basic event log statistics can of course be computed through Pandas data frame opera-
tions as in the first two lines of the following example code block, but PM4Py provides
easy-to-use functions. The following Python code block shows the number of cases,
number of events, the set of all start activities of traces, the set of all end activity of
traces, case durations, and trace and event attributes. The last two are only applicable
to event logs in XES format.

Number of traces/cases
num_cases = len(log['Case ID'].unique())
Number of events
num_events = log.shape[0]

pm4py.get_start_activities(log)
pm4py.get_end_activities(log)

pm4py.get_all_case_durations(log)

Useful only or XES-based event logs
pm4py.get_event_attributes(log)
pm4py.get_trace_attributes(log)

Variants
To perform a variant analysis, the log must be separated into sets of traces (”sub-
logs”) for which every trace contains the same sequence of events, called a variant.
The PM4Py function split_by_process_variant() returns an iterator over
the variants and their associated sub-logs, where each variant is the list of activity
names in the order in which they were executed in that variant. Each sub-log can then
be analyzed separately, for example in compliance analysis or performance mining,
allowing deeper insights and also a comparative analysis of processes.

pm4py.get_variants(log)

Split the log into sub-logs
for variant, subdf in pm4py.split_by_process_variant(log):

print(variant)
print(subdf)

254 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Process Discovery
The basic output of process discovery is a dependency graph, also called a directly-
follows graph (DFG) or process map. This graph simply shows how often one activity
is directly followed by another activity in the traces of the log. The PM4Py function
discovery_dfg() returns the directly-follows-graph and also the set of start and
end events. This graph can then be visualized using the view_dfg() function, as
shown in Figure 8.4, and saved to a file using the save_vis_dfg() function. This
is illustrated in the following Python code lbock.

dfg, start, end = pm4py.discover_dfg(log)

pm4py.view_dfg(dfg, start, end, rankdir='LR')

pm4py.save_vis_dfg(dfg=dfg,
start_activities=start, end_activities=end,
file_path='dfg.png', rankdir='TB')

To show the usefulness of even this basic process visualization, consider the following
observations. First, the example DFG in Figure 8.4 shows that all 608 traces in the
log start with the same activity (”Create Purchase Requisition”). The activity ”Analyze
Request for Quotation” is carried out 1107 times, suggesting that some cases require
this activity multiple times, as is also evident from the loops between this activity and
the activities ”Amend Request for Quotation Requester” and ”Amend Request for Qua-
tion Requester Manager”. This iteration suggests re-work to fix errors in the original
quotation. Eliminating these errors may improve the overall process performance.

Second, the DFG shows that 131 cases end after the request for quotation is analyzed,
suggesting that these requests are not approved for purchasing. This implies wasted
effort and a process analyst may wish to identify ways to reduce these unsuccessful
purchase requisitions.

Third, note that there are 10 cases where the activity ”Release Supplier’s Invoice” is
skipped. This may indicate a potential compliance problem and a process analyst may
wish to identify which cases skipped this activity and why they did so, or were allowed
to do so.

A DFG is not a process model in the sense of the example BPMN model in Figure 8.1,
as it is missing gateways and decisions. A range of algorithms have been developed
over the years to discover BPMN models from event logs. PM4Py provides the Induc-
tive Miner and the Heuristics Net Miner.

The Inductive Miner works by repeatedly ”cutting” the DFG for an event log to identify
subsets of activities that represent exclusive choice, parallelism, sequence, or loops.
For example, as Figure 8.5 shows, when there are sets of activities that are not con-
nected by each other, and have distinct pre- and post-sets of activities, then this may
indicate an exclusive choice between these sets. Similarly, a sequence of activities is
characterized by the absence of ”backwards” connections in the DFG, and parallelism

8.6. PROCESS MINING IN PYTHON WITH PM4PY 255

Figure 8.4: Directly-Follows-Graph

256 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Source: Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P. (2013). Discovering Block-Structured Process Models from
Event Logs - A Constructive Approach. In: Colom, JM., Desel, J. (eds) Application and Theory of Petri Nets and Concur-
rency. PETRI NETS 2013. Lecture Notes in Computer Science, vol 7927. Springer, Berlin, Heidelberg.

Figure 8.5: Principles of the Inductive Miner

is indicated by a set of arrows that fully connects two sets of activities with a common
post-set.

PM4Py provides the function discover_bpmn_inductivewhich produces a BPMN
model that can be viewed and saved. An example is shown in Figure 8.6.

bpmn_model = pm4py.discover_bpmn_inductive(log, noise_threshold=0.5)

pm4py.view_bpmn(bpmn_model, rankdir='LR')

pm4py.save_vis_bpmn(bpmn_model, file_path='bpmn.png', rankdir='TB')

In contrast, the Heuristics Net Miner focuses on frequencies in the DFG to identify
sequences, parallelism, and loops. For example, a sequence between activities ”a” and
”b” by values larger than a threshold for the following proportion where the relation
a > b indicates the number of times b follows a in the DFG. Similar expressions exist
to identify parallelism and loops. The thresholds are configurable; lower thresholds
lead to the inclusion of more detail in the final model.

a⇒ b =

(|a > b| − |b > a|
|a > b|+ |b > a|+ 1

)

The PM4Py function discover_petri_net_heuristics provides the Heuris-
tics Net Miner. It returns a Petri net (a type of process model) that can be converted to
a BPMN model for viewing and saving. An example is shown in Figure 8.7.

8.6. PROCESS MINING IN PYTHON WITH PM4PY 257

Figure 8.6: Model discovered by the Inductive Miner

258 CHAPTER 8. BUSINESS PROCESS ANALYTICS

petri_net, initial_marking, final_marking = \
pm4py.discover_petri_net_heuristics(log,

dependency_threshold=0.6,
and_threshold=0.65,
loop_two_threshold=0.4)

pm4py.view_petri_net(petri_net)

bpmn_model2 = pm4py.convert_to_bpmn(petri_net,
initial_marking, final_marking)

pm4py.view_bpmn(bpmn_model2)
pm4py.save_vis_bpmn(bpmn_model2, 'bpmn2.png', rankdir='TB')

Once a model is automatically discovered from a log, the analyst must assess its quality.
There are four aspects of model quality with respect to an event log:

• Fitness: Can the model generate all traces in log?

• Precision: Does the model only generate traces in log?

• Generalization: Can the model generalize to ”sensible” traces not seen in log?

• Complexity: Is the model too complex to understand?

Quality assessment often focuses mainly on the calculation of fitness and precision,
and two different techniques have been developed for this.

In token-based replay, each trace of an event log is replayed on the discovered process
model using what is known as token semantics. This discovers missing and surplus
tokens, which represent model activities that cannot be executed, or model activities
that are executed too often. Both cases indicate a mismatch between the model and the
trace. The statistics of interest are the percentage of traces that fit the model perfectly,
and the average fitness of all traces in the log.

Alignment-based fitness uses sequence alignment methods to align the model and each
trace in an event log. It counts the the number of ”synchronous moves” where an
activity is both in a trace and the model, the number of ”move on log” where an activity
is in a trace but not in the model, and the number of ”move on model” where an activity
is in the model but not in the trace. The statistics of interest are also the percentage of
traces that fit the model perfectly, and the average fitness of all traces.

Note that the results of the two types of analysis are not necessarily the same for all
models and for all event logs.

PM4Py provides functions to compute fitness and precision using both methods. For
this, PM4Py uses the Petri net type of process model. As we noted above, this can be
transformed into a BPMN model for visualization.

8.6. PROCESS MINING IN PYTHON WITH PM4PY 259

Figure 8.7: Model discovered by the Heuristics Net Miner

260 CHAPTER 8. BUSINESS PROCESS ANALYTICS

petri_net, initial_marking, final_marking = \
pm4py.discover_petri_net_inductive(log, noise_threshold=0.5)

fitness_alignments = pm4py.fitness_alignments(log,
petri_net, initial_marking, final_marking)

print(fitness_alignments)

fitness_tbr = pm4py.fitness_token_based_replay(log,
petri_net, initial_marking, final_marking)

print(fitness_tbr)

precision_alignments = pm4py.precision_alignments(log,
petri_net, initial_marking, final_marking)

print(precision_alignments)

precision_tbr = pm4py.precision_token_based_replay(log,
petri_net, initial_marking, final_marking)

print(precision_tbr)

Log Filtering

Filtering an event log prior to analysis is useful for three reasons. First, it allows the
analyst to focus on a subset of the log information. For example, an analyst may
wish to examine all traces of the order-to-cash process for domestic customers, or for
business customers. Or an analyst may wish to examine only those cases that show
some compliance problem.

Second, filtering allows the analyst to split the event log in order to identify differences
or similarities. For example, filtering the log of the order-to-cash process for domes-
tic customers allows the analyst to identify differences in how domestic and overseas
customer orders are processed.

Third, filtering simplifies automatically discovered models. Many automatic discovery
algorithms produce very complex models when the actual processes are complex or
when there is a large amount of variation or noise in the event log. Noise does not
necessarily mean invalid data, but data that appears infrequently or could be considered
very atypical. Such noise, when included in the event log for process discovery, can
”clutter up” the resulting model, making it difficult or impossible to understand.

PM4Py provides a number of different filters, with a few examples shown in Table 8.1.
Information on other filters can be found on the PM4Py website.

8.6. PROCESS MINING IN PYTHON WITH PM4PY 261

filter_activities_rework Keep cases where the specified activ-
ity occurs at least n times

filter_case_size Keep cases having a length between n
and m events

filter_case_performance Keep cases having a duration between
n and m seconds

filter_directly_follows_relation Keep cases where A is followed im-
mediately by B

filter_end_activities Keep cases that end with the specified
activity

filter_event_attribute_values Keep cases or events in cases that sat-
isfy the specified condition

filter_eventually_follows_relation Keep cases where A is eventually fol-
lowed by B

filter_start_activities Keep cases that start with the specified
activity

filter_time_range Keep events occurring between two
timestamps

filter_trace_attribute_values Keep cases that satisfy the specified
condition

Table 8.1: Example event log filter functions in PM4Py

Hands-On Exercises – Basic Log Information

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. What are the different types of activities in the log?
• Use the Pandas unique() function

2. How often does each activity occur in the log?
• Use the Pandas value_counts() function

3. Filter the log for complete cases, that is, retain only those cases that end
with activity ”Pay invoice”.

• Use pm4py.filtering.filter_end_activities
4. Plot the case durations for the complete cases. What do you notice?

• Use pm4py.stats.get_all_case_durations
• Put case durations into a pd.DataFrame
• 1 day = 86400 seconds
• Use px.histogram or pm4py.vis.view_case_duration_graph

5. What is the mean case duration?
• Use the Pandas mean() function on the result of the previous ex-

ercise

https://pandas.pydata.org/docs/reference/api/pandas.unique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_end_activities.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.stats.get_all_case_durations.html
https://plotly.com/python/histograms/
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.vis.view_case_duration_graph.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html

262 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Hands-On Exercises for PM4Py – Automatic Process Discovery

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. Using the mean case duration identified in the previous exercise, split the
log on the mean case duration; that is, one sub-log should contain traces
that are shorter than the mean, the other sub-log should contain cases that
take longer than the mean.

• Use pm4py.filtering.filter_case_performance
2. Discover BPMN models for each partial log and compare them. How do

they differ?
3. Discover a BPMN model from the total log. How does it differ from the

models discovered for the partial logs?
4. Calculate and compare the fitness and precision values of the models

discovered from the partial log and the total log.

Hands-On Exercises for PM4Py – Performance Analysis

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. What is the activity with the longest mean time? Activities taking a long
time may be a bottleneck in the process flow.

• Create a new column as the difference between the ’Complete
Timestamp’ and ’start_timestamp’ columns.

• Use the Pandas groupby() and mean() functions to group the
data frame by activity.

2. What is the mean number of activities for each case? Long cases with
many activities may indicate problems or overly complex processes.

• Calculate the number of activities for each case using the Pandas
groupby() and count() functions on the dataframe

3. Which activities are carried out more than once for some case? Repeated
activities may indicate re-work or fixing of mistakes.

• Calculate the number of instances for each case for each activ-
ity using the Pandas groupby() and count() functions on the
dataframe

https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_case_performance.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html

8.7. PERFORMANCE MINING 263

Hands-On Exercises for PM4Py – Conformance Analysis

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. Are there cases that contain activity ”Pay invoice” but do not contain
activity ”Send invoice”? Non-compliant cases may represent a problem
with controls and compliance.

• Use filter_eventually_follows_relationship

8.7 Performance Mining
Performance mining is that aspect of process analytics that analyzes the temporal per-
formance of a process. Information of interest are the durations of the activities (service
time), the waiting times between activities, and the overall case durations. For each of
those, different summary statistics are useful, such as the mean, median, standard de-
viation, maximum and minimum.

The easiest and most interpretable way to do this in PM4Py is to annotate the DFG with
this information. For example, the following Python code block calculates the median
waiting times between activities and shows them in the DFG. The annotated DFG is
shown in Figure 8.8. Because the example event log did not contain start and end times
for each activity, it is not possible to show the service times on the DFG, that is, the
duration of the activities.

perf_dfg, start_activities, end_activities = \
pm4py.discover_performance_dfg(log)

pm4py.view_performance_dfg(perf_dfg,
start_activities, end_activities,
aggregation_measure='median')

pm4py.save_vis_performance_dfg(perf_dfg,
start_activities, end_activities,
file_path='perfdfg.png', rankdir='TB')

This example shows a few problems with the process. For example, the median wait
time between creating a request for quotation and analyzing it is 6 days. If the request
needs to be amended, it then has to wait another 8 to 10 days to be analyzed again.
These long wait times indicate performance problems in the process. This may stem
from a lack of resources, or insufficient prioritization, or other process issues, that
needs be investigated in detail by the process analyst.

Another useful tool in process performance analysis is the dotted chart. An example
dotted chart is shown in Figure 8.9. The horizontal axis represents the time stamp of
each activity or event, while the vertical axis represents the case ID – each row in the

https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_eventually_follows_relation.html

264 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Figure 8.8: DFG annotated with median waiting times

8.7. PERFORMANCE MINING 265

Figure 8.9: Example of a Dotted Chart

diagram contains the events of one trace. The colors correspond to different types of
activities. The following Python code produces the example in Figure 8.9.

perf_dfg, start_activities, end_activities = \
pm4py.discover_performance_dfg(log)

pm4py.view_performance_dfg(perf_dfg,
start_activities, end_activities,
aggregation_measure='median')

pm4py.save_vis_performance_dfg(perf_dfg,
start_activities, end_activities,
file_path='perfdfg.png', rankdir='TB')

A dotted chart can be used to show batching of activities, that is, activities in differ-
ent cases that are not spread out in time but are executed at the same time. This may
indicate that some cases have to wait for the next batch to be processed, leading to po-
tential delays. A dotted chart can also show different variants, by visually highlighting
different types of performance. In the example of Figure 8.9, it is clear that many cases
are finished quickly, while others take a long time. In particular, the cases that arrive
early or very late in the log tend to be those that finish quickly.

A dotted chart can also be useful to examine the case arrival rates. In the example in
Figure 8.9 it is clear that early in time, cases arrive more frequently than later in time

266 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Figure 8.10: Example of a Performance Spectrum

(the curve is steeper there). This may indicate a shift in the demand for a particular
product or service.

A performance spectrum graph, like the one in Figure 8.10 shows the wating times
between two activities, the one at the top and the one at the bottom. The horizontal
axis represents time. Lines that are slanted or run diagonally at an angle indicate a
long waiting time. A performance spectrum can also show when lines are ”bunched
together” or ”sparsely distributed”, indicating variations in the rate at which one activ-
ity finishes or the next activity begins. The following Python code block produces the
graph in Figure 8.9.

pm4py.view_performance_spectrum(log,
['Send invoice', 'Pay invoice'])

pm4py.save_vis_performance_spectrum(log,
['Send invoice', 'Pay invoice'],
'perfspectrum.png')

To indicate when a process that delivers a service is in high demand and requires high
capacity, the distribution of events over time should be considered. This can be done
by day-of-the-week, by month-of-the-year, or by week-of-the-year, as the following
PM4Py functions show. An example of event distribution by week-of-the-year is shown
in Figure 8.11.

pm4py.view_events_distribution_graph(log, 'days_week')
pm4py.view_events_distribution_graph(log, 'days_month')
pm4py.view_events_distribution_graph(log, 'months')
pm4py.view_events_distribution_graph(log, 'weeks')

The example in Figure 8.11 shows that this process is very busy early in the year, in
approximately the first quarter, but not at all in the last quarter of the year, except for
some activity in the final week of the year. This uneven demand requires adequate

8.7. PERFORMANCE MINING 267

Figure 8.11: Event distribution over time

capacity planning over of the organization and an organization may decide to identify
ways to smooth out the demand.

Plotting the events over time for the entire log as a probability density shows simi-
lar characteristics. Figure 8.12 plots the frequency (technically, a probability kernel
density) of event occurrence, produced by the following Python code.

pm4py.view_events_per_time_graph(log)
pm4py.save_vis_events_per_time_graph(log, 'eventspertime.png')

268 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Figure 8.12: Events per time graph

8.8 Organizational Mining
Organizational mining focuses on the resources and their roles in a process. It uses
the data in an event log to identify how resources and roles work together to execute
process instances.

A simple way to focus on organizational roles or resources is to construct a DFG, but
using the resource or role information for the nodes of the graph, instead of the activity
names. The DFG then expresses how often one resource or role follows another in the
execution of the cases; in other words, how often one resource or role passes work to
another (or to itself). The following Python code block produces the handover-of-work
network shown in Figure 8.13. Notice how the same PM4Py function for the DFG
discovery is used, but a different data frame column is specified for the ”activity_key”
parameter.

dfg, start, end = pm4py.discover_dfg(log, activity_key='Role')

pm4py.view_dfg(dfg, start, end, rankdir='LR')

pm4py.save_vis_dfg(dfg=dfg,
start_activities=start,
end_activities=end,
file_path='handover.png', rankdir='TB')

A similar analysis can be performed using the PM4Py function

8.8. ORGANIZATIONAL MINING 269

Figure 8.13: Example handover-of-work network

Figure 8.14: Example working-together network

discover_working_together_network(), as shown in the following Python
code and in Figure 8.14. Note that this graph is normally interactive.

sna_graph = pm4py.discover_working_together_network(log,
resource_key='Role')

pm4py.view_sna(sna_graph, variant_str='pyvis')
pm4py.view_sna(sna_graph, variant_str='networkx')

270 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Figure 8.15: Activity-based resource similarity graph

Yet another analysis focuses on identifying resources that perform the same sets of
activities. This is useful for identifying implicit roles or resources with similar skills.

roles = pm4py.discover_organizational_roles(log)
print(roles)

Another way to achieve this goal is with the following Python code, which produces the
activity-based resource similarity graph in Figure 8.15. The graph shows four clusters
of resources that are similar to each other within their cluster, i.e. they perform similar
sets of activities in this process.

sna_graph = pm4py.discover_activity_based_resource_similarity(log)

pm4py.view_sna(sna_graph, variant_str='networkx')
pm4py.view_sna(sna_graph, variant_str='pyvis')

pm4py.save_vis_sna(sna_graph, 'ressimilarity.png',
variant_str='networkx')

8.9 Review Questions
The following review questions help you evaluate your understanding of this material.

1. What is business process analytics and why is it important in improving opera-
tional efficiencies?

2. Define a business process. What are the typical elements that constitute a busi-
ness process?

3. What roles do resources play in a business process? Provide examples.
4. What is the Business Process Modeling Notation (BPMN)? Why is it widely

used?

8.9. REVIEW QUESTIONS 271

5. Explain the symbols used in BPMN to represent events, activities, gateways, and
dependencies.

6. Describe the function of an exclusive gateway in a BPMN diagram. Provide an
example from the given material.

7. Explain what a parallel gateway is and provide an example of how it is used in
business process modeling.

8. What is an inclusive gateway? Give an example of its application in a business
process.

9. Given a simple process scenario, draw a BPMN diagram using appropriate sym-
bols for events, activities, and gateways.

10. Define a ”case” in the context of a business process. Provide an example.
11. What is a ”trace”? How does it relate to a case?
12. Explain the term ”event” in process mining. What might an event signify in a

business process event log?
13. Describe the typical lifecycle of an activity in a business process. Refer to the

XES standard lifecycle model.
14. What are some possible states and transitions an activity might go through during

its lifecycle?
15. Differentiate between ”event attributes” and ”case attributes.” Provide examples

of each.
16. Why is it important to associate events with resources and timestamps?
17. Define an ”event log.” What kind of information does it typically contain?
18. What is the XES file format?
19. How does a CSV file format differ from an XES file when used for storing event

log data?
20. Explain what is meant by automated process discovery in process analytics. Why

is it considered a crucial initial step for many organizations?
21. Define conformance checking. What are its typical uses in process analytics?
22. Discuss how conformance checking can demonstrate compliance with normative

process models or business rules during audits.
23. Describe what is meant by performance mining in the context of process analyt-

ics.
24. Identify and explain the types of problems that performance mining can help to

uncover within a process.
25. What is variants analysis, and why might it be useful for organizations that op-

erate in multiple locations or business units?
26. Provide examples of insights that can be gained from performing variants analy-

sis on business processes.
27. Explain the concept of process prediction and its importance in process analytics.
28. Discuss potential applications and provide examples of process prediction in

managing business processes and customer relations.

The following questions are specific to PM4Py but the main concepts apply to other
process analytics software tools as well.

29. Describe the role of the following columns in the process analytics context and
why they need to be specified:

272 CHAPTER 8. BUSINESS PROCESS ANALYTICS

• Case identifier
• Activity name
• Timestamp
• Resource

30. How does PM4Py determine which columns represent the case ID, activity name,
timestamp, and resource in the event log data? Include a brief explanation of how
these columns are transformed or defined in the provided Python code.

31. Compare and contrast the processes of loading event logs from CSV files and
XES files into PM4Py. Discuss the advantages and disadvantages of using each
file format.

32. What Python code would you use to calculate the number of cases and the num-
ber of events in an event log? Explain what each line of code does.

33. Describe the purpose of the following PM4Py functions:
• get_start_activities()
• get_end_activities()
• get_all_case_durations()

34. How does the split_by_process_variant() function in PM4Py work?
Describe what it returns and how these returns can be used in process analysis.

35. Explain what a directly-follows graph (DFG) is and its importance in process
discovery.

36. Discuss the observations that can be made from a DFG (e.g., start activities, end
activities, loops, and possible re-work).

37. Compare the Inductive Miner and Heuristics Net Miner provided by PM4Py in
terms of how they process a DFG to discover BPMN models.

38. Define the four aspects of model quality in process mining.
39. Describe how token-based replay and alignment-based fitness methods work to

assess the fitness of a process model.
40. Explain how precision differs from fitness in the context of process model quality

and why both are important.
41. Explain the importance of filtering an event log before conducting process anal-

ysis. Include three reasons why filtering might be necessary.
42. Describe how filtering can help an analyst focus on specific aspects of a process.

Provide examples of different subsets an analyst might focus on within an event
log.

43. What types of filters might an analyst use to refine an event log before analysis?
Provide examples or scenarios where specific filters would be particularly useful.

44. Explain what performance mining in process analytics entails and why it is im-
portant.

45. Discuss the types of information typically analyzed in performance mining, such
as service time, waiting times, and overall case durations. Why are these metrics
important?

46. Review the purpose of a dotted chart in performance analysis. How does this
visualization help in identifying batching of activities or case arrival rates?

47. Describe what a performance spectrum graph shows and how it can be used to
identify performance issues between two activities.

48. How can the distribution of events over time be used to inform capacity planning

8.9. REVIEW QUESTIONS 273

in an organization?
49. Consider the tools and methods described (DFG, dotted chart, performance spec-

trum, event distribution graphs). Discuss how each can contribute to a compre-
hensive performance analysis of a business process.

50. Explain the concept of organizational mining and its importance in understand-
ing process execution within an organization.

51. Describe what a handover-of-work or working-together network is. What does
this type of network reveal about the interactions between roles or resources?

52. Review the usefulness of analyzing resources that perform similar sets of activi-
ties. How does identifying implicit roles or skills similarity benefit an organiza-
tion?

274 CHAPTER 8. BUSINESS PROCESS ANALYTICS

Chapter 9

Introduction to Supervised
Machine Learning

Learning Goals

After reading this chapter, you should be able to:

• Explain the difference in focus and aims between explanation and prediction.

• Explain the decomposition of error into bias, variance, and irreducible error.

• Explain the connection between bias, variance, and degrees of freedom or flexi-
bility of a model.

• Recognize and mitigate overfitting and underfitting of regression and classifica-
tion models.

• Compute a confusion matrix from a trained classifier given a decision criterion.

• Calculate precision, recall, specificity, accuracy and related metrics from a con-
fusion matrix.

• Summarize the performance of a classifier as a ROC curve and its AUC.

• Calculate cross-entropy and KL divergence to evaluate the performance of a
multinomial classifier.

• Select and apply appropriate resampling methods to evaluate the prediction error
of a trained model.

275

276 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

Sources and Further Reading

The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapters 2, 3, 4, 5

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of
Statistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)

https://hastie.su.domains/ElemStatLearn/

Chapters 2, 3, 4, 7

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/book1.html

Chapters 4, 6, 9, 10, 11

Murphy’s book is available under a creative commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.

https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html

9.1. INTRODUCTION 277

9.1 Introduction
Supervised machine learning is the training or fitting of statistical models for prediction
tasks when the correct target outcome is known. It is called ”training” because we train
a statistical model to make predictions for future observations based on past data. It is
also called ”fitting” because, for parametric models, that is models with parameters, we
adjust the model parameters to ensure the model output is a good fit with the known,
correct target outcome; that is, we fit the model to the data.

Depending on the application area and research discipline, different terminology may
be used. In this chapter, the term inputs is used for variables used to make a prediction,
and the term outputs is used for the predicted variables. Other terms for inputs are
predictors, independent variables, and features although there are fine but important
distinctions that are covered later. Other terms for outputs are targets, responses, and
dependent variables.

Many methods in supervised learning are parametric methods that assume a functional
relationship of the form

y = f(x) + ϵ

where the function f is approximated by a function f̂ that is characterized by a set
of parameters. The values for these parameters are learned or estimated in order to
optimally fit the model to the existing training data. Once the optimal parameters are
estimated, the fitted or trained model can be used to predict the output for new inputs.

On the other hand, non-parametric methods do not assume a functional form. They
can therefore be more flexible.

Depending on the type of output, one distinguishes regression from classification. In
regression analysis, the output is quantitative, typically real-valued. The quality of a
model is measured by the numeric differences between actual and predicted output.
Figure 9.1 shows an example of a regression model that predicts the output ”Wage”
from the inputs ”Age”, ”Year”, and ”Education Level”. Note that one of the inputs is
quantitative while the other two are categorical (although both ”Year” and ”Education
Level” could conceivably be treated also as quantitative in another model).

There are many different regression metrics, some parametric, some non-parametric.
The highlighted entries in the list are covered in this and the following chapter; later
chapters will also cover neural network regression and regression trees.

• Parametric Methods

– Linear Regression

– Ridge and Lasso Regression

– Principal components regression

278 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

20 40 60 80

5
0

1
0
0

2
0
0

3
0
0

Age

W
a
g
e

2003 2006 2009

5
0

1
0
0

2
0
0

3
0
0

Year

W
a
g
e

1 2 3 4 5

5
0

1
0
0

2
0
0

3
0
0

Education Level

W
a
g
e

Source: ISLR2 Figure 1.1

Figure 9.1: Example regression model

– Non-linear regression

– Neural network regression

• Non-Parametric Methods

– K-Nearest-Neighbours (KNN)

– Regression trees

– Smoothing splines

– Multivariate adaptive regression splines

– Kernel regression

In contrast, the output of classification is categorical or qualitative. The quality of a
model is measured by the proportion of correct classifications (accuracy) and related
metrics. Figure 9.2 shows an example of a classification model where the binary output
”Today’s Direction” (of the stock market) is to be predicted from the inputs ”Yester-
day”, ”Two Days Previous”, and ”Three Days Previous”. Note that all three inputs are
qualitative, although quantitative inputs can also be used in classification.

There are many different classification methods, most of which are parametric, except
for decision trees and KNN. The highlighted methods are covered in this and the fol-
lowing chapter; decision trees and neural networks are covered in later chapters.

• Decision trees

• Random forests

• Bayesian networks

• Support vector machines

• Neural networks

• Logistic regression

9.2. EXPLANATION AND PREDICTION 279

Down Up

−
4

−
2

0
2

4
6

Yesterday

Today’s Direction

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 i
n

 S
&

P

Down Up

−
4

−
2

0
2

4
6

Two Days Previous

Today’s Direction
P

e
rc

e
n

ta
g

e
 c

h
a

n
g

e
 i
n

 S
&

P
Down Up

−
4

−
2

0
2

4
6

Three Days Previous

Today’s Direction

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 i
n

 S
&

P

Source: ISLR2 Figure 1.2

Figure 9.2: Example classification model

• Naive Bayes

• Probit model

• Genetic programming

• K-Nearest-Neighbours (KNN)

9.2 Explanation and Prediction
Explanation and prediction both use statistical models. However, they differ in their
goals and methods. Explanation seeks to understand the causal mechanisms in the
world, that is, understand why a particular output is observed for a given input. The
statistical model is intended to represent, or be isomorphic to (have the same form
as), the causal processes. Explanation is often concernced with theory testing. Model
parameters are assumed to represent the strength of a causal effect hypothesized by
some theory. Scientists use a representative sample of observations to infer the value
of a parameter in the larger population in order to support or reject a causal theory.
Explanation aims for relatively simple models, e.g. linear ones, that can be understood
and interpreted by humans. Explanation is retrospective, that is, backward looking.
It uses the observed data in the sample to fit a model, but does not normally collect
additional data to further verify the fit of that model on other data. In other words,
explanation is concerned with most closely fitting a model to a single sample, which is
assumed to be representative of the population. This is called ”bias minimization”, a
term explained in more depth later.

In contrast, prediction is not concerned with causal processes or with models that rep-
resent or are isomorphic to causal relationships in the world. A predictive model that
produces accurate predictions is satisfactory even if it does not represent the true causal
relationship. In other words, prediction is concerned withe association, not with cau-
sation. In contrast to explanation, prediction does not know the concepts of population,
sample, and inference from sample values to population values. Instead, prediction

280 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

Explanation Prediction
Causation Association

Theory Data
Retrospective Prospective

Bias Variance

Based on: Shmueli, G. (2010). To Explain or To Predict?. Statistical Science, 25, 289-310.

Table 9.1: Differences between explanation and prediction

uses the term ”training data” and requires that the training data be representative of fu-
ture observations for which predictions are to be made, not of some larger population.
In that sense, prediction is prospective, that is, forward looking. Prediction focuses
on individual observations, rather than the fit of the entire model. Moreover, because
the models are not intended to represent causal relationships and theories, they may
be more complex and need not be humanly understandable or interpretable. Instead
of focusing on fitting a statistical model to a single set of observations, as is done in
explanation, prediction recognizes the variability that is introduced by different sets of
training data. This is termed variance, a concept explained in more depth later. Pre-
diction tries to minimize both the bias and the variance in order to learn models that
accurately predict future, yet unseen observations.

Table 9.1 provides a summary of the differences between explanation and prediction.

Hands-On Exercise

For each of the following problems, decide if it is a prediction or infer-
ence/explanation problem:

1. How do real estate prices vary with location and age?
2. What is the most important predictor of real estate prices?
3. What is the expected sales price for a house at 310 Elizabeth Ave?
4. Is the month of the sale an important predictor of real estate prices?
5. Calculate the difference in expected sales prices for the house at 310

Elizabeth Avenue when sold in August and February
6. When should a house be sold to achieve the best price?

9.3 Bias and Variance in Regression Analysis
The predictive quality of a regression model is typically evaluated by the mean squared
error (MSE) or the mean absolute error (MAE). The error of the model in predicting
the correct output, that is, the difference between prediction and true output, is often
called the loss function, which is to be minimized for optimal fit. The mean absolute
error is sometimes preferred because it is more robust to the presence of outliers as it

9.3. BIAS AND VARIANCE IN REGRESSION ANALYSIS 281

https://commons.wikimedia.org/wiki/File:Huber_loss.svg

Figure 9.3: Huber loss function versus squared error

does not square the difference between prediction and target; other loss functions are
the mean absolute percentage error or the Huber loss. The Huber loss function, shown
in Figure 9.3, combines a square error for small values with an absolute error for larger
values, making it also robust to outliers.

MSE =
1

n

n∑
i=1

(yi − f̂(xi))2

MAE =
1

n

n∑
i=1

|yi − f̂(xi)|

MAPE =
1

n

n∑
i=1

|yi − f̂(xi)
yi

|

LHuber =

{
1
2 (y − f̂(x))2 for |y − f̂(x)| ≤ δ
δ(|y − f̂(x)| − 1

2δ) otherwise

The parameter δ for the Huber loss function can be freely chosen.

Importantly, the focus of evaluating the quality of a model should not be on the training
data itself, but on how well it performs on data that were not used for training. For
example, a model is trained on past stock market information, but is used to predict
future stock performance; a model is trained on previous patient information, but is
used to predict future patient outcomes; a model is trained on past real estate prices but
is used to predict future closing prices.

https://commons.wikimedia.org/wiki/File:Huber_loss.svg

282 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

A typical strategy is then to separate test data from the training data in the form of a
holdout sample. The model is fitted to the training data and then evaluated on the test
data.

Low error on training data does NOT imply low errors on test data.

Consider the regression model shown in Figure 9.4. The left panel shows a set of
observed x and y values generated from the true relationship (black line) by adding
some random error. The left panel also shows three different functions that are fitted
to this data. The diagonal orange line represents a simple linear regression model with
only x and an intercept as predictors, that is, it only has two parameters. The blue and
green lines represent smoothing regression splines with different levels of flexibility.

It is evident that the orange line fits neither the observed data very well, nor is it close
to the true function, the black line. It lacks sufficient flexibility to both approximate the
data and the true model. It has been underfitted.

It is evident from the left panel in Figure 9.4 that the green line fits the observed data
better than the blue line, but it is also clear that the green line does not fit the true
model, represented by the black line, as well as the blue line does. If one were to
generate another sample of observations from the black line by adding random errors,
the green line is unlikely to fit this new sample very well. In other words, the green
line model has been fitted to the particular characteristics, or idiosyncrasies of this one
set of training data: the model has been overfitted.

The right panel of Figure 9.4 shows the training data error (gray line) and the test data
error (red line) for the three models indicated by the coloured squares (and others in

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Source: ISLR2 Fig 2.9

Figure 9.4: Fit versus flexibility of a model

9.3. BIAS AND VARIANCE IN REGRESSION ANALYSIS 283

Source: Murphy Figure 1.7

Figure 9.5: Fit versus number of parameters of a model

between). The underfitting orange model shows both a large training error as well as a
large test error on a holdout sample. In contrst, the green overfitted model shows a very
small training error but a large test error on the independent test or holdout data set.
The blue model does not show the smallest training error but it does show the smallest
testing error.

While Figure 9.4 has been created with non-parametric smoothing spline models, in
parametric models, such as linear regression and others, the flexibility of the model to
adapt itself to the training data is a function of the number of parameters that can be
freely adjusted. For example, a regression model with only an intercept and the variable
x as predictor will have two parameters: the slope and the intercept and is therefore less
flexible than a model with intercept and predictors x, x2 and x3. Figure 9.5 shows an
example with parametric models. the top-left panel shows a model with predictors
x and x2 fitted to a set of training data. The bottom left panel shows a model with
polynomials in x up to degree of 20. As there are only 20 data points, the model
fits the data perfectly, but is unlikely to perform well on new, unseen observations.
The bottom right panel in Figure 9.5 shows the train and test errors for models with
different degrees of polynomials. Figure 9.5 is similar to Figure 9.4 in the essential
characteristics of overfitted models, that is a low training error and a high test error.

Closely related to flexibility is concept of degrees of freedom. In parametric models, the
degrees of freedom are defined as the difference between the number of observations

284 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

and the number of parameters of the model:

DF = n− p

Each parameter to be estimated requires one observation and so ”uses up” one degree
of freedom. The model in the bottom left panel of Figure 9.5 has no degrees of freedom
left, it has as many parameters p as observations n.

To better understand the concepts of underfitting and overfitting, it is useful to consider
the MSE regression loss in more detail. This requires the concepts of expected value
and variance of a random variable X from basic statistics.

Expected Value

E[X] =

∞∑
i=1

xipi discrete random variable

E[X] =

∫ ∞

−∞
xp(x)dx continuous random variable

For uniform distributions or unweighted observations pi = pj ∀i, j so that
E[X] = 1

n

∑∞
i=1 xi, i.e. expectation = mean

Variance

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

For zero-centered variables E[X] = 0 so that V ar[X] = E[X2]

Equipped with these concepts, one can rewrite the MSE to decompose it into three
parts:

MSE = E[(y − f̂)2]
= E[y2 − 2yf̂ + f̂2]

= E[y2]− 2E[yf̂] + E[f̂2]

Using the definitions for expected value and variance, each of part of the MSE can be

9.3. BIAS AND VARIANCE IN REGRESSION ANALYSIS 285

further rewritten:

E[f̂2] = E[f̂2]− E[f̂]2 + E[f̂]2

= V ar[f̂] + E[f̂]2

E[y2] = E[(f + ϵ)2]

= E[f2] + 2E[fϵ] + E[ϵ2]

= f2 + 2f · 0 + σ2 (f is not random andE[ϵ] = 0)

= f2 + σ2

E[yf̂] = E[(f + ϵ)f̂]

= E[ff̂] + E[ϵf̂]

= E[ff̂] + E[ϵ]E[f̂]

= E[ff̂] + 0 · E[f̂]

= fE[f̂]

Putting this all together, we can rewrite the MSE as follows:

MSE = f2 + σ2 − 2fE[f̂] + V ar[f̂] + E[f̂]2

= (f − E[f̂])2 + σ2 + V ar[f̂]

= Bias[f̂]2 + σ2 + V ar[f̂]

The bias of an estimated model f̂ expresses how far the expected value of the estimated
model f̂ is away from the true target value f , while the variance of an estimated model
f̂ expresses how much the expected value of the estimated model varies with different
inputs or data sets. The final part of the MSE is the irreducible error σ2 that represents
the random variations of the data around the true target value f .

An underfitting model will necessarily have a large bias as it is not close to the true
model. This was illustrated by the orange line model in Figure 9.4. As underfitting
models are often models that are too simple, they tend to have small variance, but this
is not necessarily true for all models.

In contrast, overfitting models necessarily have a large variance. Because they are
fitted to the idiosyncratic specific values of the training data, they do not generalize
well to new, unseen test data. New data, even if it is drawn from the same probability
distribution or population, will lead to very different predicted outputs. Thus, a large
variance of a model is manifested by a large test error. A severely overfitted model may
also have a large bias. An example of this is the overfitted green model in Figure 9.4,

286 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

https://commons.wikimedia.org/wiki/File:
Bias_and_variance_contributing_to_total_error.svg

Figure 9.6: Bias and variance trade-off

or the degree 20 polynomial model in Figure 9.5. Neither of these are close to the true
model.

A well-fitting model is one that does not minimize the bias or the variance but finds the
overall optimum by minimizing the joint error. To estimate the variance, it is necessary
to apply the model to independent test data. In other words, a well-fitting model is one
that minimizes the test error. This central idea is known as the bias and variance trade-
off and is illustrated in Figure 9.6. Note that the total error also includes the irreducible
error which cannot be removed but is independent of model complexity.

Returning to the characteristics of explanation and prediction, it is now clear that ex-
planation aims to minimize only the bias by seeking to identify the true model. In
contrast, prediction also includes a reduction of variance and focuses on minimizing
the overall or joint error.

While this section has derived the concepts of bias and variance using regression mod-
els, those concepts also apply to classification models. However, the classification loss
functions do not lend themselves to the easy separation of the error as the MSE loss
function above.

9.4 Model Quality in Classification

In classification models, the primary quality criterion is the error rate, which can be
calculated both for training and for test data as the proportion where the predicted class
ŷi is not the true class yi:

https://commons.wikimedia.org/wiki/File:Bias_and_variance_contributing_to_total_error.svg
https://commons.wikimedia.org/wiki/File:Bias_and_variance_contributing_to_total_error.svg

9.4. MODEL QUALITY IN CLASSIFICATION 287

1

n

n∑
i=1

I(yi ̸= ŷi)

Here, I(·) is the identity function that is 1 if its argument is true, 0 otherwise.

Classification methods typically produce as output the probability of an observation
belonging to any of k classes. A decision rule is then required to actually classify an
observation based on this probability. A Bayes classifier assigns each observation to
the class j with the highest probability, given its predictor values x0:

argmax
j

Pr(Y = j|X = x0)

Consequently, the error rate can be written as:

1− E
(
argmax

j
Pr(Y = j|X)

)

The most common type of classification is binary classification, which assigns obser-
vations to one of two classes, e.g. true or false, normal or abnormal, good or bad,
zero or one, etc. Multinomial classification, also called multi-class classification as-
signs observations to one of more than two classes. This section first considers binary
classification before moving to multinomial classification.

A Bayes classifier is an ideal classifier. The Bayes classifier error rate is the irreducible
error and forms the lower bound of practically achievable classification error rates.
The Bayes classifier is an ideal classifier because in practice the probabilities of class
membership, conditional on the observed predictor values, are unknown and must be
estimated from data using a statistical model. However, estimation introduces error.

A simple, non-parametric classifier is the k-Nearest Neighbour (KNN) method. This
classifier identifies a set of k observations closest to an observation x0 whose class is
to be predicted, called the neighbourhood N0. The class membership probabilities are
then estimated as the proportions of observations in the neighbourhood that belong to
the different classes j:

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j)

Here, I(·) is the identity function that is 1 if its argument is true, and 0 otherwise.

Figure 9.7 provides an example for k = 3. The left panel in this figure shows points
for which the classes, blue or orange, are known. When predicting the class for a new

288 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

o

o

o

o

o

oo

o

o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

Source: ISLR2 Figure 2.14

Figure 9.7: KNN example for binary classification

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=1 KNN: K=100

Source: ISLR2 Figure 2.16

Figure 9.8: Decision boundaries of two KNN classifiers

point, marked by the ”×”, the three nearest neighbours are identified. Of these, two
are blue and one is yellow. Thus, the probability of the new point being yellow is
estimated as 1/3 and that of it being blue is estimated as 2/3. The Bayes decision rule
would classify the new point as blue. The right panel shows the result of classifying a
large set of points as blue or yellow. The panel clearly shows the decision boundary of
the classifier that separates the predicted class memberships, represented by the black
line.

When KNN is used for regression, the predicted output value is usually estimated as
the mean output values of the k neighbours in the neighbourhood N0.

To show how the KNN classifier behaves as a function of different values for k, con-
sider the two panels in Figure 9.8. The left panel shows the classifications and the

9.4. MODEL QUALITY IN CLASSIFICATION 289

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

1/K

E
rr

o
r

R
a
te

Training Errors

Test Errors

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X1
X

2

KNN: K=10

Source: ISLR2 Figures 2.14, 2.15

Figure 9.9: KNN error rates and optimal KNN decision boundary

decision boundaries for k = 1. It also shows the true Bayes boundary as a dashed blue
line. The KNN classifier shows relatively low bias in that it its decision boundary is
somewhat close to the Bayes decision boundary. However, it also shows signs of over-
fitting when the classifier decision boundary adapts to various individual points along
both sides of the true boundary. The right panel shows a KNN classifier for the same
data set with k = 100. It is clear that the classifier decision boundary does not follow
the true decision boundary, that is, the classifier shows high bias. This classifier is un-
derfitted. On the other hand, given that k = 100, it is not susceptible to individual data
points or sampling changes for new data (as long as the new data is generated from the
same true model), that is, it shows low variance.

In KNN classification (and also in KNN regression), the model with the lower value of
k is the more flexible model, and is more likely to lead to overfitting. As k increases,
the model becomes less flexible, less likely to overfit, and increasingly more likely
to underfit and have a high bias. The left panel in Figure 9.9 shows the training and
test error rates for the KNN classifier for different values of k. Note the horizontal
axis shows the inverse of k, that is 1/k, larger k are to the left, smaller k are to the
right in this panel. The right panel in Figure 9.9 shows the classifications and decision
boundary for k = 10, which is close to optimal.

290 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

Hands-On Exercise The table below provides a training data set containing
six observations, three predictors, and one qualitative response variable.

Obs. X1 X2 X3 Y

1 0 3 0 Blue
2 2 0 0 Blue
3 0 1 3 Blue
4 0 1 2 Yellow
5 -1 0 1 Yellow
6 -1 1 1 Blue

Suppose we wish to use this data set to make a prediction for Y when X1 =
X2 = X3 = 0 using K-nearest neighbours.

1. Compute the Euclidean distance (”l2-norm” or ”Euclidean norm” of the
vector difference) between each observation and the test point. The l2-
norm is the root of the sum of squared differences.

2. What are your predictions for K = 1 and for K = 3? Why?
3. If the Bayes decision boundary is highly non-linear, would you expect

the best value for K to be large or small? Why?
Adapted from ISLR Exercise 2.7

In binary classification, the confusion matrix is a useful tool for summarizing the per-
formance of a classifier. It tabulates the number of positive and negative predictions
that match the true values. The following confusion matrix shows the results of a
hypothetical binary classifier for credit card defaults that assigns classes by highest
probability:

Pr(default=Yes|X = x) > 0.5 (Bayes)

True default status

No Yes Total

Predicted No 9644 252 9896
default status Yes 23 81 104

Total 9667 333 10000

Source: ISLR2 Table 4.4

The overall error rate is 23+252
10000 = 0.0275 = 2.75%. However, of the true defaulters,

only 81/333 = 24.3% were correctly predicted. This is called the recall or sensitivity.
It also means that the error rate for the class of true defaulters is a rather high 75.7%.
The overall error rate remains small mainly because there are very few true defaulters,
only 333/10000. Of the non-defaulters, 9644/9667 = 99.8% are correctly predicted.
This is known as the specificity, for an error rate of only 0.02%.

While a Bayes classification rule of choosing the highest probability class is easy to
justify on probabilistic grounds, practical applications often choose a different thresh-

9.4. MODEL QUALITY IN CLASSIFICATION 291

old. In this fictitious example, credit card defaulters may pose a significant risk so that
it may be worthwhile reducing the error rate for the true defaulters, even at the the
cost of increasing the error rate for the non-defaulters. This is shown in the following
confusion matrix:

Pr(default=Yes|X = x) > 0.2

True default status

No Yes Total

Predicted No 9432 138 9570
default status Yes 235 195 430

Total 9667 333 10000

Source: ISLR2 Table 4.5

More of the true defaulters are correctly predicted and the sensitivity has improved to
58.6% while the error rate for true defaulters has been reduced to 51.4%. On the other
hand, the specificity has decreased to 97.6% and the overall error rate has increased to
3.73%.

In general, a confusion matrix shows four different values, the true negatives (TN), true
positives (TP), false negatives (FN) and false positives (FP) as shown in the following
table:

True class

No (-) Yes (+) Total

Predicted No (-) True Neg. (TN) False Neg. (FN) N∗

class Yes (+) False Pos. (FP) True Pos. (TP) P ∗

Total N P

From these four values, a number of model quality statistics can be computed. Fre-
quently used are the recall, specificity, precision, accruacy, and F1 score, which are
highlighted in the following list:

• Sensitivity, Recall, Hit Rate, True Positive Rate:

TPR =
TP

P
=

TP

TP + FN
= 1− FNR

• Specificity, Selectivity, True Negative Rate:

TNR =
TN

N
=

TN

TN + FP
= 1− FPR

• Precision, Positive Predictive Value:

PPV =
TP

TP + FP
= 1− FDR

292 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

• Negative Predictive Value:

NPV =
TN

TN + FN
= 1− FOR

• Miss Rate, False Negative Rate:

FNR =
FN

P
=

FN

FN + TP
= 1− TPR

• Fall-out, False Positive Rate:

FPR =
FP

N
=

FP

FP + TN
= 1− TNR

• False Discovery Rate:

FDR =
FP

FP + TP
= 1− PPV

• False Omission Rate:

FOR =
FN

FN + TN
= 1−NPV

• Accuracy (= 1 - Error Rate):

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN

• F1 Score (harmonic mean of precision and recall):

F1 = 2× PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN

• False Discovery Rate:

FDR =
FP

FP + TP
= 1− PPV

• False Omission Rate:

FOR =
FN

FN + TN
= 1−NPV

The above example demonstrated that the true positive rate and the false positive rate
(or the true negative rate and false negative rate) are not independent of each other.
Generally, increasing the true positive rate will also increase the false positive rate, be-
cause one is overall more likely to conclude that an observation is the true class (by

9.4. MODEL QUALITY IN CLASSIFICATION 293

https://commons.wikimedia.org/wiki/File:Roc_curve.svg

Figure 9.10: ROC curves of three example classifiers

adjusting the probability threshold). This suggests that a graph of the true positive rate
against the false positive rate as shown in Figure 9.10 can summarize the classifier per-
formance and allows the user to pick a desirable combination of true and false positive
rates. The graph in Figure 9.10 is called a Receiver Operating Characteristics chart,
or ROC chart for short. The terminology stems from early experiments with aircraft
detection through radar during the 2nd world war. As shown in the figure, a random
classifier is characterized by a diagonal line, and good classifiers have curves towards
the upper left. Thus, the classifier shown in the green line dominates the one in the
orange line, and is in turn dominated by the one represented by the blue line. All three
perform better than a random classifier.

Because the ROC curve of a perfect classifier runs though the top-left corner of the
ROC chart, it is natural to define the overall performance of classifier for various com-
binations of true and false positive rate by the area under the curve. This also allows
easy comparisons of classifiers that do not dominate one another, i.e. whose ROC lines
cross each other. The area-under-the-curve, or AUC for short, summarizes the clas-
sifier performance in a single number. For the classifier in Figure 9.11, the AUC is
0.834, indicated by the green and read areas. A random classifier has an AUC of 0.5
and a perfect classifier has an AUC of 1.

https://commons.wikimedia.org/wiki/File:Roc_curve.svg

294 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

https://commons.wikimedia.org/wiki/File:ROC_curve_example_highlighting_sub-area_
with_low_sensitivity_and_low_specificity.png

Figure 9.11: AUC of an example classifier

Hands-On Exercises

1. Consider the two confusion matrices above.
• Compute precision and recall for the two confusion matrixes above
• Computer accuracy and F1 values for the two confusion matrixes

above
• The two confusion matrixes above characterize two points on the

ROC curve. Plot the two points for this classifier in an ROC
space/diagram. Are they above or below the diagonal?

2. Consider a medical testing scenario where 1000 individuals are tested for
a disease. The results are:

• 100 people actually have the disease, and 900 do not.
• Out of the 100 people with the disease, 90 are correctly identified

as having it, but 10 are not detected.
• Of the 900 people without the disease, 810 are correctly identified

as not having it, but 90 are incorrectly identified as having the dis-
ease.

Calculate the precision, recall, sensitivity, and accuracy of the test.
Tip: Write down the confusion matrix first.

https://commons.wikimedia.org/wiki/File:ROC_curve_example_highlighting_sub-area_with_low_sensitivity_and_low_specificity.png
https://commons.wikimedia.org/wiki/File:ROC_curve_example_highlighting_sub-area_with_low_sensitivity_and_low_specificity.png

9.5. MULTINOMIAL CLASSIFICATION 295

Hands-On Exercises [cont’d]

3. Given the following results from a machine learning model:
• Precision: 0.75
• Recall: 0.60
• Accuracy: 0.80

Answer the following questions:
(a) What percentage of identified positives are actually positive?
(b) What percentage of actual positives are identified by the model?
(c) What percentage of the total classifications were correct?

4. Consider a binary classification task with the following confusion matrix
at a certain threshold:

• TP: 150, FP: 50
• FN: 30, TN: 200

Discuss how adjusting the classification threshold might affect precision,
recall, and accuracy. What happens if the threshold is increased or de-
creased?

9.5 Multinomial Classification
Multinomial or multi-class classification assigns each observation to one of more than
two classes. In this setting, the confusion matrix becomes larger, as shown in the
following example, where the overall accuracy is calculated as the sum of the diagonal
element divided by the sum of all elements, i.e. sum(diag(.)) / sum(.) = 17/24 = .71.

True class
0 1 2 Prob

Predicted
Class

0 4 2 0 q0 = 6/24 = .25

1 1 5 2 q1 = 8/24 = .33

2 2 0 8 q2 = 10/24 = .42

Prob p0 p1 p2
= 7/24 = 7/24 = 10/24

= .29 = .29 = .42

While the concept of a confusion matrix remains applicable, it is not immediately ob-
vious what the true negative, true positive, false negative, and false positive values are.
One way to overcome this is to reduce the classification results to a binomial case by
treating each class in turn as the ”positive class” and all others as ”negative”. This is
called ”one-versus-rest” (OvR), ”one-versus-all” (OvA), or ”one-against-all” (OaA).

In micro-averaging, the TP, TN, FP, and FN values are counted for all classes using
OvR, and then summed. These total TP, TN, FP, and FN values are then used to com-
pute precision, recall and other metrics. This gives equal weight to each instance but

296 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

may overemphasize the classification for a dominant majority class. Importantly, for
micro-averaging, precision equals recall equals accuracy.

In macro-averaging, the TP, TN, FP, and FN values are counted for all classes, but in-
stead of summing these values, precision and recall are calculated for each class. These
precision and recall values are then averaged over all classes, optionally weighting each
class by its true count of instances. Macro-averaging is appropriate when all classes
are equally important. It is also appropriate for an imbalanced data set and ensures that
all classes contribute equally. However, it may mask poor performance of important
minority classes, and it may lower overall performance measures due to low classi-
fier performance on small or unimportant classes that nonetheless contribute equally to
larger or important classes.

Hands-On Exercise

For the multi-class confusion matrix above,
1. Compute precision and recall for each class.
2. Compute the micro-averages of precision and recall and show that they

equal the accuracy.
3. Compute the macro-averages of precision and recall.

While precision, recall, and accuracy are useful metrics for evaluating a binary or multi-
nomial classifer, they do not lend themselves to be used directly as loss functions in
fitting a model. This is because the assignment of an observation to a class is a func-
tion of the probability of its class membership and the actual class assignment may
depend on the chosen threshold probability or other decision rule. Thus, a desirable
loss function is a function that expresses how close or how different the predicted class
membership probabilities are from the true class membership probabilities.

There are two commonly used metrics that quantify such a difference. Both have their
origin in information theory and the two are closely related to each other. First, the
cross-entropy of two probability distributions pi and qi over the same set of classes i is
defined as:

H(p, q) = −
∑
i

pi log qi Cross-entropy

Here, pi is the true probability of belonging to class i whereas qi is the predicted prob-
ability of belonging to class i. The cross-entropy captures the similarity or difference
of the two probability distributions.

The second metric is the Kullback-Leibler (KL) divergence. It is effectively the cross-
entroy minus the entropy of the true probability distribution, as the following derivation
shows:

9.5. MULTINOMIAL CLASSIFICATION 297

DKL(P ||Q) =
∑
i

pi log

(
pi
qi

)
Kullback-Leibler (KL) divergence

=
∑
i

pi log pi −
∑
i

pi log qi

= −H(p, p) +H(p, q)

Hands-On Exercise

1. Consider the two probability distributions P and Q in the following dia-
grams.

https://commons.wikimedia.org/wiki/File:Kullback-Leibler_distributions_example_1.svg

(a) Calculate the cross-entropy of P and Q.
(b) Calculate the entropy of P.
(c) Calculate the KL divergence of P and Q.

Tip: Binomial distribution: Pr(P = k) = n!
k!(n−k)!p

k(1− p)n−k

2. Calculate the cross-entropy and KL-divergence for the multi-class con-
fusion matrix above.

3. Given two probability distributions P and Q over a discrete set of events,
where P = [0.1, 0.4, 0.5] and Q = [0.2, 0.3, 0.5], calculate the cross-
entropy H(P,Q) and the KL-divergence DKL(P ||Q).

4. In a binary classification task, you have the following probability distri-
butions for the actual labels (P) and predicted labels (Q):

• P = [1, 0] (the actual class is positive)
• Q = [0.7, 0.3] (the model predicts a 70% chance of being positive)

Calculate the cross-entropy loss for this scenario.

5. Calculate the KL divergence between the following probability distribu-
tions:

• P = [0.1, 0.9]
• Q = [0.5, 0.5]

https://commons.wikimedia.org/wiki/File:Kullback-Leibler_distributions_example_1.svg

298 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

9.6 Crossvalidation Methods
Recall that the goal in prediction is to have an unbiased assessment of the true classi-
fication or regression error, and to generalize to prediction of future, yet unseen obser-
vations. Finding a suitable prediction model involves two separate steps, that of model
selection, and that of model assessment. Model selection estimates the predictive per-
formance, that is, the error or loss, of different models in order to choose the best one.
After having chosen the final model, its prediction error must again be estimated on
new data. This is to avoid model selection capitalizing on specific idiosyncrasies of the
test data, which may not hold for new, as yet unseen data.

The validation set approach, or ”holdout” method, then requires not only a training and
test data set, but a third set, the validation set. The training data is used to train each
of a set of candidate models, the validation data is used to test each candidate model,
and the test data is used to evaluate the finally selected model. Typically, the data set
is randomly split into 50% training data, 25% validation data, and 25% test data, but
other splits are used as well.

One potential problem with this approach is that the validation error can be highly
variable and depends critically on the way the data is split. One random split can show
very different characteristics than another random split. A second potential problem
is that the validation error may overestimate the actual error, because the training set
is small, only half of the full data set. Figure 9.12 illustrates the first problem. A
single split of the data results in the validation error shown in the left panel. However,
repeating the random splitting ten times results in ten different validation errors that
may be very different from each other, as shown in the right panel of that figure.

One way to deal with both problems is to use leave-one-out cross-validation (LOOCV).
In LOOCV, each observation is designated as test observation in turn, while the remain-
ing n− 1 observations form the training data set. The model is trained on the training
data and tested on the single test observation. This procedure is repeated n times as
each observation becomes the test observation in turn. The cross-validation error is

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Source:
ISLR2 Figure 5.2

Figure 9.12: Validation error for different random splits of a data set

9.6. CROSSVALIDATION METHODS 299

simply the mean of the n training errors:

CV =
1

n

∑n

i=1
Erri

The advantage to LOOCV is that it addresses the two potential problems with the hold-
out sample approach. Additionally, it is deterministic as there is no randomness to the
resulting validation error estimate, because there are no random splits of the data set.
Finally, LOOCV shows less overstimation of the validation error rate than the holdout
approach. However, a significant drawback is that this approach is computationally
expensive, because the model must be fit or trained n times to n different training data
sets.

As a compromise between the holdout sample approach and LOOCV, business analysts
often use k-fold cross-validation. In this approach, the data set is randomly divided
into k sub-samples (”folds”). Each fold is selected as the test data set in turn, with the
remaining k − 1 folds combining to form the training data set. The cross-validation
error is simply the mean of the k cross-validation errors for each of the k test folds.
Typically, k is chosen as 5 or 10.

CV =
1

k

∑k

i=1
Erri

k-fold cross-validation is computationally less expensive and less stable than LOOCV,
but it is more stable than the holdout sample approach. The k-fold cross-validation
error estimate has a higher bias but lower variance than that of LOOCV. Figure 9.13
illustrates the stability. The left panel shows the LOOCV error estimate for a regression
number with different degrees of polynomials. The right panel shows ten different runs
each of 10-fold cross-validation (i.e. the model was trained a total of 100 times). The
10-fold cross-validation errors show a much smaller variation than the different holdout
sample errors in Figure 9.12.

One important consideration in splitting the data is preventing information leakage
from training to test or validation data set, in order to ensure that the test and valida-
tion data sets are truly independent of the training data. One way in which information
could be leaked is when selection of input variables or predictors is done based on
characteristics of the entire data set, for example the variance of a variable or the cor-
relation between variables in the entire data set. This selection affects both the training
and the test data, essentially leaking some information from the training data to the test
data, and thereby making the test data set not truly independent. Another way in which
information can leak is by pre-processing variables, like centering around the mean or
scaling them to have unit variance. When this is based on the mean or variance of the
full data set, information from the training set leaks to the test or validation set, making
those data sets not fully independent. As a general rule, any predictor or feature se-
lection and data pre-processing must be done independently for each training set, after
the split or splits (in the case of k-fold CV) have been made.

300 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Source: ISLR2 Figure 5.4

Figure 9.13: Cross-validation error with LOOCV and 10-fold cross-validation

9.7 Review Questions
Supervised and unsupervised learning

1. Explain the difference between supervised and unsupervised learning. Provide
an example for each.

2. Define regression and classification. Discuss one real-life application for each.

Parametric methods

3. What is the difference between a parametric and a non-parametric machine learn-
ing model? Provide examples.

4. What are some of the key metrics used to evaluate the quality of a regression
model versus a classification model? Discuss their relevance in real-world appli-
cations.

Explanation and prediction

5. Define the terms explanation and prediction. How do they differ in their core
objectives when using statistical models?

6. Explain what is meant by the statement that explanatory models are intended to
be isomorphic to causal processes.

7. Discuss why explanation models focus on bias minimization and how this affects
the model design and interpretation.

8. Provide examples where an explanation model would be more suitable than a
prediction model, and vice versa.

9. What are the implications of using a predictive model that does not represent the
true causal relationship but still produces accurate predictions?

9.7. REVIEW QUESTIONS 301

Bias and variance

10. Explain the terms bias and variance in the context of statistical modeling. How
do they relate to the goals of prediction?

11. Explain the bias-variance tradeoff with an example. You may use a simple re-
gression model as a reference.

12. What are overfitting and underfitting in the context of machine learning? How
can each be detected and mitigated?

13. Describe a scenario where a high-bias model would be more appropriate than a
low-bias model.

14. Given the following scenarios, identify whether the model is likely suffering
from high bias, high variance, or is well-balanced:

• A model that performs well on training data but poorly on unseen test data.
• A simple linear regression model that is unable to capture the complexities

of the data, resulting in poor performance on both training and test data.
• A model that performs equally well on training and test data.

15. Describe techniques to reduce bias in a machine learning model.
16. Given a dataset where the relationship between features and target is non-linear

and complex, propose a strategy to improve a model that initially has high bias
(e.g., linear regression).

17. List and explain strategies to reduce variance in a machine learning model.
18. Imagine you have a deep learning model that performs exceptionally well on the

training data but poorly on the validation data. What steps would you take to
address this issue?

Regression evaluation

19. Explain the difference between Mean Squared Error (MSE) and Mean Absolute
Error (MAE). Why is MAE considered more robust to outliers?

20. Describe the Huber loss function and discuss its advantages over MSE and MAE.
21. Discuss the significance of using test data to evaluate the quality of a regres-

sion model. Why is it not advisable to rely solely on training data for model
evaluation?

KNN classification

22. Explain how the KNN algorithm estimates the class of a new observation. In-
clude a discussion on the effect of the choice of k.

23. How does changing the value of k in the KNN classifier affect the bias and
variance of the model?

Binary classification evaluation

24. Define the terms ”precision” and ”recall”. Provide a scenario where a high recall
is more important than high precision, and vice versa.

25. Describe the following metrics and explain their importance in the evaluation of
classification models:

302 CHAPTER 9. INTRODUCTION TO SUPERVISED MACHINE LEARNING

• Precision
• Recall (Sensitivity)
• F1 Score
• Specificity

26. Discuss the importance of the ROC curve and AUC in the evaluation of classi-
fication models. How do these metrics help in assessing the performance of a
model?

27. Given a scenario where you are developing a classifier for a medical diagnosis
application, which metric would you prioritize and why?

Multinomial classification evaluation

28. Explain what is meant by multinomial classification. How does it differ from
binary classification?

29. Describe the purpose and structure of a confusion matrix in the context of multi-
nomial classification.

30. How is the overall accuracy calculated using a confusion matrix for multinomial
classification? Explain using an example.

31. Discuss the difference between micro-averaging and macro-averaging in the con-
text of evaluating classification models.

Cross-entropy and KL-divergence

32. Define cross-entropy and explain its significance in machine learning, especially
in classification tasks.

33. Define Kullback-Leibler divergence and explain its relationship with cross-entropy.

Cross-validation

34. Explain the concept of cross-validation and how it helps in model assessment.
35. What is the validation set approach in model evaluation? Describe its potential

drawbacks.
36. How does the validation set approach help mitigate the risk of model overfitting?
37. Describe the leave-one-out cross-validation (LOOCV) method. What are the

benefits and limitations of using LOOCV for model validation?
38. Compare and contrast LOOCV with the traditional holdout method. In what

scenarios might LOOCV be particularly beneficial?
39. Explain k-fold cross-validation. How does it differ from LOOCV in terms of

error estimation?
40. Discuss the impact of the number of folds in k-fold cross-validation on the bias

and variance of the model error estimate.
41. Define information leakage in the context of data splitting for model evaluation.

Why is it important to prevent it?
42. Provide guidelines or methods to prevent information leakage during the prepro-

cessing and feature selection stages of model development.

Chapter 10

Regression and Classification
Models

Learning Goals
After reading this chapter, you should be able to:

• Explain the importance of visually assessing data before predictive modelling.

• Build a linear regression model, including interaction effects and categorical pre-
dictors, and be able to assess its quality using cross-validation methods.

• Explain the goals and the differences between ridge regression, LASSO and
Elasticnet

• Build regression models using different penalized linear regressions and evaluate
their quality using cross-validation methods.

• Explain logistic regression and the purpose of the link function, including the
concepts of log-odds or logits.

• Build a classification model using logistic regression and evaluate its quality
using common metrics such as accuracy, and the ROC and AUC.

• Build a classification model using the KNN method and evaluate its quality using
common metrics such as accuracy, and the ROC and AUC.

Sources and Further Reading
The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

303

304 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)
https://www.statlearning.com

Chapters 2, 3, 4, 5

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python. This book is
a more accessible of the following book.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Sta-
tistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapters 2, 3, 4, 7

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.
https://probml.github.io/pml-book/book1.html

Chapters 4, 6, 9, 10, 11

Murphy’s book is available under a creative-commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.

10.1 Introduction
This chapter is an introduction to supervised machine learning using R and includes
both regression and classification problems. The chapter introduces linear regression
and penalized regression models (ridge regression and LASSO). For classification, it
introduces the methods of logistic regression and k-Nearest-Neighbours, which was al-
ready briefly discussed in the previous chapter. This chapter builds on the introductory
material to supervised learning in the previous chapter.

https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html

10.2. LINEAR REGRESSION 305

0 50 100 150 200 250 300

5
1

0
1

5
2

0
2

5

TV

S
a

le
s

Source: ISLR2 Figure 3.1

Figure 10.1: A linear regression model

10.2 Linear Regression
Linear regression fits a simple statistical model to a set of input and output variables.
The true model is assumed to take the form:

f(X) = Y = β0 + β1X + ϵ

while the fitted, approximate model is:

f̂(X) = Ŷ = β̂0 + β̂1X

The values of f̂(X) = Ŷ are called the fitted values in statistics or the predicted val-
ues in machine learning. The difference in terminology reflects the fact that traditional
statistics looks back at the training data for the output values determined by the model
after it has been fit to the training data, whereas machine learning emphasizes predic-
tion of output values for new inputs.

This equation shows the form of the assumed functional relationship between X and
Y is linear in the parameters β. In other words, there are no polynomials or other
transformations of β, such as β2

1 or log β1. It is the linearity of the parameters that
makes a regression linear, not the linearity of the predictors. For example, adding a
polynomial term β2X

2 to the right-hand side of this regression equation would still
make this a linear regression.

Figure 10.1 shows the fitted regression line expressed by the intercept (β̂0) and slope
(β̂1) parameters. The distance between this line and the data points (coloured red)

306 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Source: Murphy Figure 2.6

Figure 10.2: The ”Datasaurus Dozen” – All datasets have the same correlation between
the two variables

represents the error term ϵ in the regression equation. Importantly, the error is the
vertical differences in the Y direction between fitted regression line and the data point,
not the shortest distance between the regression line and the data point.

The first task in performing a regression analysis is to identify the form of the regression
model or regression equation. While Figure 10.1 fitted a model that is linear in X , it
is clear that this model is not a good fit for small X values, as the corresponding
observations are all below the regression line.

To identify an appropriate functional form, it is insufficient to simply examine summary
statistics like correlations or covariances between variables. Figure 10.2 shows twelve
data sets with the same correlation between the two variables. It is clear that none of
them can be fitted to a simple moodel that is linear in X . While some, like the circle
or the bullseye data set, can be appropriately transformed and fitted to linear regression
models that involve polynomials or other functions of X , it is not clear what functional
form the dinosaur head might take.

It is also insufficient to fit a model that is linear in X and use the fit as indication
for the appropriateness of the model. Consider the data sets shown in Figure 10.3. The
correlations between the two variables are shown above each data set. Visual inspection
is sufficient to show that data sets with the same correlation do not necessarily have the
same regression slope, or should even be fitted to the same linear model.

The objective for estimating the parameters β0 and β1 from the data set is to mini-
mize the residual or error, that is, the difference between f and f̂ . So that positive and
negative differences do not compensate for each other, the difference is either squared

10.2. LINEAR REGRESSION 307

Source: Murphy Figure 3.1

Figure 10.3: Datasets with the same correlation (as indicated above each dataset) be-
tween two variables do not need to have the same regression slope

or the absolute value is taken. The former is called mean squared error (MSE) while
the latter is called mean absolute error (MAE). In statistics, a closely related concept
is the residual sum of squares (RSS). The MSE is the RSS divided by the number of
observations n, and minimizing one also minimizes the other. While the discussion in
the previous chapter indicated that the MAE is more robust in that outliers, i.e. obser-
vations with large errors, have less influence on the estimated values of the parameters,
it is customary to fit linear regression models using the RSS or the MSE.

RSS =
∑
i

(
yi − β̂0 − β̂1xi

)2
MSE =

1

n
RSS

The linear regression model is simple enough that an optimal solution can be derived
analytically. The optimal least-squares estimates are:

β̂1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2

β̂0 = ȳ − β̂1x̄

where x̄ and ȳ are the sample means.

The parameter value estimates have standard errors associated with them that indicate
the uncertainty of these estimates. This is based on the idea that the training data set is
a small random sample from the overall population, and taking other random samples
may well yield slightly different parameter values.

308 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Using the standard errors of the estimates, a t statistic can be calculated from the dif-
ference of the estimate of a parameter ˆbeta and some value V .

t =
β̂ − V
SE(β̂)

The statistic t is a random variable whose values are distributed according to a student-
t probability distribution. This allows one to calculate the probability of observing a
value of t or larger under the assumption that β̂ = V , that is, there is no difference
between V and the estimate of the parameter β̂. If the calculated probabily is very
small, it is unlikely that this assumption holds and one might conclude that β̂ ̸= V .
This procedure is called the t-test. In most applications of this test to regression model
parameters, V is set to 0. Because for large sample sizes the student-t distribution
approaches the normal (Gaussian) probability distribution, the probability is sometimes
calculated from this distribution, the statistic is called the z statistic and the test is then
called a z-test.

Another important statistic in linear regression analysis is the proportion of explained
variance, designated as R2. It is defined as:

R2 =
TSS −RSS

TSS
= 1− RSS

TSS

where TSS =
∑

i(yi − ȳ)2 is the total sum of squares. An R2 value close to 1
indicates that the fitted regression model explains a large proportion of the variability
in the data set, that is, it explains the data well. In contrast, a value close to 0 indicates
that the fitted regression model explains very little of the observed variability, it does
not explain the observed data well. Another important interpretation of the R2 is as the
correlation between the true Y and the fitted or predicted values Ŷ .

Adding additional predictors into the linear regression model is straightforward, as is
the inclusion of qualitative or categorical predictors. For example, a model with two
predictors X1 and X2 assumes the true form

Y = β0 + β1X1 + β2X2 + ϵ

and fits a plane to a set of points in three dimensional (X1, X2, Y) space, as shown in
Figure 10.4.

Qualitative predictors (called factors in statistics) wich multiple, exclusive levels or
categories can be included using dummy variables. A categorical variable that can take
on k values requires k − 1 binary dummy variables. For example, a factor x that has

10.2. LINEAR REGRESSION 309

X1

X2

Y

Source: ISLR2 Figure 3.4

Figure 10.4: Example linear regression with two predictors

four levels ”a”, ”b”, ”c”, and ”d” might be encoded using three dummy variables as
follows:

xi1 =

{
1 level ”a”
0 else

xi2 =

{
1 level ”b”
0 else

xi3 =

{
1 level ”c”
0 else

Note that xi1 = xi2 = xi3 = 0 represents level ”d”. Such contrasts determine how
factor levels are coded using dummy variables.

Earlier, it was noted that a linear model is linear in its parameters, not necessarily in
its input variables. Hence, it is possible to include transformations of input variables in
a linear regression model, such as polynomials, products, or other functional transfor-
mations like logarithms, square roots, etc. For example, the model

Y = β0 + β1X1 + β2X
2
1 + β3X2 + β4X1X2 + ϵ

310 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

0 50 100 150

2
0

0
6

0
0

1
0

0
0

1
4

0
0

Income

B
a

la
n

c
e

0 50 100 150

2
0

0
6

0
0

1
0

0
0

1
4

0
0

Income

B
a

la
n

c
e

student

non−student

Source: ISLR2 Figure 3.7

Figure 10.5: Example interaction effect in linear regression

is still linear in its parameters βi. This model also shows the difference between input
variables and predictors or features that was alluded to in the previous chater. This
model has two input variables X1 and X2 but has four predictors or features, X1, X2

1 ,
X2, and X1X2. In statistics terminology, the coefficients of single input variables,
here β1 and β3, are said to represent main effects, while the parameters of products of
two or more input variables, here β4 are said to represent interaction effectsInteraction
effect. Interaction effects can include the product of a numerical variable and a dummy
binary variable. This results in different regression slopes for different categories or
factor levels, as shown in the example in Figure 10.5 where the left panel shows no
interaction effect, that is, the lines are parallel with the same slopes. The right panel
shows an interaction effect where the slopes for different categories are different.

An example of polynomial predictors like X2, X3 or higher degrees is shown in Fig-
ure 10.6. As the figure shows, and as is true in general, increasing the number of
predictors increases the flexibility of the model to fit the data. This results in smaller
model bias but at the expense of model variance.

10.3. LINEAR REGRESSION IN R 311

50 100 150 200

1
0

2
0

3
0

4
0

5
0

Horsepower

M
ile

s
 p

e
r

g
a

llo
n

Linear

Degree 2

Degree 5

Source: ISLR2 Figure 3.8

Figure 10.6: Regression example with polynomial predictors

10.3 Linear Regression in R
Linear regression is part of the basic R system, no libraries need to be installed. The
function lm() requires a formula representing the regression model and a data frame,
and returns a linear model.

The following example uses the Boston data set that contains housing prices (”me-
dian value”, medv) as well as demographic and socioeconomic information for suburbs
in the city of Boston. The data is available as part of the ISRL2 package1.

First, examine the data, get summary statistics, examine the first few rows of the data
frame, and create scatterplots to identify the form of a linear model:

Data set from the textbook 'Introduction to
Statistical Learning with Applications in R'
library(ISLR2)

Get a description of the data
?Boston

Get a summary and examine first few rows
summary(Boston)
head(Boston)

Bivariate scatterplots
plot(Boston)

1The R code for this example is based on material in Section 3.6 of ISLR2

312 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

The formula interface to lm() is the easiest to use and resembles the way one would
write the regression equation. The ∼ sign separates the output on the left side from the
predictors or features on the right side of the formula. A 1 in the formula represents
the intercept (β0 in the formula above). The intercept is normally added automatically
but can be explicitly added or removed (using -1) as needed.

The following R code fits a simple model to predict the median house value, shows
the model summary, produces some plots, and illustrates the use of the predict()
function to predict values:

Fit a model with intercept only
fitted.model <- lm(medv ~ 1, data=Boston)
summary(fitted.model)

Fit a model with predictor lstat
fitted.model <- lm(medv ~ lstat, data=Boston)
summary(fitted.model)

Plot the data and the regression line
plot(medv ~ lstat, data=Boston)
abline(fitted.model, lwd=3, col='red')

Plot the residuals against predicted values
plot(predict(fitted.model), residuals(fitted.model))

Predict three new observations of lstat
predict(fitted.model, data.frame(lstat=c(5, 10, 15)),

interval='confidence')

The following R code fragment adds a second input variable (age) to the model. It also
demonstrates some special notation in the R formula interface, such as the . to include
all main effects, the : to specify interaction effects, and the * to include both main and
interaction effects.

Add another predictor
fitted.model <- lm(medv ~ lstat + age, data=Boston)

Add all main effects
fitted.model <- lm(medv ~ ., data=Boston)

Add interaction terms
fitted.model <- lm(medv ~ lstat + age + lstat:age, data=Boston)

Shorter and equivalent
fitted.model <- lm(medv ~ lstat*age, data=Boston)
summary(fitted.model)

The next example adds polynomial terms to the regression. It uses the I(.) function
in R that can also be used with other transformations of the inputs, such as I(sqrt(.))

10.3. LINEAR REGRESSION IN R 313

or I(log(.)). To make it easier to include all polynomials up to a particular degree,
one can us the poly(.) function:

Add a polynomial term; use the I(.) function
for any data transformations, such as log(),
or exp() or sqrt() as well as polynomials
fitted.model <- lm(medv ~ lstat + I(lstat^2), data=Boston)
summary(fitted.model)

Add all polynomial terms up to degree 5
fitted.model <- lm(medv ~ poly(lstat, 5), data=Boston)
Note the coefficients for the polynomials in the summary
summary(fitted.model)

The use of categorical input variables is illustrated in the following example that uses
the Carseats data, also from the ISLR2 package. The data frame represents sales
data of car seats for different stores and a range of store characteristics in other vari-
ables, many of which are categorical.

The following R code demonstrates functions for dealing with categorical variables,
called ”factors” in R. The example then fits a regression model to predict Sales from
the the main effects of all input variables in the data frame.

?Carseats

Identify factor/categorical variables and their levels:
is.factor(Carseats$ShelveLoc)
levels(Carseats$ShelveLoc)
levels(Carseats$Urban)
levels(Carseats$US)

Contrasts show the dummy variables created (columns) and
the values they take for different factor levels (row)
contrasts(Carseats$ShelveLoc)
contrasts(Carseats$US)

Fit the model
summary(lm(Sales ~ . , data=Carseats))

314 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Hands-On Exercise

Use the Auto data set from the ISLR2 library with mpg as the target.
1. Perform a linear regression with horsepower as predictor
2. Is there a relationship between the predictor and target? What form and

how strong?
3. What is the predicted mpg value for a horsepower of 98?
4. Plot the response and predictor. Use the abline() function to add the

regression line
5. Produce a scatterplot of all variables
6. Perform a linear regression of all main effects (except for the variable

name), then remove non-significant predictors
7. Use the * and : symbols to add interaction effects. Retain only signifi-

cant ones
8. Add transformations of the predictors (using the I(.) function) such as

log(X),
√
X , X2.

Source: ISLR2 Section 3.7

Hands-On Exercise

Use the Carseats data set from the ISLR2 library with Sales as the target.
1. Perform a linear regression with Price, Urban and US as predictors
2. Interpret the coefficients. Tip: Some variables are categorical
3. Remove non-significant predictors
4. How well do the two models fit the data?
5. Determine the 95% confidence intervals for the coefficients of each

model.
6. (How) does the importance of predictors change?

Source: ISLR2 Section 3.7

10.4 Cross-Validation in R
The previous chapter already introduced the concepts of cross-validation. Recall that
the appropriate way to judge the predictive performance of a model is not to evaluate it
on its training data, but to evaluate it on unseen test data. This section illustrates three
different cross-validation approaches in R, beginning with the validation set or holdout
sample approach, which splits the data set randomly into training and test data.

The following example uses the Auto data set from the ISLR2 package, which con-
tains information on different vehicle models, their fuel economy (”miles per gallon”,
mpg) and vehicle characteristics2.

2The R code for this example is based on material in Section 5.3 of ISLR2

10.4. CROSS-VALIDATION IN R 315

Randomly splitting the data set is accomplished using the sample() function in R
which returns a boolean vector with values TRUE or FALSE that can be used to select
the appropriate data from the data frame.

To make the example repeatable, the initial seed of the pseudo-random number genera-
tor (RNG) is set to a fixed value with set.seed(). Computers cannot generate truly
random number; they are deterministic machines. The pseudo-random numbers they
generate are computed by a deterministic algorithm, the ”random number generator”
(RNG), based on a given start value. With the same start value, the algorithm produces
the same sequence of numbers. A good RNG produces numbers that are effectively
indistinguishable from true trandom numbers.

Set the seed for the pseudo-random
number generator (RNG)
set.seed(1)

Randomly use half the Auto data as training sample
train.idx <- sample(nrow(Auto), nrow(Auto)/2)
train.data <- Auto[train.idx,]
test.data <- Auto[-train.idx,]

Fit model to (train model on) a subset
fitted.model <- lm(mpg ~ horsepower, data=train.data)

Calculate the test data MSE by predicting from the test data set
mean((test.data$mpg-predict(fitted.model,test.data))^2)

Calculate the training MSE by predicting from the training data set
mean((train.data$mpg-predict(fitted.model,train.data))^2)

The MSE can also be calculated from the squared residuals
mean(summary(fitted.model)$residuals^2)

The next R code block illustrates Leave-One-Out Cross-Validation (LOOCV), where
one observation is used as test observation, and the remainder form the training data.
This is repeated so that each observation becomes the test observation in turn. The
errors are then averaged.

While this can be done manually in R using an iteration over the data frame, the library
boot provides easy-to-use cross-validation functions for models fitted using the glm
function (generalized linear models). Note that LOOCV is just k-fold cross-validation
where k, the number of test data folds, is equal to the number of observations.

316 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

library(boot)

Fit a model with glm and show its summary
fitted.model <- glm(mpg ~ horsepower, data=Auto)
summary(fitted.model)

LOOCV is k-fold CV where k equals the number of observations
cv.err <- cv.glm(Auto, fitted.model, K=nrow(Auto))
cv.err$delta[1]

The same functions can be used for k-fold CV with a typical value for k:

cv.err <- cv.glm(Auto, glm.fit, K=10)
cv.err$delta[1]

Cross-validation is useful for comparing different models, as shown in the following
example that fits linear regression models with different degrees of polynomials to a
data frame and computes their cross-validation errors using a for loop in R:

set.seed(1)
cv.err <- rep(0, 5)
for(i in 1:10) {
fitted.model <- glm(mpg ~ poly(horsepower,i), data=Auto)
cv.err[i] <- cv.glm(Auto, fitted.model, K=10)$delta[1]

}
print(cv.err)

10.5. SHRINKAGE METHODS 317

Hands-On Exercise

1. Fit a regression model to the Boston data set with medv as target, and
age, lstat, and ptratio as predictors

2. Using the holdout approach, compute the test error of this model. Per-
form the following steps

(a) Split the data set using 75% for training and 25% for testing
(b) Fit the model to training data
(c) Predict the target for the testing data
(d) Compute the test error

3. Repeat the previous step 3 times, using different splits. How do the re-
sults change?

4. Calculate the mean and the variance of the test errors of the four splits.
5. Include dis as predictor in the model. Does it reduce the test error?
6. Calculate the test error estimate using LOOCV. Compare your result to

the mean that you computed in step 4.
7. Calculate the test error estimate using 4-fold cross-validation. Compare

the estimate to the mean that you computed in step 4

10.5 Shrinkage Methods
Shrinkage methods are so-called because their aim is shrink the magnitude of the re-
gression parameter values β̂i. This is primarily to avoid overfitting a model to one
specific data set. In other words, they are a kind of regularization. Shrinkage methods
for linear regression model works by penalizing the model for large regression param-
eter values, that is, by performing penalized regression. There are three frequently
used types of penalized regression or linear regression regularization: L1 regulariza-
tion penalizes large absolute parameter values (that is, the L1 norm of the vector of
parameters β̂), L2 regularization penalizes large squared parameter values (that is, the
L2 norm of the vector of parameters β̂, and Elastic Net regularization is a combination
of both. L1 regularization is also known as the LASSO (”least absolute shrinkage and
selection operator”) while L2 regularization is known as ridge regression or Tikhonov
regularization.

10.5.1 Ridge Regression

The loss function or minimization objective of ridge regression is the usual RSS that
now also includes a term that penalizes large values of β.

Minimize RSS + λ

p∑
j=1

β2
j = RSS + λ||β||22

318 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

1e−01 1e+01 1e+03

0
1

0
2

0
3

0
4

0
5

0
6

0

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
1

0
2

0
3

0
4

0
5

0
6

0

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

λ ‖β̂R
λ ‖2/‖β̂‖2

Source: ISLR2 Figure 6.5

Figure 10.7: Bias (black), variance (turquoise), and MSE (pink) in ridge regression

where || · ||2 indicates the L2 vector norm, that is, the sum of squared entries of the
vector β.

Because the scale, that is, the standard deviation or variance, of different predictors af-
fects the size of their associated β parameter values, all predictors should be rescaled
or standardized to have the same standard deviation prior to performing a ridge re-
gression.

The degree of penalization or the amount of shrinkage is controlled by the parameter
λ. Larger values for λ increase the penalty, thus generally leading to larger model bias
but smaller variance. This effect is shown in Figure 10.7 where the left panel shows
the bias (black line), the variance (turquoise line) and the total MSE (pink line) as a
function of λ and the right panel shows the bias, the variance, and the total MSE as
a function of the proportion to which the L2 norm of the β is restricted or penalized
compared to the unrestricted estimates, i.e. ||β̂R

λ ||2/||β̂||2 where || · ||2 indicates the L2
vector norm, i.e. the sum of the squared elements of the vector.

Figure 10.8 shows this effect for a polynomial of degree 14 that is fitted to data set of 21
observations. The different panels show different degrees of penalization or shrinkage
as indciated by different values of λ. The bottom right panel in Figure 10.8 shows the
MSE on the training data (blue) and test data (red) for multiple values of λ. It is clear
that the unpenalized model in panel (a) of Figure 10.8 overfits, while models that are
penalized too heavily underfit and have large bias, such as the model in panel (c) of
Figure 10.8.

10.5.2 LASSO
In contrast to the ridge regression, where the model parameter values are shrunk to-
wards zero, but are never forced to equal zero, the LASSO does just that. In this form
of penalized regression, as the degree of penalty is increased, model parameter values
are set to 0, effectively making the LASSO a model or predictor selection method as
well, that is, it can be used to select only important predictors. This is reflected in

10.5. SHRINKAGE METHODS 319

Source: Murphy Figure 4.5

Figure 10.8: Fitting a degree 14 polynomial with ridge regression

its name: ”Least Absolute Shrinkage and Selection Operator”. The advantage over
ridge regression is that this results in more parsminious, that is, smaller, models that
are easier to interpret.

The loss function or minimization objective of the LASSO is the RSS but penalized
for the L1 norm of the vector of parameters β. As in ridge regression, the amount of
shrinkage is controlled by a parameter λ.

Minimize RSS + λ

p∑
j=1

|βj | = RSS + λ||β||1

where |||̇|1 indicates the L1 vector norm, that is the sum of the absolute values of the
elements of the vector β.

The model selection property of the LASSO are shown in Figure reffig:lasso1. The left
panel shows the value of different model parameters as a function of the penalization
parameter λ. As λ increases, fewer and fewer parameters are allowed to retain absolute
values larger than 0. The same is shown in the right panel of Figure 10.9, but now as a
function of the relative size of the restricted L1 norm of β compared to the L1 norm of
the unconstrained β.

320 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

20 50 100 200 500 2000 5000

−
2

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
0

−
1

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

Income
Limit
Rating
Student

λ ‖β̂L
λ ‖1/‖β̂‖1

Source: ISLR2 Figure 6.6

Figure 10.9: Preditor selection in the LASSO

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

6
0
0

1
0
0
0

1
4
0
0

C
ro

s
s
−

V
a

li
d

a
ti
o

n
 E

rr
o

r

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

‖β̂L
λ ‖1/‖β̂‖1‖β̂L

λ ‖1/‖β̂‖1
Source: ISLR2 Figure 6.13

Figure 10.10: Cross-validation error in the LASSO

The LASSO and ridge regression shrinkage or penalty parameter λ is typically cho-
sen through cross-validation to minimize the cross-validation or test error. For cross-
validation, a ”grid” or range of possible values of λ is defined. A model is fitted for
each value of λ and its cross-validation or test error is calculated. The final model
is then fitted using the optimal value of λ, that is, the value that results in the lowest
cross-validation or test error.

This is illustrated in Figure 10.10 for a LASSO, where the left panel shows the cross-
validation error as a function of the relative shrinkage. Towards the left of the graph in
that panel, where shrinkage is maximal, the model underfits, resulting in a relative large
error due to a large bias, whereas to the right of the graph, where shrinkage is minimal,
the model overfits, leading to a large cross-validation error due to large variance. The
right panel of Figure 10.10 shows the size of model parameter values; at the optimal
λ only two model parameters are different from zero, that is, only two predictors are
selected for the model.

10.6. SHRINKAGE METHODS IN R 321

10.5.3 Elastic Net
The Elactic Net is a combination of rigde regression and LASSO, controlled by the
parameter α. The Elastic Net penalty is defined as

λ
(
α||β||1 + (1− α)||β||22

)
When α = 0 the Elastic Net reduces to a ridge regression, and for α = 1 the Elastic
Net reduces to the LASSO. The optimal combination of α and λ is found through
cross-validation as described above.

10.6 Shrinkage Methods in R
The glmnet library for R implements the Elastic Net which can be used for both
ridge regression and LASSO as well, simply by choosing the appropriate value for the
parameter α.

The following R code examples use the Hitters data set containing information on
baseball players. The data set is part of the ISLR2 library. The code examples model
a player’s Salary as the output or prediction target and use a number of other variables
as inputs3.

library(ISLR2)
library(glmnet)

Remove missing values
Hitters <- na.omit(ISLR2::Hitters)

The glmnet(.) function requires separate x (predicots) and y (target) values, instead
of providing a formula interface like the lm(.) and glm(.) functions. To create
dummy variables for categorical variables, use the model.matrix function:

Create dummy variables for categorical variables
and remove the intercept (first column) from the model
x <- model.matrix(Salary ~ ., Hitters)[, -1]
y <- Hitters$Salary

To illustrate the concepts of ridge regression, the following R code sets up a grid of 100
different λ values, fits ridge regression models to each of them, and shows information
about two models for different λ values:

3The R code for this example is based on material in Section 6.5.2 of ISLR2

322 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

grid <- 10^seq(from=10, to=-2, length=100)
print(grid)
ridge.model <- glmnet(x, y, alpha=0, lambda=grid)

Select the 50th lambda value
ridge.model$lambda[50]
coef(ridge.model)[, 50]
L2.norm = sqrt(sum(coef(ridge.model)[-1, 50]^2))

Select the 60th lambda value
ridge.model$lambda[60]
coef(ridge.model)[, 60]
L2.norm = sqrt(sum(coef(ridge.model)[-1, 60]^2))

The optimal value for λ is chosen through cross-validation. For this, a holdout test data
set is created to evaluate the final model. The training data set portion is used with
cross-validation, so that the final model evaluation is done on an independent data set
from model selection.

Randomly split the Hitters data
train.idx <- sample(nrow(Hitters), nrow(Hitters)/2)
x.train <- x[train.idx,]
x.test <- x[-train.idx,]
y.train <- y[train.idx]
y.test <- y[-train.idx]

The glmnet library provides the function cv.glmnet as an easy-to-use way to com-
bine Elastic Net model fitting with k-fold cross-validation. The following example uses
5-fold CV on the training portion of the data set:

5-fold cross-valiation, use MSE as metric
cv.out <- cv.glmnet(x.train, y.train, alpha=0,

nfolds=5, type.measure='mse')

The next R code block shows the optimal λ and plots the MSE for different values
of λ. The generated plot is shown in Figure 10.11. It includes the standard errors of
the MSE (as determined by cross-validation) and the number of non-zero coefficients
(indicated above the graph). The left vertical line indicates the optimal λ, while the
right vertical line indicates that largest λ for which the error is within one standard
error of the minimum error, that is, of the error of the optimal λ.

print(cv.out)
plot(cv.out)
lambda.opt <- cv.out$lambda.min

10.6. SHRINKAGE METHODS IN R 323

4 6 8 10 12

15
00

00
25

00
00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

Figure 10.11: Cross-validation MSE in ridge regression

To evaluate the final model, the holdout test data is fitted to a ridge regression model
with the optimal λ. Then, the model parameter values of the ridge regression with the
optimal λ are compared to the parameter values of an unrestricted linear regression
model. Note the use of the type=’coefficients’ parameter to predict(.)
that asks for the model parameter values, rather than the predicted target values in the
following R code block.

Fit test data:
ridge.test <- glmnet(x.test, y.test, alpha=0)
Show the coefficients at optimal lambda
predict(ridge.test, type='coefficients', s=lambda.opt)
Compare to unpenalized least-squares fit
coef(lm.fit(x.test, y.test))

Finally, the target values for the holdout test data set are predicted. Note the use of the
type=’response’ parameter to predict(.) that asks for the predicted target
values, rather than the model parameter values, in the following R code block:

predictions <- predict(ridge.test, type='response',
s=lambda.opt, newx=x.test)

Calculate test MSE to compare to the CV optimal MSE above:
mean((predictions - y.test)^2)

Because it uses the same glmnet(.) and cv.glmnet(.) functions, the LASSO
in R is very similar to ridge regression. The following example shows cross-validation
on the training data set to determine the optimal value for λ.

324 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

−2 0 2 4

15
00

00
25

00
00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

19 19 19 19 19 18 18 18 17 16 14 13 12 8 7 6 6 5 4 3 2

Figure 10.12: Cross-validation MSE in the LASSO

Set alpha to 1 for lasso
cv.out <- cv.glmnet(x.train, y.train, alpha=1,

nfolds=5, type.measure='mse')
print(cv.out)
plot(cv.out)
lambda.opt <- cv.out$lambda.min

The MSE values for different values of λ are shown in Figure 10.12. Note that now the
number of non-zero model parameters, indicated above the graph, decreases. At the
optimal λ value, there are only six non-zero parameters, that is, only six predictors are
selected to remain in the model.

Hands-On Exercise

Predict the number of applications received using the other variables in the
College dataset

1. Split the data set into a training and a test set
2. Fit an unpenalized linear model on the training set. Report the test error.
3. Fit a ridge regression model on the training set, with λ chosen by cross-

validation. Report the test error.
4. Fit a lasso model on the training set, with λ chosen by cross-validation.

Report the test error.
5. Compare and conrast the results

Source: ISLR2, Section 6.6

10.7. CLASSIFICATION 325

Hands-On Exercise

Predict the per-capita crime rate in the Boston data set using the other vari-
ables.

1. Split the data set into a training and a test set
2. Fit an unpenalized linear model on the training set. Report the test error.
3. Fit a ridge regression model on the training set, with λ chosen by cross-

validation. Report the test error.
4. Fit a lasso model on the training set, with λ chosen by cross-validation.

Report the test error.
5. Compare and conrast the results

Source: ISLR2, Section 6.6

10.7 Classification

In classification, the output or target value is categorical. In particular, in binary clas-
sification, the target may take on one of two values. Classification predicts class mem-
bership for new observations by estimating the probability of membership in each class
for that observation.

10.7.1 Logistic Regression

Linear models, as used in regression, are not suitable for classification without mod-
ification, because probabilities are bounded between 0 and 1, inclusive, while the re-
gression output can take on any real value. The solution to this problem is to use a link
function that transforms the output of a linear regression model and bounds it between
0 and 1. This is shown in Figure 10.13 where the probability of credit card default are
to be predicted from the credit card balance. The yellow points are the training obser-
vations, classified as either defaulters (0) or non-defaulters (1). The left panel shows
that a linear regression (blue line) yields negative probabilities for small balances, and
will yield probabilities larger than one for very large credit card balances. The right
panel shows the transformed linear regression output, now bounded between 0 and 1,
and interpretable as probabilities from which class membership can be predicted.

There are many transformation or link functions that may be used, but a popular one is
the logistic function, a type of sigmoid function (”s-shaped”) (often the two terms are
equated), defined as follows:

326 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Balance

P
ro

b
a

b
ili

ty
 o

f
D

e
fa

u
lt

| | || | ||| ||| || | ||| || || | || | || || ||| | | | ||| || || || || ||| || | ||| || ||| ||| || ||| |||| | ||| ||| | || | || | || || | ||| | || ||| || || | || | ||| || | ||| || ||| | ||| || || ||| | ||

|

|| ||| || || | |||| | || || | ||| || || || | || | | | |

|

||| | ||| |||| | || || ||| || ||| || |

|

| || |

|

| |

|

|| || ||| | || || ||| | || || || || |||| | ||

|

|

|

| ||| | || || || || ||| || |

|

|| | ||| | | ||| ||| || | || | | || || ||| || || | || || |||||||| || || | || | |||| | || || || || | || ||| || |||

|

|||

|

| | |

|

| | |||||

|

|| || || || || || ||| | || || |||| || | | ||| ||| | | | || || || || | ||

|

| | || || || ||| || | ||| ||| | ||| |||| | || |

||

| || ||| | | | ||| ||| | || | | |||| | || | ||||| || | ||| || || || |

|

| || || | ||||| | | || || | |||| | ||| | ||| | | ||| | | ||| || ||| | || ||||

|

| || |

|

| || || | || | | | || || | || || ||| |||| |||

|

| |||

|

|| | | || ||| | || ||| || || | ||| || | || || || |||| | ||| | | ||| || ||| | ||| |||| |

|

||| || | | ||

|

| || || |||| ||| ||| | | || | || || ||| ||| ||| | ||| || | || ||| || | | ||| || || ||| ||

|

| || || || | || || || || || || |||| ||

|

| |||| | | | ||| || |||| || |

|

||| | ||| ||| || || | || || || || |||| || | | ||| | |||| | |

|

||| | ||||| || || | || || || | ||| || || |

|

|||| |||| | | || || || || | || || |||| | | ||| |

|

|| || | | |||| || || || | |||| || || || || ||| || || | || | | || || | || || ||

|

|| | ||| | ||| |

|

|||||| | | ||| || | || || | | ||| | | | | || ||| | | |||| | ||

|

|| | || |

|

| ||| || | ||| | || || ||

|

| || | || | | || | || || | | |

|

| |||

|

||| | || || || | | | || || ||

|

|| || | | ||| | |||| || ||| || || || || || ||| ||| | ||| | | |||| || ||| | | ||

|

|| | | || ||| || | ||| || ||| || || || | || || || || ||

|

|| || |

||

|| | || ||| |||| | |||

|

| || | | ||| || | ||| ||| | || | | | ||| || || || | ||| || | ||| || || ||

|

|| | ||

|

|| | | || ||| || ||| ||| | || ||| |||| | || | | || |||| |

|

|| || | || ||| || | || || | || | ||| | || ||| || || || || | || || | || || || || | || | |||| | ||| | || || | || || || || ||| || | | || | ||| ||| | ||| | | |||

|

|

|

|||| || | | || | ||| ||| || | ||| || | | | |||| |

|

||| | || ||| | || |||| || | || || | | || || ||| ||| | ||| || || || || | |

|

|

|

|| || | ||| ||||| | | | ||| | | ||| || || || || || | |

|

||

|

|||| ||| |

|

| ||| |

|

||| ||| | ||||| | || || || || | | || || || || || ||| ||| | || | ||

|

||| | ||| || | ||| | |||| || | | || |||| | || || || || || | |

|

||| | | || |||| | || || | |

|

|| | || | || |||| | ||

|

| || || ||| || | | ||| || || ||

|

|| || ||| ||| || || || ||| || || ||| || | | | ||| || || ||||| || | ||| | || | |

|

| || || |

|

| || | | || || | ||||| || | || || || || || | || || || | ||

|

|| ||| || || || ||| | || |||| | | || || || | |

|

|| | || || ||| | ||| || ||| | | ||| ||| || || ||| || ||| || || ||||

|

|||

|

||| | || || || |

|

| || || ||| ||| || | |||

|

||| || || ||| || |

|

|| || || | ||| || | || | || |

|

| || ||| | | ||| || ||| | || | || | || | | || || || | || || | |||

|

|

|

|||| | || | | || | || | ||| | ||| | || | || || || || ||| || |||| || | ||| || || || || | ||

|

||| || | |

|

| | ||| | || || ||||| ||| ||| |

|

|| | ||| ||| ||| | ||

|

|| | || || ||| || | |

|

| | || ||||| ||| | || || ||| || || ||

|

|| | |

|

||| || | || | || | | ||||| | || ||| || |||

|

|| | | |||| | | || | || | |||| | | | | | ||| | |||

|

|||| || ||| || ||

|

||| || |

|

|| | || || || | || | |||||| |

|

|| |

|

||| | | || ||| |

|

| | ||| ||||| ||| | | || || || |

|

| || | ||| || || || || | | ||| || | | | ||| | || || || |||| || |

|

| || | ||| | | || ||| || | | ||| | | ||| | | ||| ||| ||| | |

|

| || | ||| || ||| | || |

|

| ||| | || ||| |||

|

||| | | || || || |||| ||| | ||| ||| ||| || || ||| | ||| |||| | || ||| | || || | || ||| || || || || || || | || || || |||| || || || ||| |

|

|| || || ||| ||

|

|| | ||| | || ||| | || | | | ||| | || || || | ||| |||| || | || || | | |||| | || ||| || | ||| ||| || | || | | | ||| ||

|

| ||| | || | | | |

|

|||| || || | ||| | || |||||| || || || ||| ||| | || ||| | |||| ||| | || || |

|

| || | || || || || || ||| | || || || || | ||| || | || ||| || || |||| ||

|

|| | ||| || || || || | | ||| ||| ||| || ||| |||| ||||| |

|

|||| | | || |||| ||| ||| || || ||| || || || || ||||| ||| | || || | || | ||| ||| |

|

| ||| || || || || || || |||| || |||| || || |

|

||| || || || || | |||

|

|| ||| | ||| || ||| || ||||| ||| | | || |||| || || | ||| || | || ||| | | ||||| | ||| ||| || | | | | || | | || || || | || |||| | ||

|

| || || || || || || || | | || || | | || | ||| ||| | | ||| ||

|

|| ||| || ||| || | || || ||| |||| | ||| || || ||| | | | ||| || | ||| |||| || || |||| || | || | ||| || | || | ||| || || || || ||| || |||| ||| || ||||| | || || |

|

|| || | ||| || ||

|

|| | | |||| | ||| ||| ||| || || || ||| || || || | || || || ||| | | ||||

|

|| | |||| || || ||

|

| || | |

|

|| || | |||| || | ||| ||| | || || || | || | | ||

|

|| || |

|

|| | ||| || |||| ||| || |

|

|| | || ||

|

|| | | || | || ||| ||| || | || |

|

| || ||| | |||| |||| || | ||||| | | |

|

|| ||| ||||

|

||| | || || ||| || | ||| | || || | || || || | ||| || |

|

|| || || | || ||

|

| || ||| ||

|

| || | | ||

|

|| || | || |

|

|| |||| | ||||| | | || | | |||||| || ||| ||| || || |||| | | || |||| || ||

|

| |

|

||| ||

|

| || | |

|

|| || | || | | |||| || | | || | | || || || || || | || ||| | | |||| | |

|

| || || || || || || ||| | | || || ||| || | |||| | || ||| | |||| |||||

|

| | |

|

| | ||| | |||| | || || || || || || | || | || | | | || || | || | |||| | || | || || | ||| | || || ||| || || |||

|

| || ||| | || | || || || ||| | || |||| || | || | ||

|

| | ||| ||| || | |||

|

|| ||| || || || | | || | ||| | || ||| | ||

|

|| || | || | | || ||| | |||| || || | || ||||| || ||| || || || ||| ||| ||| | ||| || ||| ||| || || | ||| |

|

|| |

|

| ||||| | || ||| || || || || | ||| || || | | | ||| | || ||| ||| ||| |||| ||| ||| || || | || | |

|

| || | ||| ||| || || || ||| || ||| | || || | | || | || || || | || | ||| | || || || ||| ||| || || | || | ||

|

| || ||| || || ||| || | ||| || | || |

|

| || | ||| ||| || ||| | ||| || || | | ||| | ||

|

| | || | | |

|

|| | ||| || || | | ||| | | ||| | | || || |||| | || ||

|

|| | | || | | | ||

|

| ||| | | || | || ||| || || | ||| | ||| || |||| | ||| ||| || | || || ||| ||| | ||| ||| ||||| |||| ||| | | |||| ||

|

| |||| | || | |

|

||| ||| || || ||

|

|| |

|

|

|

||| ||| | |||| || ||| | || ||| | | || ||| ||

|

| ||| || |||| || | || | || || | | |||| || | |||

|

||||| || | |||| ||

|

| ||| || |

|

|| || || ||||| | | ||| | ||| | || | ||| || | || | || | | || |||

|

| || |||| ||| | | |

|

| || |||

|

|| || | || | ||||| | | ||| || || | | ||| || || | | | | || ||| | |||| | | || | |||| || | ||| | || |||| | | || ||| ||

|

|| || | || | | || | ||| ||| || || | | || || | || || ||| || || || | | | || | |||| | | || || ||| |

|

|| || | || || || || | ||| | || || || | ||| | || ||| ||

|

|| || || ||

|

| || ||| || || | |

|

| || | | || | ||| | || || ||| || |||| || || | ||

|

|| || || || | | |||

|

|| || | ||| || ||| || | | || |||| | | || ||| |

|

| | |

|

| || | ||| || | | ||| || | || ||| || | | || | | ||| | || | | ||| || ||| | ||| || ||

|

|| || ||| ||| || || ||| || |

||

|| |

|

| | || | || || | ||| || | ||| | | | || | || | || | | |||| | ||| | ||| ||| ||| || | ||| || || || | || |||| | | |||| ||| | | | |||| |

|

|

|

| || || |||| | || |

|

|| || || | |||

| |

| ||| ||| | || | | | |||

|

| ||| | ||| || || || || || | ||| || | || ||| ||| | | || |||| | |||||

|

| || | ||| ||| || || | | ||||| ||| | || || || ||| | ||| || | | || | || || |||| || | ||| | ||| | || || || | || ||| ||| ||| || | ||| | || ||| || || ||| || || | |||| || ||| || ||| | ||| ||| | || | || || || ||| | || ||| | || | || ||| | | ||| | |

|

| | ||||| | ||

|

|| |

|

|||| || |||||

|

|| | | || |||| | || || ||

|

|| ||| || || || ||| |||| || ||| | |||| | | |

|

| | | |||| || ||| | ||| | | || || |

|

|| | || | || | |

|

| | |

|

||| | || | ||| || || || ||| |||| || || ||| || || |||

|

| | | || | || ||| || | ||| ||| || || | ||| || | || || || ||| || ||| | || | || | || || ||| | || ||||| | |

|

|| | | | |||| || ||| || || || || | | || |

|

||| | || || ||| || | || |||

|

|| || ||| | | ||| ||| | || || || || || || | | | ||| | || | | || || | | || ||| || ||| | || || | |||| || || ||| || |

|

|| | || | | || ||| |||| | || | | || ||| | || || || |||| || ||| ||| || || || || || | ||| ||| |||| | |

|

| ||| | ||| ||| || || || |||| || | ||||| | || | ||||| | ||

|

| | || || ||| || | |||| | ||| | || ||| ||| | | || |

|

|| ||| ||

|

| || | ||| || || || |||| || ||

|

||| | || |||| || | || ||| || || | || | || | || || ||| |||| ||| |

|

||| ||| || | || || || | || || | | ||| || || | ||| ||| | ||| ||| |||| | || | || || ||| | || || ||| |

|

|| | ||| ||| | || || || || | || | | ||| || | ||| | || || || || | | || | | || | | |||| || ||| | | || || || ||| || || | |

|

| | ||| || || || |

|

| || || |||

|

| | || |||| ||| | || | ||| || | || | || ||| | || || || || |||||| || | || || | ||| ||| | | || | | || || ||| | ||| || ||||| | || ||| | ||| |||| | || | || ||| ||

|

|||||| | ||| || | || || || ||| || || || || | | || | ||

|

|| || || || ||| | ||| ||| ||| || || || || | || || ||

|

||| | || || || | ||| | || || | || ||| | || || ||

|

| | || | ||| || || | | ||| | || | |||| |||| || || | || | | ||| | || | | |||| || | |||| | || || | || || | ||| || || | ||| || | || ||| |||

|

| || || |||| || || |||| | ||| |||| | |||| |||| || |

|

|| | || | | || | | |

|

| ||||| | |||||| | || | | || || || || | || ||| || | || || || |

|

|

|

| ||| | || | ||| ||| |||| |

|

|| || || || || | | || | ||| | | | ||

|

|| || | || | |||| | ||

|

| || |||| || | ||||| || || | ||| | | ||| ||| | || |||| ||| |

|

| |||| || | ||

|

|| || | |||| | || ||||| | || | ||| | | || || | | | || ||| ||| || | | || | ||

|

|| ||| |

|

| | || || |||| |

|

|| | ||| | || || | ||| || || ||| | || || | ||| || || | || | || |||| || ||| ||| ||| || | ||| | || || | |||

| |

||| || || || | || |||| | |||| || ||| || || | ||| ||

|

| || || ||| || || | | ||| | || | |||| ||

|

|| ||| || | || | | | || | ||| | |

|

| || || || | || || || | ||| || ||| || ||

|

| || | |||| |||

|

| ||| || || | || |

|

| || ||| || | || || |||| || | ||| | || | || | ||| | || | || ||||| |

|

|| | || || | | | ||| | || ||||

|

|

|

| | | | |||| ||| |||| |||| | | | ||| | || | || || | || | |||| | || | | ||| || |

|

||||

|

| ||| | ||| ||

|

| || || ||| ||| || |||| ||| |

|

||| || | ||

|

||| | | || ||| | || |||| || | || ||| || || | ||| | ||| || |||

|

|| ||| || ||| | | || || | || | ||| | || | | || | ||| |||| || || ||||| | ||| | || || || || | || | ||||

|

|| ||| || ||| | | || || | ||| |||| | |

|

|| | | ||| || ||

|

| || || || |

|

| | | || | || ||| ||| | | | || || || |||

|

| || || ||||| | | || ||

|

||

|

|| | || || | ||| || | || | ||| |

|

|| | || | |||

|

|| | |||| || ||| | ||| | | ||| || | || || || | | || |||| ||

|

| || | || || | || ||| | ||| ||| ||| | ||| | || | ||| ||||| | | | ||

|

| | | || | ||| || || ||

|

| || |||| | ||| | |||| || | | ||| || | ||

|

|| | | ||||| | || ||| || || || ||| |||| |||

|

| | | ||| |||| | || |||| | || | | || || | | || || || | ||||| ||| |||

|

|| ||| ||| ||

|

| | || | || ||||| ||| || || || || | ||| || | | | | ||

|

| ||| | || || | | || ||| || |||| ||| || | | ||| | ||| | || || || | || | || | || || | || |

|

| || || |||| ||||| | || | || | || |||| | || | || || |||| | | ||| ||

|

| || || || ||| || || | ||||| || || | ||| || |||| | || ||| ||| || || | |||| || | ||| ||| || | ||| | | || | || || | | || | | || | || |

|

|

|

||| | | ||| ||| || | || | || ||| | |

|

| ||| || || | | || ||| | | | || | || ||| || | || || | || || || || || || || ||| | || || || | || ||||

|

| ||| ||| |

|

| ||| | || | | ||||| | ||| || || || ||| || | ||| | || || ||| || | || | |

|

| |

|

||| ||||| | |||| || || ||| || | || | || ||| | ||

|

| | ||| | ||| | |||| || || | |||| | | ||

|

||| | | || | | ||| || | ||| || ||| || || ||| ||| ||| | || | | | || || ||| || | ||| |||| || || ||| | ||| |||| ||||| || ||| || || | | ||| || || || |||| ||| ||

|

||| ||| ||| | || | ||| | || | | || ||| | || || ||| | || | ||| || | | || ||| | ||| | || || || |||| | | ||

|

||||| || | | || || || ||||| | ||| || ||| ||| | || || || | | || || ||| || | |

|

|| | || |||| || ||

|

|| || | | || | | ||

|

|

|

|

|

|| || | || || ||

|

| || || || || | || ||| | || | | ||| | || || |||| |||| || | ||

|

| || || | || || ||| | | || ||| || || || | | | ||||

|

|| ||| ||| || || || | || || || | | || | || | ||| | || ||| || | || ||| || | || || || || ||| ||| | | ||| | || | || || || || | |||| || || | || || ||| | || | |||| | || | || | | | || || | || || ||| | | ||| |||| | ||| || | || ||| | || | ||| || ||| || || || ||| || | || || || | || |||| || | || || || ||| || || ||| | | | || | | | || |||

|

|| || || ||||| || | |||| |

|

| | | || | | | |||||| ||| || | | ||| | ||| | ||| |||| | | | | || |||| | ||

|

| ||

|

| | || || ||| || || ||| || | || || | ||| || || || || || || | || | ||| ||

|

|| | | || || | || ||| ||| || |

|

|| |||| | || | || || | | || | |||| || ||| || | | || | || | || || ||

|

| | || | |||| | || || | || |||| |||| | || | |||

|

|||| | ||| || | | |

|

| | || |||

|

| ||| |||| | | || | | ||| || | | || | | || | || | || |

|

||| || ||| | |

|

||| || ||| ||| ||| ||

|

|| | || || |||| ||| | || || | ||| || | ||

|

||

|

| |

| |

|| ||||| || | || | ||

|

| || ||| || |

|

|| | ||

|

| |||| || | || | ||| | ||| ||| || || || || || |||| | ||| | ||| |||

|

| || || | | || ||| || | || ||| || ||||| | |||

|

|| |||| | ||| | |||| |||| || || || | ||| | ||| ||| || | || | | || ||| || ||| | | | || ||| | | | || || | | || || || || || | ||| | ||| ||| | || | ||| || | || | || || | ||| ||| || || || | ||||| | ||

|

|| |||| || ||| ||| | |||

|

|| || | | ||| | | |

|

| | || | || || ||| || || || | || | || || || | | | ||| |||| || | || ||| | || || | | |

|

|| || || || || ||||| | | || || ||| | | ||| | ||| ||| | | |

|

||

|

| | ||| || || ||| || || || || || || | ||||| || | || || | || || || | | ||| || || | ||| || | | ||| ||| ||| |

|

||| || ||| || |

|

||| || | || ||| || ||| ||| | || | ||| ||| || ||| ||| || | | | || || | || || | | | ||| | | || || || | || | | ||

|

|| | || || || || ||| | || |||| || || || | | ||| | || | ||| | || || | ||

|

| |||

|

| || || || | |||| || ||| | || ||||

|

||| | || ||

|

| |||

|

| | || | ||||| ||| || || || | | | ||| | | || |||| || | ||||| ||| ||| | |||| | | || ||| || || || |||| || || | || ||| || |||| |||| | | | ||

|

|| ||| ||| || | || | || |||| |||| | || ||| ||| ||||||| || ||| | || | || ||| | | | || || |||| || || || | || | |

|

| || || || | || ||||

|

| || ||| | | || ||| || | ||| | | | |

|

||| | | |||| || || || || | || | ||| | || | ||| |

|

| || | || || ||| | || | | || | |||| || || ||| | || ||| ||| |

|

| || ||| || | ||| | || | || | ||| ||| || || |||| || | || ||| | || | ||| || || |||| ||| || |

|

||||

|

| ||||| ||| |

|

| | || ||| | |

|

|| | || ||||| | ||| || | |

|

| || || ||

|

||| || | | |||||| |

|

|||| | || ||

|

|| | |

|

|||| | |

|

| | || || | ||| || | ||

|

| | ||| || ||| || ||| || || | | || ||| | || ||| | || |||| ||||| || | ||||| | | || || ||| | ||| | || || |

|

|| || ||| || || ||| | || || || | || |||| || || | | |||| | | | ||

|

|| | | || ||| | | | | || ||| || || ||| ||| || | || || ||| ||| ||| ||| || || || | | | || | | || ||| | || || ||| ||| || || | | ||| ||| || |||| | | || | || | || || ||| | | || || | ||| || ||| | || |

|

||

|

| ||| || || |

|

|| || ||| ||| | || || |

|

|| || | ||| ||| || | |||| | || || ||| || ||||| || || | || ||

|

|| |||| | || || || || | || | ||| || | |

|

| |||| ||| |

|

| ||| || ||| | ||| || | | |

|

| |||||| |

|

| | || |||| || ||| || || || | || |||||

|

|

|

| | ||| ||| | | || | | ||| | || | | ||| |

|

| |||| ||| || || | ||| | | | ||

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Balance

P
ro

b
a

b
ili

ty
 o

f
D

e
fa

u
lt

| | || | ||| ||| || | ||| || || | || | || || ||| | | | ||| || || || || ||| || | ||| || ||| ||| || ||| |||| | ||| ||| | || | || | || || | ||| | || ||| || || | || | ||| || | ||| || ||| | ||| || || ||| | ||

|

|| ||| || || | |||| | || || | ||| || || || | || | | | |

|

||| | ||| |||| | || || ||| || ||| || |

|

| || |

|

| |

|

|| || ||| | || || ||| | || || || || |||| | ||

|

|

|

| ||| | || || || || ||| || |

|

|| | ||| | | ||| ||| || | || | | || || ||| || || | || || |||||||| || || | || | |||| | || || || || | || ||| || |||

|

|||

|

| | |

|

| | |||||

|

|| || || || || || ||| | || || |||| || | | ||| ||| | | | || || || || | ||

|

| | || || || ||| || | ||| ||| | ||| |||| | || |

||

| || ||| | | | ||| ||| | || | | |||| | || | ||||| || | ||| || || || |

|

| || || | ||||| | | || || | |||| | ||| | ||| | | ||| | | ||| || ||| | || ||||

|

| || |

|

| || || | || | | | || || | || || ||| |||| |||

|

| |||

|

|| | | || ||| | || ||| || || | ||| || | || || || |||| | ||| | | ||| || ||| | ||| |||| |

|

||| || | | ||

|

| || || |||| ||| ||| | | || | || || ||| ||| ||| | ||| || | || ||| || | | ||| || || ||| ||

|

| || || || | || || || || || || |||| ||

|

| |||| | | | ||| || |||| || |

|

||| | ||| ||| || || | || || || || |||| || | | ||| | |||| | |

|

||| | ||||| || || | || || || | ||| || || |

|

|||| |||| | | || || || || | || || |||| | | ||| |

|

|| || | | |||| || || || | |||| || || || || ||| || || | || | | || || | || || ||

|

|| | ||| | ||| |

|

|||||| | | ||| || | || || | | ||| | | | | || ||| | | |||| | ||

|

|| | || |

|

| ||| || | ||| | || || ||

|

| || | || | | || | || || | | |

|

| |||

|

||| | || || || | | | || || ||

|

|| || | | ||| | |||| || ||| || || || || || ||| ||| | ||| | | |||| || ||| | | ||

|

|| | | || ||| || | ||| || ||| || || || | || || || || ||

|

|| || |

||

|| | || ||| |||| | |||

|

| || | | ||| || | ||| ||| | || | | | ||| || || || | ||| || | ||| || || ||

|

|| | ||

|

|| | | || ||| || ||| ||| | || ||| |||| | || | | || |||| |

|

|| || | || ||| || | || || | || | ||| | || ||| || || || || | || || | || || || || | || | |||| | ||| | || || | || || || || ||| || | | || | ||| ||| | ||| | | |||

|

|

|

|||| || | | || | ||| ||| || | ||| || | | | |||| |

|

||| | || ||| | || |||| || | || || | | || || ||| ||| | ||| || || || || | |

|

|

|

|| || | ||| ||||| | | | ||| | | ||| || || || || || | |

|

||

|

|||| ||| |

|

| ||| |

|

||| ||| | ||||| | || || || || | | || || || || || ||| ||| | || | ||

|

||| | ||| || | ||| | |||| || | | || |||| | || || || || || | |

|

||| | | || |||| | || || | |

|

|| | || | || |||| | ||

|

| || || ||| || | | ||| || || ||

|

|| || ||| ||| || || || ||| || || ||| || | | | ||| || || ||||| || | ||| | || | |

|

| || || |

|

| || | | || || | ||||| || | || || || || || | || || || | ||

|

|| ||| || || || ||| | || |||| | | || || || | |

|

|| | || || ||| | ||| || ||| | | ||| ||| || || ||| || ||| || || ||||

|

|||

|

||| | || || || |

|

| || || ||| ||| || | |||

|

||| || || ||| || |

|

|| || || | ||| || | || | || |

|

| || ||| | | ||| || ||| | || | || | || | | || || || | || || | |||

|

|

|

|||| | || | | || | || | ||| | ||| | || | || || || || ||| || |||| || | ||| || || || || | ||

|

||| || | |

|

| | ||| | || || ||||| ||| ||| |

|

|| | ||| ||| ||| | ||

|

|| | || || ||| || | |

|

| | || ||||| ||| | || || ||| || || ||

|

|| | |

|

||| || | || | || | | ||||| | || ||| || |||

|

|| | | |||| | | || | || | |||| | | | | | ||| | |||

|

|||| || ||| || ||

|

||| || |

|

|| | || || || | || | |||||| |

|

|| |

|

||| | | || ||| |

|

| | ||| ||||| ||| | | || || || |

|

| || | ||| || || || || | | ||| || | | | ||| | || || || |||| || |

|

| || | ||| | | || ||| || | | ||| | | ||| | | ||| ||| ||| | |

|

| || | ||| || ||| | || |

|

| ||| | || ||| |||

|

||| | | || || || |||| ||| | ||| ||| ||| || || ||| | ||| |||| | || ||| | || || | || ||| || || || || || || | || || || |||| || || || ||| |

|

|| || || ||| ||

|

|| | ||| | || ||| | || | | | ||| | || || || | ||| |||| || | || || | | |||| | || ||| || | ||| ||| || | || | | | ||| ||

|

| ||| | || | | | |

|

|||| || || | ||| | || |||||| || || || ||| ||| | || ||| | |||| ||| | || || |

|

| || | || || || || || ||| | || || || || | ||| || | || ||| || || |||| ||

|

|| | ||| || || || || | | ||| ||| ||| || ||| |||| ||||| |

|

|||| | | || |||| ||| ||| || || ||| || || || || ||||| ||| | || || | || | ||| ||| |

|

| ||| || || || || || || |||| || |||| || || |

|

||| || || || || | |||

|

|| ||| | ||| || ||| || ||||| ||| | | || |||| || || | ||| || | || ||| | | ||||| | ||| ||| || | | | | || | | || || || | || |||| | ||

|

| || || || || || || || | | || || | | || | ||| ||| | | ||| ||

|

|| ||| || ||| || | || || ||| |||| | ||| || || ||| | | | ||| || | ||| |||| || || |||| || | || | ||| || | || | ||| || || || || ||| || |||| ||| || ||||| | || || |

|

|| || | ||| || ||

|

|| | | |||| | ||| ||| ||| || || || ||| || || || | || || || ||| | | ||||

|

|| | |||| || || ||

|

| || | |

|

|| || | |||| || | ||| ||| | || || || | || | | ||

|

|| || |

|

|| | ||| || |||| ||| || |

|

|| | || ||

|

|| | | || | || ||| ||| || | || |

|

| || ||| | |||| |||| || | ||||| | | |

|

|| ||| ||||

|

||| | || || ||| || | ||| | || || | || || || | ||| || |

|

|| || || | || ||

|

| || ||| ||

|

| || | | ||

|

|| || | || |

|

|| |||| | ||||| | | || | | |||||| || ||| ||| || || |||| | | || |||| || ||

|

| |

|

||| ||

|

| || | |

|

|| || | || | | |||| || | | || | | || || || || || | || ||| | | |||| | |

|

| || || || || || || ||| | | || || ||| || | |||| | || ||| | |||| |||||

|

| | |

|

| | ||| | |||| | || || || || || || | || | || | | | || || | || | |||| | || | || || | ||| | || || ||| || || |||

|

| || ||| | || | || || || ||| | || |||| || | || | ||

|

| | ||| ||| || | |||

|

|| ||| || || || | | || | ||| | || ||| | ||

|

|| || | || | | || ||| | |||| || || | || ||||| || ||| || || || ||| ||| ||| | ||| || ||| ||| || || | ||| |

|

|| |

|

| ||||| | || ||| || || || || | ||| || || | | | ||| | || ||| ||| ||| |||| ||| ||| || || | || | |

|

| || | ||| ||| || || || ||| || ||| | || || | | || | || || || | || | ||| | || || || ||| ||| || || | || | ||

|

| || ||| || || ||| || | ||| || | || |

|

| || | ||| ||| || ||| | ||| || || | | ||| | ||

|

| | || | | |

|

|| | ||| || || | | ||| | | ||| | | || || |||| | || ||

|

|| | | || | | | ||

|

| ||| | | || | || ||| || || | ||| | ||| || |||| | ||| ||| || | || || ||| ||| | ||| ||| ||||| |||| ||| | | |||| ||

|

| |||| | || | |

|

||| ||| || || ||

|

|| |

|

|

|

||| ||| | |||| || ||| | || ||| | | || ||| ||

|

| ||| || |||| || | || | || || | | |||| || | |||

|

||||| || | |||| ||

|

| ||| || |

|

|| || || ||||| | | ||| | ||| | || | ||| || | || | || | | || |||

|

| || |||| ||| | | |

|

| || |||

|

|| || | || | ||||| | | ||| || || | | ||| || || | | | | || ||| | |||| | | || | |||| || | ||| | || |||| | | || ||| ||

|

|| || | || | | || | ||| ||| || || | | || || | || || ||| || || || | | | || | |||| | | || || ||| |

|

|| || | || || || || | ||| | || || || | ||| | || ||| ||

|

|| || || ||

|

| || ||| || || | |

|

| || | | || | ||| | || || ||| || |||| || || | ||

|

|| || || || | | |||

|

|| || | ||| || ||| || | | || |||| | | || ||| |

|

| | |

|

| || | ||| || | | ||| || | || ||| || | | || | | ||| | || | | ||| || ||| | ||| || ||

|

|| || ||| ||| || || ||| || |

||

|| |

|

| | || | || || | ||| || | ||| | | | || | || | || | | |||| | ||| | ||| ||| ||| || | ||| || || || | || |||| | | |||| ||| | | | |||| |

|

|

|

| || || |||| | || |

|

|| || || | |||

| |

| ||| ||| | || | | | |||

|

| ||| | ||| || || || || || | ||| || | || ||| ||| | | || |||| | |||||

|

| || | ||| ||| || || | | ||||| ||| | || || || ||| | ||| || | | || | || || |||| || | ||| | ||| | || || || | || ||| ||| ||| || | ||| | || ||| || || ||| || || | |||| || ||| || ||| | ||| ||| | || | || || || ||| | || ||| | || | || ||| | | ||| | |

|

| | ||||| | ||

|

|| |

|

|||| || |||||

|

|| | | || |||| | || || ||

|

|| ||| || || || ||| |||| || ||| | |||| | | |

|

| | | |||| || ||| | ||| | | || || |

|

|| | || | || | |

|

| | |

|

||| | || | ||| || || || ||| |||| || || ||| || || |||

|

| | | || | || ||| || | ||| ||| || || | ||| || | || || || ||| || ||| | || | || | || || ||| | || ||||| | |

|

|| | | | |||| || ||| || || || || | | || |

|

||| | || || ||| || | || |||

|

|| || ||| | | ||| ||| | || || || || || || | | | ||| | || | | || || | | || ||| || ||| | || || | |||| || || ||| || |

|

|| | || | | || ||| |||| | || | | || ||| | || || || |||| || ||| ||| || || || || || | ||| ||| |||| | |

|

| ||| | ||| ||| || || || |||| || | ||||| | || | ||||| | ||

|

| | || || ||| || | |||| | ||| | || ||| ||| | | || |

|

|| ||| ||

|

| || | ||| || || || |||| || ||

|

||| | || |||| || | || ||| || || | || | || | || || ||| |||| ||| |

|

||| ||| || | || || || | || || | | ||| || || | ||| ||| | ||| ||| |||| | || | || || ||| | || || ||| |

|

|| | ||| ||| | || || || || | || | | ||| || | ||| | || || || || | | || | | || | | |||| || ||| | | || || || ||| || || | |

|

| | ||| || || || |

|

| || || |||

|

| | || |||| ||| | || | ||| || | || | || ||| | || || || || |||||| || | || || | ||| ||| | | || | | || || ||| | ||| || ||||| | || ||| | ||| |||| | || | || ||| ||

|

|||||| | ||| || | || || || ||| || || || || | | || | ||

|

|| || || || ||| | ||| ||| ||| || || || || | || || ||

|

||| | || || || | ||| | || || | || ||| | || || ||

|

| | || | ||| || || | | ||| | || | |||| |||| || || | || | | ||| | || | | |||| || | |||| | || || | || || | ||| || || | ||| || | || ||| |||

|

| || || |||| || || |||| | ||| |||| | |||| |||| || |

|

|| | || | | || | | |

|

| ||||| | |||||| | || | | || || || || | || ||| || | || || || |

|

|

|

| ||| | || | ||| ||| |||| |

|

|| || || || || | | || | ||| | | | ||

|

|| || | || | |||| | ||

|

| || |||| || | ||||| || || | ||| | | ||| ||| | || |||| ||| |

|

| |||| || | ||

|

|| || | |||| | || ||||| | || | ||| | | || || | | | || ||| ||| || | | || | ||

|

|| ||| |

|

| | || || |||| |

|

|| | ||| | || || | ||| || || ||| | || || | ||| || || | || | || |||| || ||| ||| ||| || | ||| | || || | |||

| |

||| || || || | || |||| | |||| || ||| || || | ||| ||

|

| || || ||| || || | | ||| | || | |||| ||

|

|| ||| || | || | | | || | ||| | |

|

| || || || | || || || | ||| || ||| || ||

|

| || | |||| |||

|

| ||| || || | || |

|

| || ||| || | || || |||| || | ||| | || | || | ||| | || | || ||||| |

|

|| | || || | | | ||| | || ||||

|

|

|

| | | | |||| ||| |||| |||| | | | ||| | || | || || | || | |||| | || | | ||| || |

|

||||

|

| ||| | ||| ||

|

| || || ||| ||| || |||| ||| |

|

||| || | ||

|

||| | | || ||| | || |||| || | || ||| || || | ||| | ||| || |||

|

|| ||| || ||| | | || || | || | ||| | || | | || | ||| |||| || || ||||| | ||| | || || || || | || | ||||

|

|| ||| || ||| | | || || | ||| |||| | |

|

|| | | ||| || ||

|

| || || || |

|

| | | || | || ||| ||| | | | || || || |||

|

| || || ||||| | | || ||

|

||

|

|| | || || | ||| || | || | ||| |

|

|| | || | |||

|

|| | |||| || ||| | ||| | | ||| || | || || || | | || |||| ||

|

| || | || || | || ||| | ||| ||| ||| | ||| | || | ||| ||||| | | | ||

|

| | | || | ||| || || ||

|

| || |||| | ||| | |||| || | | ||| || | ||

|

|| | | ||||| | || ||| || || || ||| |||| |||

|

| | | ||| |||| | || |||| | || | | || || | | || || || | ||||| ||| |||

|

|| ||| ||| ||

|

| | || | || ||||| ||| || || || || | ||| || | | | | ||

|

| ||| | || || | | || ||| || |||| ||| || | | ||| | ||| | || || || | || | || | || || | || |

|

| || || |||| ||||| | || | || | || |||| | || | || || |||| | | ||| ||

|

| || || || ||| || || | ||||| || || | ||| || |||| | || ||| ||| || || | |||| || | ||| ||| || | ||| | | || | || || | | || | | || | || |

|

|

|

||| | | ||| ||| || | || | || ||| | |

|

| ||| || || | | || ||| | | | || | || ||| || | || || | || || || || || || || ||| | || || || | || ||||

|

| ||| ||| |

|

| ||| | || | | ||||| | ||| || || || ||| || | ||| | || || ||| || | || | |

|

| |

|

||| ||||| | |||| || || ||| || | || | || ||| | ||

|

| | ||| | ||| | |||| || || | |||| | | ||

|

||| | | || | | ||| || | ||| || ||| || || ||| ||| ||| | || | | | || || ||| || | ||| |||| || || ||| | ||| |||| ||||| || ||| || || | | ||| || || || |||| ||| ||

|

||| ||| ||| | || | ||| | || | | || ||| | || || ||| | || | ||| || | | || ||| | ||| | || || || |||| | | ||

|

||||| || | | || || || ||||| | ||| || ||| ||| | || || || | | || || ||| || | |

|

|| | || |||| || ||

|

|| || | | || | | ||

|

|

|

|

|

|| || | || || ||

|

| || || || || | || ||| | || | | ||| | || || |||| |||| || | ||

|

| || || | || || ||| | | || ||| || || || | | | ||||

|

|| ||| ||| || || || | || || || | | || | || | ||| | || ||| || | || ||| || | || || || || ||| ||| | | ||| | || | || || || || | |||| || || | || || ||| | || | |||| | || | || | | | || || | || || ||| | | ||| |||| | ||| || | || ||| | || | ||| || ||| || || || ||| || | || || || | || |||| || | || || || ||| || || ||| | | | || | | | || |||

|

|| || || ||||| || | |||| |

|

| | | || | | | |||||| ||| || | | ||| | ||| | ||| |||| | | | | || |||| | ||

|

| ||

|

| | || || ||| || || ||| || | || || | ||| || || || || || || | || | ||| ||

|

|| | | || || | || ||| ||| || |

|

|| |||| | || | || || | | || | |||| || ||| || | | || | || | || || ||

|

| | || | |||| | || || | || |||| |||| | || | |||

|

|||| | ||| || | | |

|

| | || |||

|

| ||| |||| | | || | | ||| || | | || | | || | || | || |

|

||| || ||| | |

|

||| || ||| ||| ||| ||

|

|| | || || |||| ||| | || || | ||| || | ||

|

||

|

| |

| |

|| ||||| || | || | ||

|

| || ||| || |

|

|| | ||

|

| |||| || | || | ||| | ||| ||| || || || || || |||| | ||| | ||| |||

|

| || || | | || ||| || | || ||| || ||||| | |||

|

|| |||| | ||| | |||| |||| || || || | ||| | ||| ||| || | || | | || ||| || ||| | | | || ||| | | | || || | | || || || || || | ||| | ||| ||| | || | ||| || | || | || || | ||| ||| || || || | ||||| | ||

|

|| |||| || ||| ||| | |||

|

|| || | | ||| | | |

|

| | || | || || ||| || || || | || | || || || | | | ||| |||| || | || ||| | || || | | |

|

|| || || || || ||||| | | || || ||| | | ||| | ||| ||| | | |

|

||

|

| | ||| || || ||| || || || || || || | ||||| || | || || | || || || | | ||| || || | ||| || | | ||| ||| ||| |

|

||| || ||| || |

|

||| || | || ||| || ||| ||| | || | ||| ||| || ||| ||| || | | | || || | || || | | | ||| | | || || || | || | | ||

|

|| | || || || || ||| | || |||| || || || | | ||| | || | ||| | || || | ||

|

| |||

|

| || || || | |||| || ||| | || ||||

|

||| | || ||

|

| |||

|

| | || | ||||| ||| || || || | | | ||| | | || |||| || | ||||| ||| ||| | |||| | | || ||| || || || |||| || || | || ||| || |||| |||| | | | ||

|

|| ||| ||| || | || | || |||| |||| | || ||| ||| ||||||| || ||| | || | || ||| | | | || || |||| || || || | || | |

|

| || || || | || ||||

|

| || ||| | | || ||| || | ||| | | | |

|

||| | | |||| || || || || | || | ||| | || | ||| |

|

| || | || || ||| | || | | || | |||| || || ||| | || ||| ||| |

|

| || ||| || | ||| | || | || | ||| ||| || || |||| || | || ||| | || | ||| || || |||| ||| || |

|

||||

|

| ||||| ||| |

|

| | || ||| | |

|

|| | || ||||| | ||| || | |

|

| || || ||

|

||| || | | |||||| |

|

|||| | || ||

|

|| | |

|

|||| | |

|

| | || || | ||| || | ||

|

| | ||| || ||| || ||| || || | | || ||| | || ||| | || |||| ||||| || | ||||| | | || || ||| | ||| | || || |

|

|| || ||| || || ||| | || || || | || |||| || || | | |||| | | | ||

|

|| | | || ||| | | | | || ||| || || ||| ||| || | || || ||| ||| ||| ||| || || || | | | || | | || ||| | || || ||| ||| || || | | ||| ||| || |||| | | || | || | || || ||| | | || || | ||| || ||| | || |

|

||

|

| ||| || || |

|

|| || ||| ||| | || || |

|

|| || | ||| ||| || | |||| | || || ||| || ||||| || || | || ||

|

|| |||| | || || || || | || | ||| || | |

|

| |||| ||| |

|

| ||| || ||| | ||| || | | |

|

| |||||| |

|

| | || |||| || ||| || || || | || |||||

|

|

|

| | ||| ||| | | || | | ||| | || | | ||| |

|

| |||| ||| || || | ||| | | | ||

Source: ISLR2 Figure 4.2

Figure 10.13: Transforming linear regression output for binary classification

σ(x) =
1

1 + e−x

=
ex

1 + ex

= 1− σ(−x)
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg

For the binary case, this leads to binary logistic regression, expressed by the following
equalitites:

p(X) = σ(β0 + β1X)

=
eβ0+β1X

1 + eβ0+β1X
(10.1)

⇒ p(X)

1− p(X)
= eβ0+β1X ”Odds” (10.2)

⇒ log

(
p(X)

1− p(X)

)
= β0 + β1X ”Log-Odds”, ”Logits” (10.3)

Equation 10.1 defines the probability of an observation being ”true” as just the logistic
transformation of the linear combination of predictors. Dividing and a little algebraic
rearrangement yields equation 10.2 which represents the odds as the exponential of
the linear combination of predictors. Taking the natural logarithm yields equation 10.3
which shows that the linear combination of predictors are equal to the log-odds, also
called logits.

Once estimates of the model parameters β0 and β1 have been calculated, predictions of
the class probability can be made using the logistic link function:

https://commons.wikimedia.org/wiki/File:Logistic-curve.svg

10.7. CLASSIFICATION 327

p̂(X) = σ(β̂0 + β̂1X) =
eβ̂0+β̂1X

1 + eβ̂0+β̂1X

From there, a threshold value can be used to predict class membership, for example
based on p̂(X) > 0.5, but other decision rules and threshold values may be used,
depending on the desired proportion or cost of false positives and true positives.

The binary logistic regression can be extended to mutinomial logistic regression, where
there are more than two classes for the output or target. The form of the equations is
similar for K classes, starting from the log-odds. In this derivation, the last class K
plays the role of reference class. As classes are not ordered, this choice is arbitrary.

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= βk0 + βk1x1 + · · ·+ βkpxp , k < K

Exponentiating and multiplying:

Pr(Y = k|X = x) = Pr(Y = K|X = x)eβk0+βk1x1+···+βkpxp , k < K
(10.4)

Because probabilities must sum to 1:

Pr(Y = K|X = x) = 1−
K−1∑
l=1

Pr(Y = l|X = x)

Substiting Eq. 10.4 into the right-hand side:

= 1−
K−1∑
l=1

Pr(Y = K|X = x)eβl0
+βl1

x1+···+βlpxp

Moving Pr(Y = K|X = x) out of the sum, dividing by it, and rearranging:

⇒ Pr(Y = K|X = x) =
1

1 +
∑K−1

l=1 eβl0
+βl1

x1+···+βlpxp
(10.5)

Substituting Eq. 10.5 into Eq. 10.4:

⇒ Pr(Y = k|X = x) =
eβk0

+βk1
x1+···+βkpxp

1 +
∑K−1

l=1 eβl0
+βl1

x1+···+βlpxp
, k < K (10.6)

Equations 10.5 and 10.6 give the class probabilities for the reference class K and for
any other class k < K. They are formally similar to the equations for the binary
logistic regression above; for example, compare equation 10.6 to equation 10.1.

328 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Source: Murphy Figure 10.3

Figure 10.14: Transforming non-linear decision boundaries using polynomials

Just as polynomials of the input variables may be useful as predictors in linear re-
gression, they also have applications in classification. In particular, they transform
non-linear decision boundaries into linear ones that can be modeled using linear logis-
tic regression. For example, the nonlinear boundary in the left panel of Figure 10.14
can be transformed into a linear boundary by squaring both predictors, as shown in the
right panel of Figure 10.14.

Another example is shown in Figure 10.15 where the linear decision boundary dividing
the top left panel into a blue and red region clearly does not fit the observations, shown
as blue and red points. Fitting logistic regressions with different degrees of polynomials
shows that the decision boundary can be transformed to better fit the observed data. The
bottom right panel in Figure 10.15 shows the the train and test error rate for different
degrees of polynomials.

10.7.2 Logistic Regression in R

The following illustration of logistic regression in R uses the Smarket data set of
the ISLR2 library. The data set contains stock market information and is used in this
example to predict the direction of the movement of the market, either ”up” or ”down”,
based on previous day’s (”lagged”) data and other variables4.

Logistic regression can be performed using the same glm(.) function as for linear
regression; it is one specific form of the generalized linear model. The family argu-
ment is used to indicate the type of regression and the link function:

4The R code for this example is based on material in Section 4.7.2 of ISLR2

10.7. CLASSIFICATION 329

Source: Murphy Figure 10.4

Figure 10.15: Transforming linear decision boundaries using polynomials

library(ISLR2)
?Smarket

Contrasts show how factor levels are encoded using dummy variables:
contrasts(Smarket$Direction)

Fit a logistic regression model
logreg.fitted <-

glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Smarket,
family=binomial(link='logit'))

summary(logreg.fitted)

The predict(.) function for the fitted model can be used to predict either the logits
or the class probabilities:

Predict logits for training data
logreg.logits <- predict(logreg.fitted, newdata = Smarket)

Predict probabilities for training test
logreg.probabilities <- predict(logreg.fitted, newdata = Smarket,

type='response')

A decision rule is necesary to assign observations to classes using the calculated proba-

330 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

bilities. The following example classifies them into the ”Up” class, if its class-membership
probability is greater than .5:

Predict 'up' or 'down' based on probabilities and a threshold
pred.direction <- rep('Down', nrow(Smarket))
pred.direction[logreg.probabilities > .5] <- 'Up'

The confusion matrix can be produced by using the table(.) function on the pre-
dicted class and the observed class. Accuracy is simply the average number of obser-
vations for which predicted class and observed class are identical.

Compute confusion matrix
logreg.cm <- table(pred.direction, Smarket$Direction)
print(logreg.cm)

Compute accuracy
mean(pred.direction == Smarket$Direction)

The next R code blocks illustrate the use of a holdout sample or validation set approach
to evaluate the performance of the logistic regression classifier.

Because the data set is a time series, a random split is not appropriate because it would
mean that the training set would contain information later in time that informs the
model parameter estimates which are used to predict earlier observations in the test set.
Instead, time series data must be split non-randomly at some point in time:

train.data <- Smarket[Smarket$Year < 2005,]
test.data <- Smarket[!(Smarket$Year < 2005),]

Next, the model is fitted to the training data set, class-membership probabilities for
observations in the test data set are then predicted, and the observations are classified
using a decision rule:

logreg.fitted <-
glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=train.data,

family=binomial(link='logit'))

Predict probabilities for test data and classify:
logreg.probabilities <- predict(logreg.fitted, newdata = test.data,

type='response')
pred.direction <- rep('Down', nrow(test.data))
pred.direction[logreg.probabilities > .5] <- 'Up'

While the confusion matrix is useful to understand how a classifier behaves, it is only
a first step in evaluating the classifier performance. The ROCR library provides the
performance(.) function to evaluate the predictive performance of a classifier. It

10.7. CLASSIFICATION 331

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
44

0.
46

0.
48

0.
49

0.
51

0.
53

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
44

0.
46

0.
47

0.
49

0.
5

0.
51

0.
53

Figure 10.16: ROC and precision/recall curves for a logistic regression classifier

provides metrics such as accuracy, precision, recall, and can generate ROC curves. The
last two plots generated by the R code block below are shown in Figure 10.16. The left
panel shows the ROC curve, the right panel shows the precision/recall plot. It is clear
from the results that predicting the stock market from the inputs in the given data set
does not work well.

library(ROCR)

A prediction object contains probabilities and true labels
pred.obj <- prediction(logreg.probabilities, test.data$Direction)

Get some classifier performance metrics, ROCR varies the threshold.
plot(performance(pred.obj, 'acc'))
plot(performance(pred.obj, 'prec'))
plot(performance(pred.obj, 'rec'))
plot(performance(pred.obj, 'f'))

ROC curve: True positive rate versus false positive rate
plot(performance(pred.obj, 'tpr', 'fpr'), colorize=T)
abline(0, 1)
Precision/Recall plot
plot(performance(pred.obj, 'prec', 'rec'), colorize=T)
Calculate the AUC
performance(pred.obj, 'auc')@y.values[[1]]

10.7.3 Naive Bayes Classifier
The naive Bayes classifier is based on Bayes’ theorem of conditional probabilities. The
probability that an observation described by a vector of inputs X is a member of class
c can be described as the probability of observing inputs X given that the class is c,
multiplied by the unconditional probability of an observation being in class c, divided

332 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

by the unconditional observation of observing inputs X . Formally:

Pr(Y = c |X) =
p(X|Y = c) p(Y = c)

p(X)

The overall probability of observing vector X is the sum of the probabilities of observ-
ing X in each class l, multiplied by the probability of an observation being member of
class l:

=
p(X|Y = c) p(Y = c)∑K
l=1 p(X|Y = l) p(Y = l)

(10.7)

The naive Bayes assumption is that within each class c, the D different input features
that make up X are independently distributed of each other. With this assumption, one
can write:

p(X|Y = c) = p(x1|Y = c)× p(x2|Y = c)× · · · × p(xD|Y = c)

=

D∏
d=1

p(xd|Y = c) (10.8)

Substituting Equation 10.8 into Equation 10.7 yields the posterior probability of class
membership:

p(Y = c|X) =

(∏D
d=1 p(xd|Y = c)

)
p(Y = c)(∑K

l=1

∏D
d=1 p(xd|Y = l)

)
p(Y = l)

The probabilities in the product of Equation 10.8 can be trivially estimated from the
data, simply as the proportion of each xd for each class c. However, the assumption of
independence is violated when features are correlated. In other words, the naive Bayes
classifier can be expected to perform best for independent features.

10.7.4 Naive Bayes Classifier in R
The e1071 library for R provides the naiveBayes(.) function that implements
the naive Bayes classifier. The following illustration uses the same Smarket data
from the ISLR2 library that was used in the above example on logistic regression5:

5The R code for this example is based on material in Section 4.7.5 of ISLR2

10.7. CLASSIFICATION 333

library(e1071)
library(ISLR2)
train.data <- Smarket[Smarket$Year < 2005,]
test.data <- Smarket[!(Smarket$Year < 2005),]

Fit using same syntax as glm
nb.fitted <- naiveBayes(Direction ~ Lag1 + Lag2, data=train.data)
Output contains prior and conditional probabilities (and their SD)
print(nb.fitted)

A predict(.) method is available to predict class membership, given a fitted naive
Bayes classifier and a data set of observations. A confusion matrix can be constructed
by comparing predicted classes to observed classes. The following R code predicts
class memberships and computes the confusion matrix for the test data.

nb.predictions <- predict(nb.fitted, test.data)
nb.cm <- table(nb.predictions, test.data$Direction)
print(nb.cm)

Evaluating the classifier is similar to evaluating the logistic regression classifier and
again uses the ROCR library. The ROC curve created by the following R code block is
shown in Figure 10.17. Comparing this ROC curve to the one in Figure 10.16 shows
that the naive Bayes classifier performs slightly better than the logistic regression clas-
sifier.

library(ROCR)

Predict probabilities (for use with ROCR)
nb.probabilities <- predict(nb.fitted, test.data, type='raw')
Create an ROCR prediction object
nb.pred.obj <- prediction(nb.probabilities[,'Up'], test.data$Direction)

Generate an ROC plot
plot(performance(nb.pred.obj, 'tpr', 'fpr'), colorize=T)
abline(0, 1)
Compute the AUC value
performance(nb.pred.obj, 'auc')@y.values[[1]]

10.7.5 KNN Classification
K-Nearest Neighbour classification is a non-parametric classification technique. It
identifies the k nearest neighbours of a new observation, typically using the Euclidean
distance or the L2-norm of the vector differences. It then estimates the class member-
ship probabilities as the class membership proportions among the k nearest neighbours
of the new observations. Details can be found in the previous chapter.

334 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
48

0.
49

0.
5

0.
52

0.
53

0.
54

Figure 10.17: ROC curve of a naive Bayes classifier

One important requirement in KNN classification is scaling of inputs to have similar
standard deviations or variance to avoid the distance metric being dominated by the
input on the largest scale. For example, if one input ranges between 1 and 10 million,
while another input ranges between 1 and 10, the first input is clearly most important
in determining the distance between two observations.

10.7.6 KNN Classification in R
The class library for R provides the knn(.) function, as illustrated in the following
example R code block that uses the same Smarket stock market data set as the above
examples for logistic regression and naive Bayes6.

library(class)
library(ISLR2)
train.data <- Smarket[Smarket$Year < 2005,]
test.data <- Smarket[!(Smarket$Year < 2005),]

Split the data into test and train sets
train.x <- cbind(train.data$Lag1, train.data$Lag2)
test.x <- cbind(test.data$Lag1, test.data$Lag2)
train.y <- train.data$Direction
test.y <- test.data$Direction

Next, the knn(.) function is used to make predictions for the test data set, given
the training data inputs and training data outputs. The knn(.) function uses the
Euclidean distance metric. The following R code example considers k = 3 near-

6The R code for this example is based on material in Section 4.7.6 of ISLR2

10.7. CLASSIFICATION 335

est neighbours and returns the class membership probabilities in addition to the class
memberships of the test data set observations:

knn.pred <- knn(train.x, test.x, train.y, k=3, prob=T)

A confusion matrix can be computed using the table(.) function and the accu-
racy is calculated as the mean number (proportion) of observations for which the knn
prediction is the same as the observed class membership.

Confusion matrix
table(knn.pred, test.y)
Accuracy
mean(knn.pred == test.y)

The class membership probabilities returned in the knn(.) function result are those of
the majority class, in this example the class ”Down”. Because this is a binary classifi-
cation, the class membership probabilities for the ”Up” class can be trivially calculated,
as shown in the following R code block:

knn.probs <- attributes(knn.pred)$prob

Compute class probabilities of the minority class:
knn.class.probs <- knn.probs
knn.class.probs[knn.pred=='Down'] <- 1-knn.probs[knn.pred=='Down']

With the class membership probabilities for both classes, the ROCR library functions
can be used to evaluate the classifier by plotting the ROC curve and computing the
AUC. The ROC curve produced by the R code block below is shown in Figure 10.18.

knn.pred.obj <- prediction(knn.class.probs, test.data$Direction)
plot(performance(knn.pred.obj, 'tpr', 'fpr'), colorize=T)
abline(0, 1)
performance(knn.pred.obj, 'auc')@y.values[[1]]

336 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

25
0.

5
0.

75
1

1.
25

Figure 10.18: ROC curve of a k-NN classifier

Hands-On Exercise

Use the Weekly data set in the ISLR2 package.
1. Use the full data set to perform a logisttic regression with Direction

as target. Which predictors are statistically significant?
2. Compute the confusion matrix and accuracy.
3. Use the 1990 to 2008 data for a training set and the 2009/2010 for a test

set. Fit a logistic regression model with Lag2 as the only predictor.
4. Repeat (3) using Naive Bayes
5. Repeat (3) using KNN with K = 1
6. Which model provides the best results on this data?

Source: ISLR2 Section 4.8

10.8. REVIEW QUESTIONS 337

Hands-On Exercise

Use the Auto data set in the ISLR2 package.
1. Create a binary variable, mpg01 that contains a 1 if mpg is above its

median, 0 otherwise. Tip: Use the median() function. Add the new
variable to the data frame.

2. Split the data set into training and test set
3. Perform a logistic regression on the training data to predict mpg01 from

the other features. What is the test error of this model?
4. Repeat (3) using Naive Bayes
5. Repeat (3) using KNN with different values of K. What value of K

performs best?

Source: ISLR2 Section 4.8

Hands-On Exercise

Using the Boston data set in the ISLR2 library, fit classification models to
predict whether a given census tract has a crime rate above or below the median.

1. Create a new binary variable crime01 that is 1 is crime is above its
median, and 0 otherwise. Combine this variable with the data frame. Tip:
Use the median() function for this.

2. Split your data set into a training and test data set
3. Fit logistic regression, Naive Bayes, and KNN (with different K)
4. Describe your findings in terms of prediction error, precision, recall, F1

and AUC

Source: ISLR2 Section 4.8

10.8 Review Questions
Linear Regression

1. Explain the primary objective of linear regression and how it is implemented in
a statistical model.

2. Discuss the importance of visual inspection of data before choosing a regression
model.

3. Define fitted values or predicted values in the context of linear regression. How
are they computed?

4. Discuss why a model with a term like β2X2 is still considered a linear regression
model.

5. How does the residual sum of squares (RSS) relate to mean squared error (MSE)
in linear regression analysis?

6. Explain the importance and use of the standard errors of the estimates in linear

338 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

regression.
7. Describe what a t-test in regression analysis involves, and how it is used to test

hypotheses about model parameters.
8. What does the R2 statistic tell us about a linear regression model? What are its

limitations?
9. Explain the term interaction effects using an example, and describe how they can

be identified in a regression model.
10. What role do dummy variables play when incorporating categorical predictors

into a regression model? Give an example.
11. How can the inclusion of more predictors into a linear regression model affect

the model’s bias and variance?

Random Numbers

12. Define a pseudo-random number generator (RNG). How does it differ from a
true random number generator?

13. Discuss the role of the seed in the generation of pseudo-random numbers. What
happens if the seed is not set before generating random numbers in a program?

14. Describe a scenario where using the same seed value might be advantageous in
computational analyses.

Shrinkage Methods

15. Explain what is meant by ”shrinkage methods” in the context of regression anal-
ysis. Why is it necessary to shrink the magnitude of regression coefficients?

16. What is the difference between L1 and L2 regularization? Provide examples
where each might be preferable.

17. Explain the rationale behind using ridge regression and LASSO as alternatives
to standard linear regression. What problem do they address?

18. Discuss why it is important to standardize predictors before applying ridge re-
gression. What could happen if the predictors are on different scales?

19. Explain the concept of the LASSO as a form of penalized regression. How does
it differ from ridge regression in terms of the impact on model parameters?

20. Discuss the method of selecting the penalty parameter λ in shrinkage methods
like ridge regression and LASSO.

21. Discuss how the bias-variance trade-off is managed in ridge regression through
the adjustment of λ. What are the signs that λ is set too high or too low?

22. Explain how the Elastic Net method balances the properties of L1 and L2 penal-
ties. What role does the parameter α play in this balance?

Logistic regression

23. Explain the concept of the sigmoid or logistic function as a solution for bounding
the output of a regression model between 0 and 1.

24. What is a link function in logistic regression? Describe its purpose and how it
modifies the output of a linear model.

10.8. REVIEW QUESTIONS 339

25. Define the logistic function and explain how it is used in logistic regression to
estimate probabilities.

26. In logistic regression, what does the logit (or log-odds) function represent? How
does it relate to the probabilities of class memberships?

27. Discuss the significance of the threshold value in logistic regression. How is it
used to determine class membership?

28. Explain the concept of multinomial logistic regression and how it extends the
binary logistic regression model to multiple classes.

29. Discuss how incorporating polynomial terms of input variables into a logistic
regression model can help in transforming non-linear decision boundaries into
linear ones.

Naive Bayes classification

30. What is Bayes’ theorem and how is it applied in the naive Bayes classifier to
compute class probabilities?

31. Explain how the probability p(X|Y = c) is calculated under the naive Bayes
assumption.

32. Discuss the implications of the independence assumption among features in the
naive Bayes classifier. What are the potential limitations of this assumption in
real-world scenarios?

33. Explain the role of prior probabilities p(Y = c) in the naive Bayes classifier.
How do these influence the final classification?

34. What is the effect of having highly correlated features on the performance of the
naive Bayes classifier?

KNN classification

35. Define K-Nearest Neighbor (KNN) classification. Why is it classified as a non-
parametric technique?

36. Explain the concept of "nearest neighbors" in the context of KNN. What metrics
can be used to determine proximity in feature space?

37. Discuss the role of the number k in KNN classification. How does the choice of
k influence the classifier’s performance?

38. Describe how KNN estimates the class membership probabilities for a new ob-
servation.

39. Discuss the impact of feature scaling on the performance of KNN classification.
Why is it important to scale features?

40. Discuss the trade-offs between choosing a larger versus smaller value of k in
KNN classification.

340 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

Chapter 11

Introduction to Unsupervised
Machine Learning

Learning Goals

After reading this chapter, you should be able to:

• Explain the aims principal components analysis, the importance of scaling data
before the analysis, the concept of a principal component and how to choose an
appropriate number of components.

• Carry out a principal component analysis and justify the number of components
retained.

• Explain the process of k-means clustering, including the importance of the dis-
tance function and of scaling data before clustering.

• Carry out a k-means clustering and evaluate its quality.

• Explain hierarchical clustering, and the distance and linkage functions involved
in clustering.

• Choose an appropriate clustering solution from a dendrogram.

• Carry out a hierarchical clustering and evaluate its quality.

Sources and Further Reading

The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

341

342CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)
https://www.statlearning.com

Chapter 12

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python. This book is
a more accessible of the following book.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Sta-
tistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapter 14

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.
https://probml.github.io/pml-book/book1.html

Chapters 20, 21

Murphy’s book is available under a creative-commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.

11.1 Introduction
In unsupervised machine learning, there are no known correct outputs that can be used
to train or fit statistical models. In that sense, there are no X and Y variables, but only
the X variables. Unsupervised machine learning focuses on identifying patterns in the
data, often in order to simplify the data. The two unsupervised methods considered
here, principal components analysis (PCA) and cluster analysis or clustering, both do
this. For example, PCA ”summarizes” multiple variables or ”dimensions” into fewer
variables, the principal components, while cluster analysis finds similarities in the data

https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html

11.2. PRINCIPAL COMPONENTS ANALYSIS 343

and groups or clusters observations into fewer clusters than observations. The principal
components and the clusters can be viewed as simpliciations or summaries of the data.

11.2 Principal Components Analysis
The aim of principal component analysis (PCA) is to create linear combinations of the
input variables, the principal components (PC), that satisfy two conditions:

1. They are maximally variable, that is, their variance is maximal, and

2. They are orthogonal, that is, independent, of each other.

There are as many principal components as there are input variables. Generally, only
a few of the principal components, the ones with the greatest variance, are retained
for further analysis. It is not uncommon to reduce hundreds of variables to five or ten
principal components for further analysis.

These principal components are considered summaries of the original data and can be
used, for example, instead of the original input variables in a regression or classifica-
tion model. This makes the model smaller and therefore easier to understand, interpret,
and verify. Using fewer inputs for a regression or classification can also serve as a
regularization method, that is, a way to make the model less susceptible to overfitting.
This is because models with fewer inputs generally have fewer parameters, all other
things being equal. Additionally, the principal components are useful for data visual-
ization. It is much easier to show a 2D or 3D summary of the data when the data has
been summarized in two or three principal components, rather than visually depicting
dozens or hundreds of variables.

Figure 11.1 shows an example visualization of a scatterplot of data on two variables
and the two principal components. Technically, the two arrows shown are the eigen-
vectors of the covariance matrix of the data, scaled in length by the square root of the
corresponding eigenvalue and then shifted to the mean of the data, details that will
become clear below.

We first introduce an iterative method of computing principal components. Recall that
principal components are linear combinations of the original input variables. Hence,
the first principal component (PC) for 1 ≤ i ≤ n data values and p variables is defined
as:

zi1 = w11xi1 + w21xi2 + · · ·+ wp1xip

Or, simpler, in matrix form:

Z1 = Xw1

The weight vector or loading vector w1 = (w11, . . . , wp1) is a p × 1 column vector
that is scaled to unit length, that is, ||w1||2 = 1. X is a n× p data matrix and Z1 is the
first principal component of size n× 1.

344CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg

Figure 11.1: Scatterplot with Principal Components

Assuming zero-centered variables, the variance of Z1 and the optimization criterion
can be expressed as follows:

maximize
wj1

n∑
i=1

z2i1 =

n∑
i=1

 p∑
j=1

wj1xij

2

(Variance of zi1) (11.1)

Subject to:

p∑
j=1

w2
j1 = 1 (Scaling constraint)

Or, simpler, in matrix form:

maximize
w1

ZT
1 Z1 = wT

1 XTXw1 (Variance of Z1) (11.2)

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg

11.2. PRINCIPAL COMPONENTS ANALYSIS 345

Subject to:

||w1||2 = 1 (Scaling constraint)

To derive the second PC, subtract the first PC from the data:

Xnew ← X −Xw1w
T
1

Then, repeat the maximization with the residual data Xnew, that is the ”left over” por-
tion of the data.

This procedure can be repeated until as many principal components k are calculated as
there are original data variables p. Because each iteration reduces the remaining data,
the residual, by subtracting a component with maximum variance, the variance of the
residual data shrinks. Hence, the variance of each successive principal component and
therefore the proportion of the initial overall variance accounted for by each successive
principal component shrinks. In other words, each successive component explains a
decreasing proportion of the total original variance in the data.

There are two important considerations when working with PCA. First, the input data
variables should be scaled to have equal or unit standard deviation, so that the measure-
ment scale of different variables does not influence the outcome of the PCA. Second,
the signs of the principal components can be ”flipped” arbitrarily. This can be seen in
Figure 11.1, where one can easily imagine the two arrows pointing in opposite direc-
tion, and still providing the same good summary of the original data.

Variables in the data set should be scaled to identical standard deviations prior
to PCA.

To give an applied example, consider four input variables extracted from a data set
of police arrest data in the US for violent crimes in each of the 50 states of the US.
While four principal components can be computed, the four input variables can be
summarized pretty well by just the first two principal components that together explain
more than 80% of the total variance. Figure 11.2 shows a plot of the data along the first
two components which form the horizontal and vertical axis. This is known as a biplot.
Overlayed are the four original variables. Table 11.1 shows the component loadings,
that is the ϕ in the above formulas, for the first two principal components.

Interpretation of the principal components, which is important in explanation but less
so in prediction, focuses on the loadings. For example, looking at the columns of
the loadings in Table 11.1 shows that the first PC has high loadings on the variables
”Murder”, ”Assault”, and ”Rape”, and a much smaller loading on ”UrbanPop”. This
suggests that PC1 expresses the overall prevalance of violent crime, as a summary of
those three variables. In contrast, the second PC has a high loading on ”UrbanPop”, but
a much lower (absolute) loading on the other three variables, indicating that it expresses

346CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

First Principal Component

S
e
c
o
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

Alabama Alaska

Arizona

Arkansas

California

Colorado
Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

IndianaIowa
Kansas

Kentucky
Louisiana

Maine Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

OregonPennsylvania

Rhode Island

South Carolina

South Dakota Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−0.5 0.0 0.5

−
0
.5

0
.0

0
.5

Murder

Assault

UrbanPop

Rape

Source: ISLR2 Figure 12.1

Figure 11.2: US arrests data example – Biplot with data plotted on first two principal
components with original variables

primarily the one variable ”UrbanPop”. This interpretation is supported by Figure 11.2,
which examines the rows of Table 11.1, plotting each variable as a two-component
vector in the space spanned by PC1 and PC2 (recall that the principal components are
by definition orthogonal). Here, the row vector for the variable ”UrbanPop” is visually
distinct and separate from the row vectors for the other three variables.

While the iterative description of principal components above illustrates the properties
of the components in terms of their variance, actual PCA is done by means of eigen-

PC1 PC2
Murder .536 -0.418
Assault .583 -0.188
UrbanPop .278 0.873
Rape .543 0.167

Source: ISLR2 Table 12.1

Table 11.1: US arrest data example – first two principal component loadings

11.2. PRINCIPAL COMPONENTS ANALYSIS 347

decomposition. It turns out that the solution to the maximization problem in Equa-
tions 11.1 and 11.2 are the principal components of the data correlation matrix. Each
principal component is an eigenvector of the data correlation matrix such that:

V −1XTXV = V −1CV = Λ

where V is the matrix whose columns are the eigenvectors, C is the data correlation
matrix, and Λ is a diagonal matrix of eigenvalues.

The proportion of variance explained fk by each PC k is proportional to the corre-
sponding eigenvalue λk, that is, the k-th entry of Λ:

fk =
λk∑p
j=1 λj

The cumulative proportion of variance Fk explained by the first k PC is then:

Fk =

∑k
j=1 λj∑p
j=1 λj

There are different criteria for selecting the number of principal components to retain
for further analyses:

• There may be a theoretical reason, especially in an explanation context, to retain
a specific number of principal components

• The analyst retains those principal components that have an intuitive and relevant
interpretation, as in the above example.

• The analyst retains those principal components whose eigenvalue λ > 1

• The analyst retains principal components until the cumulative proportion of vari-
ance explained by the components surpasses a given threshold, e.g. 80%. For
example, the right panel in Figure 11.3 shows a plot of the cumulative variance
explained. The first two principal components are necessary to explain 80% or
more of the total variance in the original data.

• When used in subsequent regression or classification models, cross-validation
may be used to identify the optimal K that shows the lowest test error.

• The analyst examines the ”scree plot”, that is, the plot of the eigenvalues or
proportion of variance explained by each component. Oftentimes, there will be
a clear point of inflection in this plot, indicating a useful cutoff. The left panel
in Figure 11.3 shows such a scree plot. The proportion of variance explained
diminishes for each additional principal component.

In practice, the number of principal components to retain is often subjective, and ana-
lysts use a combination of considerations and criteria to make their decision.

348CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Principal Component

P
ro

p
.

V
a

ri
a

n
c
e

 E
x
p

la
in

e
d

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Principal Component

C
u

m
u

la
ti
ve

 P
ro

p
.

V
a

ri
a

n
c
e

 E
x
p

la
in

e
d

Source: ISLR2 Figure 12.3

Figure 11.3: US arrests data example – Scree plot and cumulative variance explained

11.3 Principal Components Analysis in R
The USArrests in the ISLR2 library contains data on the arrests (per 100,000 res-
idents) for various violent crimes as well as the percentage of urban population in the
50 states of the US1. First, examine the data and the correlation between variables. In
the correlation matrix, one can already see that ”UrbanPop” is not highly correlated
with the other three variables, an indication that it will not load on the same principal
component as those.

library(ISLR2)
?USArrests
summary(USArrests)
cor(USArrests)

The prcomp() function in R performs a PCA and can optionally scale and center the
data before doing so:

PCA using prcomp()
Scaling is generally a good idea
pca.result <- prcomp(USArrests, scale=TRUE)

Print the component loadings
pca.result$rotation

The results can be plotted in a biplot, similar to the one in Figure 11.2, using the
biplot() function for the prcomp result object. By default, that function uses

1The R code for this example is based on material in Section 12.5 of ISLR2

11.3. PRINCIPAL COMPONENTS ANALYSIS IN R 349

the first two principal components, but others can be specified using the choices
argument. Note that the signs of the principal components may be arbitrarily flipped.

Biplot for components 1 and 2
biplot(pca.result, choices=1:2, scale=0)

The explained variance can be computed from the result and plotted in a scree plot
similar to the one in the left panel of Figure 11.3.

Explained variance for each component
pca.result$sdev^2

Scree plot (both points and lines)
plot(pca.result$sdev^2, type='b', col='blue')

Recall that the proportion of variance explained is the proportion of the variance of a
principal component out of the total variance explained by all principal components.
The R function cumsum() can be used to conveniently calculate the cumulative value
of this. The following code block computes a cumulative plot similar to the right panel
in Figure 11.3.

Proportion of variance explained
pve <- pca.result$sdev^2 / sum(pca.result$sdev^2)

Cumulative sum of variance explained
plot(cumsum(pve), type='b', col='blue')

Using the eigen(.) function for eigenvalue decomposion shows that the principal
component loadings correspond to the eigenvectors and the explained variance corre-
sponds to the eigenvalues,

Eigen-decomposition of correlation matrix
e <- eigen(cor(USArrests))
Compare values and vectors to prcomp results
e$values
e$vectors

The component scores themselves are also available in the prcomp result for use in
further analysis such as regression or classification:

Print the component scores themselves
For further use in regression, etc.
head(pca.result$x)

350CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Hands-On Exercise

The Boston dataset in the ISLR2 library describes house prices in the differ-
ent suburbs of Boston. Use PCA to reduce the number of dimensions for this
dataset:

1. Use the prcomp function to perform a PCA on the centered and stan-
dardized data. Limit yourself to quantitative inputs.

2. Produce a biplot of the first two components
3. Provide the proportion of variance explained by each component
4. How many components would you retain? Why? How much of the total

variance would this explain?
5. Based on the loadings, can you ascribe meaning to the components?

What do they represent?

Hands-On Exercise

The Harmann74.cor dataset in the datasets library contains the results
of 24 psychological tests given to 145 school children. Use PCA to reduce the
number of dimensions for this dataset:

1. Use the prcomp function to perform a PCA on the centered and stan-
dardized data. Limit yourself to quantitative inputs.

2. Produce a biplot of the first two components
3. Provide the proportion of variance explained by each component
4. How many components would you retain? Why? How much of the total

variance would this explain?
5. Based on the loadings, can you ascribe meaning to the components?

What do they represent?

Hands-On Exercise

The Hitters dataset in the ISLR2 library contains the salary of 322 baseball
players and season statistics. Use salary as the target variable and all other
numerical variables as predictors.

1. Use PCA to reduce the number of dimensions for the predictors. Limit
yourself to quantitative inputs.

2. Retain the first principal component.
3. Estimate and cross-validate a regression model using the first PC as pre-

dictor. What is the training and validation error?
4. Repeat steps (1) to (3), retaining 2, 3, . . . , all components
5. Plot the training and validation error agains the number of components.

Describe and discuss your results.

11.4. CLUSTERING 351

11.4 Clustering
Whereas PCA tried to simplify a data set ”by column” through the identification of
variables that can be summarized by principal components, cluster analysis tries to
simply a data set ”by row” through the identification of observations that are similar
and can be represented as a group, that is, a cluster. The aim is to form homogenous
subgroups of observations and to discover ”structure” in the data.

There are a many different types of clustering. This chapter focuses on two simple
and easy-to-understand methods. The k-means clustering algorithm is an example of
centroid-based clustering, a method that assigns observations to clusters based on their
distance from the cluster center (”centroid”), while agglomerative clustering is a form
of hierarchical clustering which iteratively merges observations together to form larger
and larger clusters.

11.4.1 K-Means Clustering
In k-means clustering, the number of clusters K is assumed given, determined by the
analysts knowledge of the data or the requirements of the analysis. The aim of k-means
clustering is to minimize the within-cluster variation W (Ci) in each cluster Ci:

min
Ci

{
K∑

k=1

W (Ck)

}

This within-cluster variation is defined as the squared Euclidean distance between ev-
ery pair of observations in the cluster (Equation 11.3) or between every observation
and the cluster centroid of the cluster it is assigned to, that is, its corresponding cluster
mean µ̄ (Equation 11.4).

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 (11.3)

= 2
∑
i∈Ck

p∑
j=1

(xij − µ̄kj)
2 (11.4)

Here, i, i′ range over observations within cluster Ck, j ranges over the p different
variables that make up an observation, and µ̄kj is the mean of variable j for cluster k.

This definition of distance means that k-means cluster analysis is only applica-
ble to quantitative variables.

When variables are measured on different scales, e.g. one variables in the range of [0, 1]
while another is measured between [0, 1000000] it is important to standardize or scale

352CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Source: ISLR2 Figure 12.8

Figure 11.4: K-means iterative cluster assignment example

the variables to have similar standard deviations (typically, unit standard deviation,
i.e. 1). Otherwise, the Euclidean distance between observations is dominated by the
variable with the largest range.

Variables in the data set should be scaled to identical standard deviations prior
to k-means clustering.

K-means clustering uses an iterative algorithm, beginning with the random assignment
of each observation i to one of the k clusters. From these cluster assignments, the clus-
ter means (centroids) can be computed (µ̄kj in Equation 11.4). Next, each observation
is assigned to that cluster whose centroid is closest. The last two steps are repeated
until the cluster assignments no longer change.

This process is illustrated in Figure 11.4. The top left panel shows observations on
two variables. The panel labeled ”Step 1” shows the initial random assignment of each
observation to one of three clusters, indicated by the color. The top right panel, labelled
”Iteration 1, Step 2a” shows the cluster means or centroids computed based on this
assignment as large coloured circles. As one might imagine, random assignment leads
to cluster means that are very similar. The bottom left panel, ”Iteration 1, Step 2b”

11.4. CLUSTERING 353

320.9 235.8 235.8

235.8 235.8 310.9

Source: ISLR2 Figure 12.9

Figure 11.5: K-means clustering solutions from different initial cluster assignments

shows the cluster assignment of the observations based on the new cluster means. Each
observation is assigned to that cluster whose mean is closest. The bottom middle panel,
”Iteration 2, Step 2a” shows the new cluster means based on the new cluster assignment
of observations. The bottom right panel shows the final, stable cluster assignment.
Repeated calculation of cluster means and assigning observations to clusters does not
change cluster membership for any observation. Note that the cluster membership in
this final panel is slightly different than the one in the bottom middle panel, indicating
at least one more iteration between the two panels.

It should be clear from this description that the random initial cluster assignment has a
significant impact on the final result. As the number of observations grow, the random
effects generally diminish, but different random initial cluster assignments may yield
different final clustering solutions.

The k-means algorithm should be run multiple times and the optimal solution,
that is, the one with the lowest within-cluster variability, should be chosen for
further analysis.

This effect is shown in Figure 11.5. The data from the previous example was clustered

354CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

six different times with different random initial cluster assignments. Each final solu-
tion is different, and may also have a different within-cluster variability as shown at
the top of each panel. Note that some solutions are identical but permute the cluster
assignments/colours. For example, the top middle and top right panels in Figure 11.5
are identical and also identical with the bottom left and bottom middle solution, except
for the permutation of cluster assignments, indicated by the colours.

11.4.2 K-Means Clustering in R
To illustrate k-means clustering in R, consider the following simulated example, which
uses the kmeans() function2. Data is simulated as 50 observations on two normally
distributed variables. One half of the data is shifted by +3 on the first variables and
by −4 on the second variable. With a standard deviation of 1, this constitutes a large
separation and should lead to clearly identifiable clusters.

Set RNG seed for replicability
set.seed(2)
Create a 50 x 2 matrix of random variables
Normally distributed, with 0 mean and SD=1
x <- matrix(rnorm(n=50*2, mean=0, sd=1), ncol=2)
Clearly separate the first 25 points by shifting their coordinates
x[1:25, 1] <- x[1:25, 1] + 3
x[1:25, 2] <- x[1:25, 2] - 4

Next, the data is clustered using the kmeans() function into 2 clusters, 20 times with
different random initial cluster assignments:

Cluster into 2 clusters, performing 20 random starting assignments
km.result <- kmeans(x, 2, nstart=20)

The result object km.result contains the cluster means, the cluster assignments for
each observation and the sum-of-squares (distances) within each cluster and between
clusters. Recall that the optimization objective is to minimize the within-cluster varia-
tion.

Results show cluster means, cluster assignments,
and sums of squares (distances) within and between
print(km.result)
Those values are also available as components in the result object
names(km.result)
print(km.result$centers)
print(km.result$withinss)
etc.

2The R code for this example is based on material in Section 12.5 of ISLR2

11.4. CLUSTERING 355

−2 0 2 4

−
6

−
4

−
2

0
2

K−Means Clustering Results with K=2

Figure 11.6: Result of k-means clustering on simulated data

Finally, it is easy to create colour-coded plot of the data (the following R code block
adds 1 to every cluster number to avoid plotting black points). This generates a plot as
shown in Figure 11.6, clearly indicating the well-separated clusters.

Plot the color-coded points
plot(x, col=(km.result$cluster+1),

main = 'K-Means Clustering Results with K=2',
xlab = '', ylab='', pch=20, cex=2)

Hands-On Exercise

The Boston dataset in the ISLR2 library describes house prices in the dif-
ferent suburbs of Boston. Use K-Means Clustering to identify sets of similar
suburbs using only the numerical variables in the data set.

1. Use the kmeans function to perform a cluster analysis, using multiple
starting assignments. Limit yourself to quantitative inputs but do not
scale the variables.

2. Use different numbers of clusters k and identify which value of k gives
you the best results. Define what you mean by ”best” and justify your
choice.

3. Scale the data so that each variable has the same variance or standard
deviation, but do not change the variable means.

4. Repeat the cluster analysis with the best value of k and compare results.

356CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Hands-On Exercise

The Hitters dataset in the ISLR2 library contains the salary of 322 baseball
players and season statistics. Use K-Means Clustering to identify sets of similar
players, using only the numerical variables in the data set.

1. Use the kmeans function to perform a cluster analysis, using multiple
starting assignments. Limit yourself to quantitative inputs but do not
scale the variable.

2. Use different numbers of clusters k and identify which value of k gives
you the best results. Define what you mean by ”best” and justify your
choice.

3. Scale the data so that each variable has the same variance or standard
deviation, but do not change the variable means.

4. Repeat the cluster analysis with the best value of k and compare results.

11.4.3 Hierarchical Clustering
Hierarchical clustering is either agglomerative, that is, it constructs clusters ”bottom-
up” by joining observations or small clusters to larger clusters, or it may be divisive,
that is, in ”top-down” fashion, starting from the whole set of observations, it iteratively
divides the set into clusters. This section examines the use of agglomerative clustering,
which is widely used because of its intuitive process and its flexibility.

Agglomerative clustering begins with n observations and a distance (or, alternatively, a
similarity metric, which is just the inverse of distance – a large distance means a small
similarity). The process is then as follows:

1. Treat each observation as its own cluster

2. Repeat the following steps n− 2 times:

(a) Calculate distances between all pairs of clusters

(b) Identify the pair of clusters that are least distant from each other

(c) ”Fuse” or merge these two clusters

The process is usually visualized with a dendrogram, which literally means ”tree graph”,
such as the one shown in the left panel of in Figure 11.7. A dendrogram is read bottom-
up, showing which clusters are merged in which order. The vertical axis shows the
distance between clusters as they are merged. Consider the observations on two vari-
ables shown in the right panel of Figure 11.7. In the example, clusters 5 and 7 are
merged first, from a distance of ≈ 0.3. This distance is the smallest distance between
all clusters, indicated as the lowest merging point in the dendrogram in the left panel
of Figure 11.7. Cluster 5 is just observation 5, and cluster 7 is just observation 7. The
two together form a new cluster. Next, clusters 1 and 6 are merged, from a distance of
≈ 0.4, the second lowest merging point in the dendrogram. Then, cluster 8 (which is
observation 8) is added to the cluster consisting of observations 5 and 7, at a distance

11.4. CLUSTERING 357

3

4

1 6

9

2

8

5 7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

X1

X
2

Source: ISLR2 Figure 12.12

Figure 11.7: Example dendrogram and data for agglomerative clustering

of ≈ 0.8. After this, observation 4 is added to the cluster consisting of observations 1
and 6, etc. The final two clusters are at a distance of ≈ 3 when they are merged into a
single cluster.

The follwing key decisions need to be made by the analyst for agglomerative clustering:

• How to measure similarity or distance between observations?

• How to measure distance between clusters (”linkage”)?

• How many clusters should there be?

Table 11.2 shows a set of common distance metrics or vector norms that are frequently
used in agglomerative clustering. Figure 11.8 is a visualization of the intuition behind
some of these distance metrics. For example, the Chebyshev distance allows diagonal
”moves” to count as a single step with a distance of 1, wheres the taxicab metric counts
a ”move” in each direction as a single step, so that diagonal ”moves” have a distance of
2. In principle, any of these distance metrics could also be used in k-means clustering,
but this is rarely done.

Because the distance function is heavily influenced by the measurement scale of the
variables, when these are not equal, it is possible for one variable to dominate others,
simply because it is measured on a different scale. As with PCA and k-means cluster-
ing, it is therefore important to scale the variables in the data set to identical standard
deviation (typically, unit standard deviation, i.e. 1).

Variables in the data set should be scaled to identical standard deviations prior
to hierarchical clustering.

Table 11.3 shows a set of the most commonly used linkage functions, that is, functions
that express the distance between two clustersG andH . The single linkage is based on
the minimum distance of any pair of observations where one observation is in cluster

358CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Taxicab or
Manhattan

||q − p||1
∑
i

|qi − pi|

Euclidean ||q − p||2
√∑

i

(qi − pi)2

Minkowski ||q − p||p
(∑

i

|qi − pi|p
) 1

p

Chebyshev ||q − p||∞ lim
p→∞

(∑
i

|qi − pi|p
) 1

p

= max
i

(|qi − pi|)

||q − p||−∞ lim
p→−∞

(∑
i

|qi − pi|p
) 1

p

= min
i
(|qi − pi|)

Table 11.2: Common distance metrics or ”norms” in clustering

https://commons.wikimedia.org/wiki/File:Minkowski_distance_examples.svg

Figure 11.8: Different distance metrics and their intuition

G and the other in clusterH . In other words, the distance of two clusters is the distance
between the two closest observations from each cluster. In contrast, complete linkage
uses the maximum; the distance between clusters is the maximal distance between any
of their member observations. Finally, average linkage uses the mean distance between
all pairs of observations. There are many other, less commonly used linkage functions

https://commons.wikimedia.org/wiki/File:Minkowski_distance_examples.svg

11.4. CLUSTERING 359

Single dSL(G,H) = min
i∈G,i′∈H

di,i′

Complete dCL(G,H) = max
i∈G,i′∈H

di,i′

Average dAL(G,H) = mean
i∈G,i′∈H

di,i′

Table 11.3: Commonly used linkage functions in hierarchical clustering

Average Linkage Complete Linkage Single Linkage

Source: ISLR2 Figure 12.14

Figure 11.9: The effect of different linkage functions in agglomerative clustering

available3.

The linkage function has a significant effect on the process of clustering a set of ob-
servations. Consider the three examples shown in the different panels of Figure 11.9.
Merging two observations into a cluster is always done at the same distance, as this
is determined purely by the distance metric, not the linkage function. However, the
decision which clusters (of multiple observations) to combine is heavily influenced by
the linkage function as can be seen in the very different dendrograms in Figure 11.9.

The final question concerns the choice of the number of clusters. The answer to this
question may be driven by theory (typically in explanatory applications), by require-
ments of the subsequent data analysis or the subsequent use of the resulting clusters,
or by examining the distances at which clusters are merged, that is, the height in the
dendrogram. Choosing a number of clusters is called ”cutting the dendrogram” at a
specific point. Consider the example in Figure 11.10. The left panel shows the so-
lution of the agglomerative clustering. In the end, a single cluster containing all the

3https://en.wikipedia.org/wiki/Hierarchical_clustering

https://en.wikipedia.org/wiki/Hierarchical_clustering

360CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

0
2

4
6

8
1
0

0
2

4
6

8
1
0

0
2

4
6

8
1
0

Source: ISLR2 Figure 12.11

Figure 11.10: Cutting a dendrogram to determine the number of clusters

observations remains, with the last two clusters merged at a distance of ≈ 10.5. The
middle and right panel show two different ”cuts” of the dendrogram, one resulting in
two clusters and the other resulting in three clusters. The cuts may be determined by
a desired number of clusters, by considerations of distance, or both. It should be clear
that lowering the ”cut” height further beyond what is shown in the right panel, that
is reducing the distance between clusters, would result in many small clusters with a
much smaller distance between them.

11.4.4 Hierarchical Clustering in R
This example uses the same simulated data as the example for k-means clustering4.
First, generate 50 observations on two variables from a normal distribution. One half
of the observations are shifted on both variables to provide a known cluster structure.

Set RNG seed for replicability
set.seed(2)
Create a 50 x 2 matrix of random variables
Normally distributed, with 0 mean and SD=1
x <- matrix(rnorm(n=50*2, mean=0, sd=1), ncol=2)
Clearly separate the first 25 points by shifting their coordinates
x[1:25, 1] <- x[1:25, 1] + 3
x[1:25, 2] <- x[1:25, 2] - 4

The dist() function is used to calculate differences between the observations. The
names for the method argument to dist() are the same as in Table 11.2. Addition-
ally, the ’maximum’ distance in R uses the greatest distance among all the variables

4The R code for this example is based on material in Section 12.5 of ISLR2

11.4. CLUSTERING 361

12
2 10

9
15 24

21
3 23
7 19
17

6 11
1

5 13
20

18 25
16

14 22
4 8 33

44 46
45 30 32

35
43

34 49
38 39

28
40 48 47 36 41 27

29 31
42

26
37 50

0
2

4
6

8
10

Complete Linkage

H
ei

gh
t

42
47 36 41 27

29 31
26

28
40 48 38 39

37 50
35

45 30 32
43

34 49
16

9
15 24

7 19
21

3 23
17

6 11
1

5 13
20

18 25
33

44 46
12

2 10
14 22

4 8

0
1

2
3

4
5

Average Linkage

H
ei

gh
t

16
42

17
6 11

20 1
18 25

5 13
7 19

21
3 23

9
15 24

12
8

2 10
4

14 22
44 46

33
35

27
29 31

47 36 41
26

28
40 48

37
50

38 39
43

45
30 32

34 49

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Single Linkage

H
ei

gh
t

Figure 11.11: Dendrogram of three clustering solutions for simulated data

of the two observations.

The dist() function calculated distances
according to a variety of metrics/norms
euclid.dist <- dist(x, method='euclidean')
pnorm.dist <- dist(x, method='minkowski', p=3)
manh.dist <- dist(x, method='manhattan')
max.dist <- dist(x, method='maximum')

The hclust() function performs the hierarchical agglomerative clustering. The
method argument specifies the type of linkage, according to Table 11.3. The hclust()
function can use a few additional linkages not listed in that table, see the documentation
(?hclust) for details.

Use the hclust() function with a distance metric
hc.complete <- hclust(euclid.dist, method='complete')
hc.single <- hclust(euclid.dist, method='single')
hc.average <- hclust(euclid.dist, method='average')

The dendrograms for the three different clustering solutions can be plotted to produce
Figure 11.11.

Plot the dendrograms in a single plot
par(mfrow = c(1, 3))
plot(hc.complete , col='red',

main = "Complete Linkage", xlab = "", sub = "", cex = .9)
plot(hc.average , col='blue',

main = "Average Linkage", xlab = "", sub = "", cex = .9)
plot(hc.single , col='green',

main = "Single Linkage", xlab = "", sub = "", cex = .9)

The complete linkage and average linkage solutions are visually quite similar, but upon
careful examination of which observations and clusters are merged in which order,

362CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

they are actually very different from each other. The single linkage solution is visually
very different from the others. Note the ”height” of the dendrogram on the vertical
axis. Because the single linkage focuses on the minimal distance between a pair of
observations from each cluster, the heights in this dendrogram are the smallest among
the three dendrograms. Because the average linkage focuses on the mean of distances
of pairs of observations of two clusters, its height values are generally larger, but still
smaller than the range of heights for the complete linkage solution, which focuses on
the maximum distance between pairs of observations from two clusters.

Finally, cutting the dendrogram is done with the cutree() function by specifying
either the number of clusters k or the height h at which the dendrogram is to be cut.
The function returns a vector with the cluster membership for each observation.

Cut by number of groups/clusters
cutree(hc.complete, k=4)
Cut by height (distance)
cutree(hc.complete, h=6)

Hands-On Exercise

The Boston dataset in the ISLR2 library describes house prices in the differ-
ent suburbs of Boston. Use Hierarchical Clustering to identify sets of similar
suburbs using only the numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs.

2. Examine the dendrograms and identify which combination of distance
metric and linkage function gives you the ”best” solution. Define ”best”
and justify your decision.

3. How many clusters k would you choose?
4. Using this value for k, perform a k-means Clustering and compare the

results. Remember that k-means clustering uses the Euclidean distance.

11.5. REVIEW QUESTIONS 363

Hands-On Exercise

The Hitters dataset in the ISLR2 library contains the salary of 322 baseball
players and season statistics. Use Hierarchical Clustering to identify sets of
similar players, using only the numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs and make sure you scale the data.

2. Examine the dendrograms and identify which combination of distance
metric and linkage function gives you the ”best” solution. Define ”best”
and justify your decision.

3. How many clusters k would you choose?
4. Using this value for k, perform a k-means clustering and compare the

results. Remember that k-means clustering uses the Euclidean distance.

Hands-On Exercise

The Auto dataset in the ISLR2 library contains information on 392 vehicles.
Use Hierarchical Clustering to identify sets of similar vehicles, using only the
numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs.

2. Examine the dendrograms and identify which combination of distance
metric and linkage function gives you the ”best” solution. Define ”best”
and justify your decision.

3. How many clusters k would you choose?
4. Using this value for k, perform a k-means Clustering and compare the

results. Remember that k-means clustering uses the Euclidean distance.

11.5 Review Questions

Principal Components Analysis

1. Explain how unsupervised machine learning differs from supervised machine
learning in terms of data requirements and outcomes.

2. What are the main goals of Principal Component Analysis (PCA) in data analy-
sis?

3. Explain the concept of "variance" in the context of PCA. Why is maximizing
variance an important objective?

4. How can PCA be used to simplify a complex dataset? Give an example based on
a hypothetical dataset.

5. How can PCA contribute to improving the interpretability of complex models?

364CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

6. Describe the process of calculating the first principal component in PCA. What
role do the loading vectors play? What optimization problem does PCA solve?

7. How does one interpret the loadings of a principal component and what do they
signify about the variables involved?

8. Discuss the importance of scaling input variables before performing PCA. What
could potentially happen if the variables are not scaled?

9. Describe the relationship between eigenvalues and the variance explained by the
principal components. How does one interpret these eigenvalues in practical
terms?

10. Provide several criteria that could be used to decide how many principal compo-
nents to retain in an analysis.

11. Discuss the relevance of the ”scree plot” in determining the number of principal
components to retain. What does an inflection point in the scree plot typically
indicate?

12. Explain how the biplot can be used to visualize both the principal components
and the original variables. What insights can one gain from such a visualization?

13. Explain how PCA can be used as a feature extraction technique in machine learn-
ing models.

K-Means Clustering

14. Define clustering in the context of unsupervised machine learning and explain
its main purpose.

15. Compare and contrast the goals of principal component analysis (PCA) and clus-
tering.

16. What are centroid-based clustering and hierarchical clustering? Provide exam-
ples of each.

17. Describe the k-means clustering algorithm. What objective does it aim to achieve?
18. Explain the concept of within-cluster variation in the context of k-means cluster-

ing.
19. What are the implications of variable scales on the performance of the k-means

clustering algorithm? Why might scaling be necessary?
20. Illustrate the iterative process of the k-means clustering algorithm. What happens

in each step?
21. Explain why the initial random assignment of observations to clusters can affect

the final clustering solution in k-means.
22. Discuss the importance of running the k-means algorithm multiple times. How

does this practice influence the reliability of the clustering results?
23. What are the computational complexities of k-means and hierarchical clustering?

How do these affect their scalability to large datasets?
24. Discuss the limitations of k-means clustering and possible scenarios where it

might not perform well.

Hierarchical Clustering

25. Describe a scenario in which hierarchical clustering would be more beneficial

11.5. REVIEW QUESTIONS 365

than k-means clustering. Consider aspects such as data structure and analysis
goals.

26. Describe hierarchical clustering and differentiate between agglomerative and di-
visive clustering.

27. Explain the initial steps in an agglomerative clustering process. How does it
begin, and what happens in the initial stages?

28. Define a dendrogram and explain how it is used in hierarchical clustering.
29. Discuss the significance of distance measures in hierarchical clustering. How do

they affect the clustering process?
30. How might the concept of distance be adapted when clustering categorical data

using hierarchical methods?
31. What are the different types of linkage methods in hierarchical clustering? De-

scribe at least three and explain how they influence the clustering results.
32. Provide an overview of common distance metrics used in agglomerative cluster-

ing. How might the choice of distance metric influence the outcome of cluster-
ing?

33. Explain the process of creating a dendrogram and interpreting its structure in the
context of hierarchical clustering.

34. Explore the relationship between the number of observations and the interpretabil-
ity of the dendrogram in hierarchical clustering. How does increasing the number
of observations affect the clarity and usefulness of the dendrogram?

35. Explain the concept of ”cutting the tree” in hierarchical clustering. How does
this process determine the number of clusters?

36. Discuss how the choice of linkage method might impact the sensitivity of hier-
archical clustering to outliers and noise in the dataset.

37. How does the analyst decide on the number of clusters in hierarchical clustering?
What factors might influence this decision?

38. Consider the distance metrics shown in Table 11.2. Which metric would be most
appropriate for clustering data with extreme outliers and why?

39. Explain why it might be necessary to standardize variables before performing
hierarchical clustering.

40. Evaluate the computational complexity of hierarchical clustering. How does this
complexity influence the scalability of the method to large datasets?

366CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

Chapter 12

Time Series Analysis

Learning Goals

After reading this chapter, you should be able to:

• Explain different statistical models for time series data and create time series for
each model.

• Perform basic operations on time series data.

• Perform time series smoothing using different smoothing methods.

• Understand the importance of stationarity for time series analysis and how to
assess time series data for stationarity.

• Address non-stationary time series data using differencing and detrending.

• Explain the different components of an ARIMA model and fit an ARIMA model
to time series data and evaluate its fit.

• Use the ACF and PACF to select the appropriate ARIMA model.

• Explain GARCH models and fit a GARCH model to time series data.

Sources and Further Reading

The material in this chapter is based on the following sources. Consult them for addi-
tional information and details.

367

368 CHAPTER 12. TIME SERIES ANALYSIS

Robert H. Shumway and David S. Stoffer (2017) Time Series Analysis and Its
Applications, 4th Edition. Springer.

https://www.stat.pitt.edu/stoffer/tsa4/

The book by Shumway and Stoffer provides a very comprehensive but also somewhat
technical introduction to the subject of time series analysis. The authors have also
published the astsa library for R to accompany their book. This library provides a
number of data sets and functions for time series analysis.

Rob J. Hyndman and George Athanasopoulos (2018) Forecasting: Principles
and Practice, 2nd edition. OTexts.

https://otexts.com/fpp2/

The book by Hyndman and Athanasopoulos is somewhat less technical in nature than
the book by Shumway and Stoffer and also provides R code. The coverage of the two
books also differs somewhat, but it this more accessible than Shumway and Stoffer for
undergraduate students.

In addition to these books, there are a number of very useful tutorials available on the
internet that can augment or summarize the material in the books. They are less focused
on theory and more focused on actually performing time series analysis.

• https://github.com/nickpoison/tsa4
• https://a-little-book-of-r-for-time-series.
readthedocs.io/en/latest/src/timeseries.html

• https://rc2e.com/timeseriesanalysis
• https://atsa-es.github.io/atsa-labs/chap-tslab.
html

12.1 Introduction
This section provides an introduction to time series analysis. Time series analysis is
a complex topic with a multitude of different methods and techniques and this section
can provide only a glimpse at the basic ideas and concepts.

Time series analysis is a set of statistical techniques that involve analyzing time-ordered
data points or observations to extract meaningful statistics and other characteristics.
This type of analysis is important across various fields such as economics, where it
may be used to model unemployment rates, finance, where it may be used to model
stock prices, social science, where it may be used to model high school graduation

https://www.stat.pitt.edu/stoffer/tsa4/
https://otexts.com/fpp2/
https://github.com/nickpoison/tsa4
https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
https://rc2e.com/timeseriesanalysis
https://atsa-es.github.io/atsa-labs/chap-tslab.html
https://atsa-es.github.io/atsa-labs/chap-tslab.html

12.1. INTRODUCTION 369

rates, natural sciences, where it may be used to model weather and climate trends,
ecology, where it could be used to model animal population numbers, or epidemiology
where it may be used to model the spread of epidemics. Understanding trends, cycles,
and patterns over time can lead to useful insights and informed decision-making. Fig-
ure 12.1 shows an example of a basic time series of the quarterly earnings per share of
a company.

At its core, a time series is a sequence of data points recorded at successive time inter-
vals. The data is typically collected at uniform intervals – be it hourly, daily, monthly,
or yearly. Time series analysis helps in understanding the inherent structure and func-
tions that generate the series. It aims to model the underlying context of the data,
whether to understand the past behavior or to forecast future values.

The analysis of time series can be divided broadly into two types: descriptive and infer-
ential. Descriptive analysis focuses on visualizing and summarizing the main features
of the data, such as trends (long-term direction), seasonality (regular pattern of fluc-
tuation within a year), and irregular components (unpredictable, random fluctuations).
Inferential analysis, on the other hand, involves using models to predict future values
based on known past values, testing hypotheses, and deriving estimates of population
parameters.

In time series analysis, two fundamental approaches to examining data are the time-
domain and the frequency-domain approaches. The time-domain approach analyzes
data as it evolves over time, focusing on the relationship between current and past val-
ues to predict future values. This approach is primarily concerned with understanding
and modeling the temporal sequence directly in the time dimension. This approach
is particularly useful for forecasting, where understanding how values are correlated
through time is essential. It provides direct and often simple models that are inter-
pretable in terms of the original time series data.

The frequency-domain approach, on the other hand, analyzes data based on the rate at
which the data’s features repeat over time. This approach transforms the time series
data into the frequency domain using mathematical transformations (the most common

Time

Q
ua

rt
er

ly
 E

ar
ni

ng
s

pe
r

S
ha

re

1960 1965 1970 1975 1980

0

5

10

15

Figure 12.1: Example of time series data

370 CHAPTER 12. TIME SERIES ANALYSIS

being the Fourier Transform). It decomposes the time series into a combination of
sinusoid functions with different frequencies and amplitudes. The frequency-domain
approach is useful for identifying hidden periodicities or cyclical behaviors in the data,
which may not be apparent in the time domain.

12.2 Time Series Statistical Models
Time series statistical models are essential tools used to analyze and forecast time-
dependent data. Four common models are the moving average (MA) model, the au-
toregressive (AR) model, the random walk with drift, and the signal in noise model.
Each model has different characteristics and applications, suited to different types of
time series data.

Moving Average Model

The Moving Average model is a fundamental time series model that expresses the cur-
rent value of the time series as a function of past errors or deviations, with the as-
sumption that these errors are white noise, that is, random. An example model is given
by:

vt =
1

3
(wt−1 + wt + wt+1)

where wt are the white noise error terms. In this example, all white noise terms are
weighted equally by 1/3.

MA models are particularly useful in smoothing out noise and forecasting when the
series exhibits a random behavior with no trend or seasonality.

The following R code block uses the filter function to generate the example model.
The filter operates on the white noise, extending to both sides of the current time
step, and creates a weighted sum of the closest three value in w, specified by the
mode=’convolution’ argument. The resulting plots are shown in Figure 12.2.

Random numbers as errors
w <- rnorm(500,0,1)
Moving average
v <- filter(w, sides=2, filter=c(1/3,1/3,1/3), method='convolution')
Plot timeseries
par(mfrow=c(2,1))
The astsa library contains the tsplot function
library(astsa)
tsplot(w, main="white noise", col=3, gg=T)
tsplot(v, ylim=c(-3,3), main="moving average", col=4, gg=T)

12.2. TIME SERIES STATISTICAL MODELS 371

0 100 200 300 400 500

−3

−2

−1

0

1

2

3

white noise

Time

w

moving average

Time

v

0 100 200 300 400 500

−3

−2

−1

0

1

2

3

Figure 12.2: Example white noise time series and its moving average

Autoregressive Model

The Autoregressive (AR) model is based on the concept that current values of a series
can be forecasted from previous values. An example model is:

xt = xt−1 − 0.9xt−2 + wt

where wt is white noise.

AR models are widely used in economic and financial time series where data points are
influenced significantly by their previous values.

The following R code uses the filter function in ”recursive” mode with parameters
1 and -.9 to create the time series corresponding to the example model1. The resulting
plot is shown in Figure 12.3.

Random numbers (errors)
w <- rnorm(550,0,1)
remove first 50 values for startup

1The R code for this and following examples are based on material Shumway & Stoffer

372 CHAPTER 12. TIME SERIES ANALYSIS

0 100 200 300 400 500
−8

−6

−4

−2

0

2

4

6

autoregression

Time

x

Figure 12.3: Example autoregressive time series

x <- filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
tsplot(x, main="autoregression", col=4, gg=T)

Random Walk with Drift

A random walk with drift adds a constant to the standard random walk, allowing the
series to drift upwards or downwards over time. An example model is given by:

xt = δ + xt−1 + wt

= δt+

t∑
j=1

wj

where δ represents the drift (constant term), and wt is the noise component.

This model is commonly applied in financial markets to model stock prices or other
investments, reflecting that prices are serially correlated and can trend over time.

The following R code block uses the the cumsum() function to calculate the cumu-
lative sum. The resulting time series are shown in Figure 12.4 and show the random
walk and the drift component that is added to it.

12.2. TIME SERIES STATISTICAL MODELS 373

0 50 100 150 200

−10

0

10

20

30

40

50

random walk

Time

Figure 12.4: Example random walk with drift time series

Create random walk (white noise) model and then add drift
w <- rnorm(200)
x <- cumsum(w)
drift <- .2
w.drift <- w + drift;
x.drift <- cumsum(w.drift)
Plot the two resulting series
tsplot(x.drift, ylim=c(-10,55), main="random walk",ylab='',col=3,gg=T)
abline(a=0, b=drift, lty=2, col=3)
lines(x, col=4)
abline(h=0, col=4, lty=2)

Signal in Noise Model

The Signal in noise model views the time series as a combination of a true signal
and random noise. An example model with a sinusoidal signal characterized by its
amplitude, frequency and phase shift is:

xt = A cos(2πωt+ ϕ)

for example,

A = 2 amplitude
ω = 1/50 frequency
ϕ = .6π phase shift

This model is fundamental in signal processing and is used to understand underlying
trends in the presence of noisy observations. Techniques like filtering and smoothing
are often applied to extract the signal from xt.

374 CHAPTER 12. TIME SERIES ANALYSIS

0 100 200 300 400 500

−2

−1

0

1

2

Signal

Time
cs

0 100 200 300 400 500

−4

−2

0

2

4

Signal and N(0,1) noise

Time

cs
 +

 w

0 100 200 300 400 500

−15

−10

−5

0

5

10

15

Signal and N(0,25) noise

Time

cs
 +

 5
 *

 w

Figure 12.5: Example signal in noise time series

The following R code block creates a sinusoidal signal and overlays it with different
amounts of white (Gaussian) noise. The resulting time series are shown in Figure 12.5.

Create signal
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
Overlay with gaussian noise and plot
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
tsplot(cs, main='Signal', col=2, gg=T)
tsplot(cs+w, main='Signal and N(0,1) noise', col=3, gg=T)
tsplot(cs+5*w, main='Signal and N(0,25) noise', col=4, gg=T)

12.3 Basic Time Series Operations in R
A time series can be constructed from an ordinary data set using the ts() function
in R and supplying a start time stamp and a sampling frequency. For example, the
following R code creates a time series of montly observations, beginning in January
2020 with the values 1 through 24. R will try to sensibly interpret the start and
frequency arguments: Frequencies of 4 are interpreted as quarters of the year, 7 is
interpreted as days of a week, 12 is interpreted as months of the year.

12.3. BASIC TIME SERIES OPERATIONS IN R 375

Creating a time series object with monthly data
ts_data <- ts(1:24, frequency = 12, start = c(2020, 1))

To see the first and last last observations of a time series, use the head() and tail()
functions:

head(ts_data)
tail(ts_data)

Missing values in a time series cannot be imputed in the usual manner because the
observations are not independent of each other. Two simple ways of ”filling in” missing
data are either to simply carry the last observation forward, which assumes there are
negligible changes in the value over time, or to interpolate the missing values. In linear
interpolation, a line is imagined between the last observation before a series of missing
values and the first observation after such a series of missing values. Missing values
are then assumed to be on that line. This assumes that the time series is approximately
linear, at least for short gaps.

The zoo library for R contains the functions na.locf() and na.approx() that
implement these methods of handling missing values. Missing values at the beginning
or end of a time series can be removed with the na.trim() function. The following
R code block illustrates the use of all three functions:

Introduce NA values into the time series
ts_data[c(5, 10, 15)] <- NA

Using na.trim to remove leading/trailing NA values
trimmed_ts <- na.trim(ts_data)
Using na.locf (Last Observation Carried Forward) to handle NA values
locf_ts <- na.locf(ts_data)
Using na.approx to interpolate NA values
approx_ts <- na.approx(ts_data)

Two time series can be combined using the ts.intersect() or ts.union()
functions. The former function combines the series only for overlapping, that is, inter-
secting, times, possibly cutting off the head or tail of one or the other series. The latter
function retains all dates of both series and ”pads” the head or tail of one or the other
series with ”NA” values.

376 CHAPTER 12. TIME SERIES ANALYSIS

Creating another time series
ts_data2 <- ts(c(1:24), frequency = 12, start = c(2020, 7))

Using ts.intersect to determine intersection of two time series
intersect_ts <- ts.intersect(ts_data, ts_data2)
Using ts.union to determin union of two time series
union_ts <- ts.union(ts_data, ts_data2)

An important operation in time series analysis is to ”lag” a time series, that is, to shift
it forwards or backwards in time. R provides the lag() function for this purpose.
A positive argument shifts the time series backwards by the specified number of time
periods, while a negative argument shifts it forward:

Positive k shifts backwards in time
lag_ts <- lag(ts_data, 2)
Negative k shifts forwards in time
lag_ts <- lag(ts_data, 3)

12.4 Smoothing a Time Series
Time series smoothing is a technique used to remove noise and reveal signals or under-
lying trends in the data. Four commonly used methods for time series smoothing are
moving average, kernel smoothing, lowess regression, and smoothing splines.

Moving Average Smoothing

Moving average smoothing is one of the simplest and most widely used methods for
smoothing time series data. It involves calculating the weighted mean of the consecu-
tive data points within a specified window that moves along with the data:

mt =

k∑
j=−k

ajxt−j where
k∑

j=−k

aj = 1

where a are the weights that sum to one. A simple filter uses uniform weights, but
other shapes are possible.

This model can be implemented using the filter function in R. The filter in the
example below is two-sided and is centered on the current time stamp, that is, it uses
data before and after the current time point. When the sides=1 argument is used,
the filter is over past values only. The filter argument specifies the weights for the
moving average. The results for an example time series are shown in Figure 12.6.

12.4. SMOOTHING A TIME SERIES 377

Time

so
i

1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

Figure 12.6: Moving average smoothing

Use the soi dataset from the astsa library as an example
library(astsa)
?soi
Apply moving average filter
f = 1/12 * c(0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5)
filter(soi, sides=2, filter=f, method='convolution')

Kernel Smoothing or Kernel Regression

Instead of a filter with simple weights as in moving average smoothing, kernel smooth-
ing uses a weighted average of neighbouring points where the weights are determined
by a function known as the kernel. A common choice is a Gaussian kernel that uses
the normal distribution density function, which produces a weighted average with a
bell-shaped curve of weights around each data point. The weights for averaging the
time series values are determined as follows:

ai(t) =
K
(
t−i
b

)∑n
j=1K

(
t−j
b

)
where K is the Gaussian kernel:

K(z) =
1√
2π

exp
(
−z2/2

)
Here, b is the ”bandwidth” of the kernel, that determines the shape of the kernel func-
tion, that is, how ”wide” or ”broad” it is.

The smoothed time series st is then given by:

378 CHAPTER 12. TIME SERIES ANALYSIS

Time

so
i

1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

Figure 12.7: Kernel density smoothing with different kernel bandwidths

st =

n∑
i=1

ai(t)xt

=

∑n
i=1K

(
t−i
b

)
xt∑n

j=1K
(
t−j
b

)
The R function ksmooth() with the normal kernel argument provides exponential
smoothing. The bandwidth parameter determines the ”width” of the kernel by spec-
ifying the distance from the quartiles to the mean of the normal distribution function.
Example smoothing results for various bandwidth values are shown in Figure 12.7.

Apply gaussian kernel smoothing
ksmooth(time(soi), soi, kernel='normal', bandwidth=1)

Lowess Regression

Lowess Regression (locally weighted scatterplot smoothing) combines a multiple re-
gression model with a k-nearest-neighbour-based model. Each point on the smoothed
time series is estimated by a weighted least squares regression over a local neighbour-
hood of f observations that are closest in time to the target point. The weights decrease
with distance from the target observation, thereby providing robustness against outliers
and yielding a smooth curve that closely follows the data.

The R function lowess() uses the f parameter for specifying the proportion of ob-
servations used for the regressions. An example result is shown in Figure 12.8.

Apply lowess smoothing
lowess(soi, f=0.1)

12.4. SMOOTHING A TIME SERIES 379

Time

so
i

1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

Figure 12.8: Lowess regression smoothing example

Smoothing Splines

Smoothing splines are a method that fits a smooth, flexible ”spline” function to the
data. Smoothing splines balance the fit of the spline to the data against the smoothness
of the spline curve and are essentially penalized polynomial regression models that fit
the model:

mt = β0 + β1t+ β2t
2 + β3t

3

by minimizing the loss function

n∑
t=1

(xt −mt)
2 + λ

∫ (
d2m

dt2

)2

dt

The smooth.spline() function uses cubic splines, that is polynomials of degree
3. The smoothing parameter spar controls the regression penalty λ in the equation
above and thereby the degree of smoothing. The result for this example is shown in
Figure 12.9.

Apply smoothing splines
smooth.spline(time(soi), soi, spar=0.5)

380 CHAPTER 12. TIME SERIES ANALYSIS

Time

so
i

1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

Figure 12.9: Smoothing spline example

Hands-On Exercise

1. Generate 100 observations from the autoregression model xt =
−.9xt−2 + wt with σ2

w = 1
(a) Smooth the time series using a moving average filter vt = (xt +

xt−1+xt−2+xt−3)/4, plot xt as a line and superimpose vt. Com-
ment on the behaviour of xt and how applying the moving average
filter changes that behavior

(b) Smooth the time series using kernel smoothing, produce plots as
above, and experiment with different kernel bandwidths. Comment
on the behvaiour of the smoothed series.

(c) Smooth the time series using Lowess, produce plots as above, and
experiment with different values for the fraction of observations to
include in each regression. How does the smoothed series change
as you vary that fraction?

(d) Smooth the time series using smoothing splines, produce plots
as above, and experiment with different values for the smooth-
ing parameter that controls the regression penalty. How does the
smoothed series change as you vary that parameter?

2. Generate 100 observations from the sinusoidal series xt = cos(2πt/4)
and add N(0, 1) noise. Repeat the four smoothing exercises. Compare
and contrast the results of these exercises. Which smoothing is more
appropriate for which type of time series data?

12.5 Time Series Regression

Time series regression refers to using time series data in ordinary least squares regres-
sion. The focus is not necessarily on modeling data series over time or describing the
future values of a time series as a function of earlier values, although lagged time series

12.5. TIME SERIES REGRESSION 381

Time

1970 1972 1974 1976 1978 1980

20
60

10
0

Figure 12.10: Three time series

can certainly be used in time series regression. Instead, time series regression predicts
the value of one time series from one or more other time series.

Consider an epidemiological example with three weekly time series, one express-
ing cardiovascular mortality (”cmort”, the likelihood of dying of heart attack), an-
other describing ambient temperature (”tempr”) and a third one describing air pollution
(”part”). Figure 12.10 shows these three time series superimposed in one graph. Visual
inspection of the graph suggests that mortality may be correlated with temperature and
air pollution.

Time series regression uses ordinary least squares (OLS) regression models where each
series is a predictor variable. It essentially neglects the time aspect of the time series
data. The following R code block shows examples of time series regression to predict
or explain mortality. Note the use of the time() function extract the timestamps from
the time series data.

Use data from the astsa library
library(astsa)
Plot the three time series
ts.plot(cmort, tempr, part, col=2:4)
Center the temperature variable
temp = tempr - mean(tempr)
Square the temperature variable
temp.2 = temp^2
Fit different linear models and provide summaries
summary(lm(cmort ~ time(cmort)))
summary(lm(cmort ~ time(cmort) + temp))
summary(lm(cmort ~ time(cmort) + temp + temp.2))
summary(lm(cmort ~ time(cmort) + temp + temp.2 + part))

Time series regression can also use lagged time series data, that is, data of the same
series that is shifted backward in time. This is somewhat similar to the autoregressive

382 CHAPTER 12. TIME SERIES ANALYSIS

models defined below. The following R code block lags the temeratur by two weeks
and by four weeks. It then uses ts.intersect() to combine the time series in a
data frame for the times where they intersect. The data frame is then be used in an OLS
regression; different models could be fitted to identify the best explanation of mortality.

Lag the temperature
temp.l.2 = lag(temp, 2)
temp.l.4 = lag(temp, 4)
Intersect all time series to omit leading/trailing NA
temp.df <- ts.intersect(cmort, time(cmort), part,

temp, temp.2, temp.l.2, temp.l.4, dframe=TRUE)
Fit the linear model including lagged temperature
summary(lm(cmort ~ time.cmort. + temp + temp.2 +

temp.l.2 + temp.l.4 + part, data=temp.df))

12.6 Stationarity
The concept of stationarity is central to time series analysis. Stationarity means that
the statistical characteristics of a time series do not change over time. That is, its mean,
variance, and autocorrelation (the correlation of a time series with a lagged copy of
itself) remain constant over time. Understanding and ensuring stationarity in a time
series is important for the effective application of many statistical forecasting methods
and models.

Stationary data with a constant mean and variance is more predictable and therefore
easier to model. Changes in mean and variance can lead to forecasts that are biased or
that degrade in accuracy over time. Stationarity ensures that the properties of the series
used to generate forecasts will be similar in the future, which is crucial for planning
and decision-making. If a time series is non-stationary, the behavior of the data could
change over time, leading to models that are invalid or inaccurate when applied to
future data points.

Statistical inference in time series analysis relies heavily on the assumption of sta-
tionarity. Many time series statistical models, including linear regression and ARMA
models, are based on the assumption of stationarity. These models provide meaningful
and reliable results only if the stationarity assumption is satisfied.

Strict stationarity is defined as the requirement that the probabilistic behaviour of every
set of values of the series

{xt1, xt2, . . . , xtk}
is identical to that of the set of values shifted by time h:

{xt1+h, xt2+h, . . . , xtk+h}
That is,

Pr{xt1 ≤ c1, . . . , xtk ≤ ck} = Pr{xt1+h ≤ c1, . . . , xtk+h ≤ ck}

12.6. STATIONARITY 383

Because strong stationarity is hard to test, a more commonly used and practical form
of stationarity is weak stationarity, which requires only that the the mean, variance,
and the autocovariance (the covariance of the series with a lagged version itself) are
constant over time. Most statistical tests and models assume weak stationarity. In
summary, a weakly stationary time series is a finite variance process such that:

1. The mean and variance are constant and do not depend on time: µt = µ, σt = σ

2. The autocovariance γ depends on s and t only through their difference h =
|s− t|.

Let s = t+ h, then under the assumption of weak stationarity:

γ(s, t) = γ(t+ h, t) (because of condition 2)
= cov(xt+h, xt) (because of condition 1)
= cov(xh, x0) = γ(h) (autocovariance for lag h)

and

ρ(h) = γ(h)/γ(0) (autocorrelation for lag h)

The autocovariance and autocorrelations are measures of dependence of the time se-
ries on lagged versions of itself. For a weakly stationary time series, the theoretical
autocovariance for a lag h is defined as the covariance between two points t, t + h on
time series x

γ(h) = cov(x, xt+h) = E[(xt − µ)(xt+h − µ)]

Note that this definition implies weak stationarity because a constant term for the mean
µ is used in the expectation on the right-hand side.

A large autocovariance indicates a ”smooth” time series, as each future value is strongly
dependent on the previous value(s). In contrast, a small autocovariance indicates the
”choppy” time series, as there is less dependence on prior values and values of the time
series are less constrained and allowed to vary more.

The sample autocovariance that can be estimated from a finite sample for lag h is
defined as

γ̂(h) =
1

n

n−h∑
t=1

(xt − x̄)(xt+h − x̄)

The autocorrelation function (ACF) for lag h is defined as usual as the autocovariance
divided by the root of the product of the variances of the two time series:

384 CHAPTER 12. TIME SERIES ANALYSIS

ρx(h) =
γ(t+ h, t)√

γ(t+ h, t+ h)γ(t, t)
=
γ(h)

γ(0)
(weak stationarity)

Note that this assumes weak stationarity. The time series properties at any time t are
the same as at time 0 so that the above equation can be reduced to the right-most term.

Similar to the sample autocovariance, the sample ACF for lag h is defined as

ρ̂x(h) =
γ̂(h)√
γ̂(h)γ̂(0)

=
γ̂(h)

γ̂(0)
(weak stationarity)

where the last step again assumes weak stationarity.

To test whether the ACF of any sequence for lag h is statistically different from 0,
note that the large-sample distribution of ρ̂x(h) is normal with mean 0 and standard
deviation

σρ̂x
= 1/

√
n

if the generating processes is independent white noise. Hence, the approximate 95%
confidence interval on the ACF is

− 1

n
± 2√

n

If the sample ACF of n values of a time series for a given lag exceeds the lower or
upper bounds of the confidence interval, the ACF is statistically significantly different
from 0, and the time series is unlikely to be white noise.

The following R code block illustrates the autocorrelation function using the standard
cor() function to compute the correlations at different lags and the acf1() func-
tion of the astsa library that will automatically lag the time series and output and
optionally plot the ACF values at different lags, creating a plot as in Figure 12.11.

library(astsa)
Create Gaussian white noise
t <- ts(rnorm(500))
The hard way:
cor(ts.intersect(t, lag(t,1), dframe=T))
cor(ts.intersect(t, lag(t,2), dframe=T))
etc.
The easy way:
Without plot
acf <- acf1(t, plot=FALSE)
With plot
acf1(t, gg=T, col=7, lwd=3)

12.6. STATIONARITY 385

0 5 10 15 20 25 30

−0.1

0.0

0.1

0.2

Series: t

LAG

A
C

F

Figure 12.11: ACF of Gaussian white noise

The following example in R uses the soi data set and the lag1.plot() from the
astsa library to provide also a graphical display of the autocorrelations at various
lags, as shown in Figure 12.12.

library(astsa)
Compute and plot the ACF for different lags
acf1(soi, gg=T, co=3, lwd=2)
Scatterplot of original versus or lags up to 6, with ACF values
lag1.plot(soi, max.lag = 6, gg=T, col=4, lwl=3)

The partial autocorrelation function (PACF) of a time series is a measure of the corre-
lation between observations at two points in time, accounting for the correlations of the
observations at all shorter intervals. Essentially, it reflects the direct effect of past data
points on the future data point, after removing the effects of intermediate data points.
PACF can be thought of as the correlation between a variable and its lag h that is not
explained by correlations at all lower-order lags. It is formally defined as the correla-
tion between xt+h and xt with the linear dependence of {xt+1, . . . , xt+h−1} on each
removed:

ϕhh =

{
ρ(1) h = 1

corr(xt+h − x̂t+h, xt − x̂t) h ≥ 2

The following R code block illustrates the use of the partial autocorrelation function
of a time series, first using the standard cor() function for a lag of 3 and then the
acf1() function of the astsa library that automatically computes the PACF for
different lags.

386 CHAPTER 12. TIME SERIES ANALYSIS

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−1)

so
i(t

)

0.60

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−2)

so
i(t

)

0.37

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−3)

so
i(t

)

0.21

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−4)

so
i(t

)

0.05

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−5)

so
i(t

)

−0.11

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

soi(t−6)

so
i(t

)

−0.19

Figure 12.12: Autocorrelations at six different lags

t <- ts(rnorm(500))
The hard way
Shift the series to create lagged versions
t1 <- lag(t, 1)
t2 <- lag(t, 2)
t3 <- lag(t, 3)
data <- ts.intersect(t, t1, t2, t3, dframe=T)

Using linear models to adjust for intervening lags
model_lag1 <- lm(t ~ t1 + t2, data)
model_lag2 <- lm(t1 ~ t2, data)
Residuals for lag 3
residuals_lag1 <- residuals(model_lag1)
residuals_lag2 <- residuals(model_lag2)
final_model <- lm(residuals_lag1 ~ residuals_lag2)
Correlation between residuals and lag 3 data
pacf_lag3 <- cor(residuals(final_model), data$t3)

The easy way
acf1(t, plot=F, pacf=T)

12.7. DEALING WITH NON-STATIONARITY 387

12.7 Dealing with Non-Stationarity

When a time series is non-stationary, it can often be transformed into a stationary se-
ries through techniques such as logarithmic or square root transformations, detrending,
and differencing. These transformations can stabilize the mean and reduce variance
dependency over time.

Transformations

Popular time series transformations are the log transformation, the square root trans-
formation and the Box-Cox power transformation, defined as follows:

yt = log xt Log transformation
yt =

√
xt Square root transformation

yt =

{
(xλt − 1)/λ λ ̸= 0

log xt λ = 0
Box-Cox power transformation

Detrending

Detrending a time series involves removing the trend component from the data, thereby
isolating the non-trend components such as seasonality and irregular fluctuations. This
is particularly useful in time series analysis because many statistical methods assume
stationarity (constant mean and variance), and a trend violates these assumptions.

A common detrending method is to fit a regression model to the trend component
and then subtract the fitted values, that is, the trend, from the original series. Linear
regression is widely used for linear trends, but polynomial or more complex models
can be fitted depending on the nature of the trend.

For example, assume that

xt = µt + yt

where µt is the trend and yt a stationary series. Then detrending comprises the follow-
ing two steps:

1. Estimate trend, e.g. with a linear model such as µt = β0 + β1t

2. Work with residuals, e.g. ŷt = xt − µ̂t = xt − β̂0 − β̂1t

The following R code block shows how to detrend a time series using linear regression,
producing the graphs shown in Figure 12.13.

388 CHAPTER 12. TIME SERIES ANALYSIS

original

Time

t

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

−20

−10

0

10

20

detrend

Time

de
tr

en
de

d_
se

rie
s

Figure 12.13: Time series and detrended time series

Simulate a time series with a linear trend
t <- ts(1:100 + rnorm(100) * 10)

Fit a linear model to the time series
trend_model <- lm(t ~ time(t))
Calculate detrended series by subtracting the estimated trend
detrended_series <- residuals(trend_model)

Plot original and detrended
par(mfrow=c(2,1))
tsplot(t, type="l", main="original",col=3,gg=T)
tsplot(detrended_series, type="l", main="detrend",col=2,gg=T)

Differencing

Differencing involves computing the differences between consecutive observations in
the original time series. The primary goal of differencing is to remove trends and
seasonality in order to stabilize the mean of the time series by reducing changes in the
level of a time series over time. Assume again that

xt = µt + yt

where µt is the trend and yt a stationary series. Differencing models the trend stochas-
tically as a random walk with drift:

12.7. DEALING WITH NON-STATIONARITY 389

original

Time

t

0 20 40 60 80 100

−2

0

2

4

6

8

first difference

Time

fir
st

_d
iff

0 20 40 60 80 100

−3

−2

−1

0

1

2

second difference

Time

se
co

nd
_d

iff

0 20 40 60 80 100

−2

0

2

4

Figure 12.14: Original, first and second differences of a simulated time series

µt = δ + µt−1 + wt

where wt is white noise. Differencing then yields

xt − xt−1 = (µt + yt)− (µt−1 + yt−1)

= δ + wt + yt − yt−1

which is stationary.

As seen above, the first difference can remove a linear trend. However, sometimes
the first difference is not enough to achieve stationarity. In such cases, the second
difference can be used to remove a quadratic trend and higher-order differences can be
computed if the series still shows non-stationary behavior after the second differencing.

The following R code shows the effect of differencing on a simulated time series. Dif-
ferencing uses the diff() function. The resulting plots are shown in Figure 12.14.

390 CHAPTER 12. TIME SERIES ANALYSIS

Simulating a time series with trend
t <- ts(cumsum(rnorm(100))) # Cumulative sum of normal deviations

par(mfrow=c(3,1))
tsplot(t, type="l", main="original", col=3,gg=T)
First differencing
tsplot(diff(t, differences = 1), type="l",

main="first difference", col=4,gg=T)
Second differencing
tsplot(diff(t, differences = 2), type="l",

main="second difference", col=5,gg=T)

To see illustrate the effects of detrending and differencing on the ACF for a real time se-
ries, consider the chicken price data set chicken in the astsa library. Figure 12.15
shows the ACF for the original, the detrended, and the differenced series (first and
second differences). While the original time series is clearly non-stationary with large
ACF values (top left panel), the detrended series improves this somewhat, but still
shows large ACF (top right panel). First differencing reduces the ACF values and
shows a cyclical trend with a cycle of 6 months, with significant ACF values (bottom
left panel). The second difference in the bottom right panel of Figure 12.15 still shows
significant ACF values at the 6 month and 12 month lags but non-significant ACF for
most other lags.

acf1(chicken, max.lag=48, main="original", col=1, gg=T)
acf1(resid(fit), max.lag=48, main="detrend", col=2, gg=T)
acf1(diff(chicken), max.lag=48, main="first diff", col=3, gg=T)
acf1(diff(chicken, differences=2), max.lag=48,

main="sec diff", col=4, gg=T)

Hands-On Exercises

1. Extend the mortality, temperature and pollution/particulate model by
adding another component to the regression that accounts to the par-
ticulate four weeks prior; that is, add the lagged pressure Pt−4 to the
regression.

2. Draw a scatterplot matrix of of mortality Mt, temperate Tt, pressure
Pt and lagged pressure Pt−4, then calculate the pairwise correlations
between them. Compare the relationship between Mt and Pt versus Mt

and Pt−4

Source: Shumway & Stoffer, Chapter 2

12.7. DEALING WITH NON-STATIONARITY 391

0 1 2 3 4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

original

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

detrend

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

first diff

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.2

0.0

0.2

0.4

sec diff

LAG ÷ 12

A
C

F

Figure 12.15: ACF for detrended and differenced time series

Hands-On Exercises

1. Detrend the soi time series data by fitting a regression of St on time t.
Is there a significant trend in the surface pressure?

2. Use two different smoothing techniques to estimate the trend in the
global temperature series gtemp_both in the astsa library.

Source: Shumway & Stoffer, Chapter 2

Hands-On Exercise

Consider the two weekly time series oil and gas in the astsa library. The
oil series is in dollars per barrel, while the gas series in in cents per gallon.

1. Plot the data on the same graph. Do you believe the series are stationary?
2. Apply the transformation yt = ∇ log xt to the data for both series
3. Plot the transformed series on the same graph, and calculate the ACFs

for both series
4. Plot the CCF of the transformed series and comment.

Source: Shumway & Stoffer, Chapter 2

392 CHAPTER 12. TIME SERIES ANALYSIS

12.8 ARIMA Models
ARIMA models, which stands for Autoregressive Integrated Moving Average, are a
type of statistical models for analyzing and forecasting time series data. ARIMA is
particularly suited to time series data that show non-stationarities, such as trends and
seasonal patterns, and it has become a standard tool in econometrics, finance, and other
fields.

ARIMA models can be divided into the following model classes:

• AR: pure AutoRegressive models

• MA: pure Moving average models

• ARMA: model with AutoRegressive and Moving-Average terms

• ARIMA: AutoRegressive Integrated Moving-Average models (involves differ-
encing for non-stationary time series with trend)

To simplify working with ARIMA models, the difference operator∇ is defined as:

∇xt = xt − xt−1

Building on this definition, the Backshift operator or Lag Operator B is defined as:

Bxt = xt−1

Bk xt = xt−k

∇xt = (1− B)xt

∇2xt = (1− B)2xt

= (1− 2B+B2)xt

= xt − 2xt−1 + xt−2

∇d = (1− B)d

An autoregressive model of order p, denoted by AR(p), models the current value of
a time series as a linear combination of previous values. The number of lagged ob-
servations used in the model is denoted by the order p. The AR model captures the
regression of the time series on its previous values, which indicates persistence, or
memory, within the series. It is defined as:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + wt

12.8. ARIMA MODELS 393

5 10 15 20 25

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Series: t.ar

LAG

A
C

F

Figure 12.16: Simulated (blue) and theoretical (red) ACF of an AR(2) model

where wt is white noise and the ϕi are model parameters2.

The autoregressive operator ϕ(B) is defined using the backshift operator as:

ϕ(B) = 1− ϕ1B − ϕ2B2 − · · · − ϕpBp

=

1−
p∑

j=1

ϕjB
j

so that the AR(p) model becomes:

ϕ(B)xt = wt

The theoretical ACF of a given AR(p) model can be calculated analytically. In R, the
ARMAacf() function can be used for this by spacifying the autoregressive coefficients
ϕ. The following R code block simulates 200 observations of an AR(2) time series and
plots the simulated (blue) versus theoretical (red) ACF values, shown in Figure 12.16.
The theoretical values can be used to determine whether a specific time series conforms
to a particular AR(p) model. The ACF of an AR(p) model is characterized by a slow
decline of its values past a lag of p, as shown in Figure 12.16.

Theoretical ACF of an AR(2) model
ARMAacf(ar=c(1.5, -.75), lag.max=10)
Simulate an ARIMA(2,0,0) model with those AR coefficients
t.ar = arima.sim(list(ar=c(1.5, -.75)), n=200)
Compute and plot the ACF of the simulated series
acf1(t.ar, max.lag=25, gg=T, lwd=2, col=4)
Add the theoretical values for comparison
lines(ARMAacf(ar=c(1.5, -.75), lag.max=26)[-1], lwd=2, col=2)

A moving average model or order q, denoted by MA(q), models the current value of
the series as a linear combination of past forecast errors, which are computed as differ-
ences between past values and their respective forecasts. The parameter q specifies the

2In contrast to an ”ordinary” regression model, the xi are random effects, not fixed, because each xi has
an associated error term wt. This means that AR or ARIMA models in general are not estimated using OLS
because the OLS assumptions are not met. Instead, AR and ARIMA models are estimated using maximum-
likelihood or other methods.

394 CHAPTER 12. TIME SERIES ANALYSIS

number of lagged forecast errors in the prediction equation. The MA model is usefule
for capturing ”shock errors” in the model, providing a way to allow the model to adapt
to sudden changes in the series. It is defined as:

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

where wt are Gaussian errors and θi are model parameters.

The moving average operator θ(B) is defined using the backshift operator as:

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q

=

1 +

q∑
j=1

θiB
i

so that the MA(q) model becomes:

xt = θ(B)wt

The theoretical ACF of a given MA(q) model can be calculated analytically. In R, the
ARMAacf() function can be used for this, by specifying the moving average coef-
ficients θ. Similar to the previous example, the following R code simulates 200 ob-
servations of an MA(2) model and plots the simulated (blue) versus theoretical (red)
ACF values, shown in Figure 12.17. In contrast to an AR(2) model, the ACF does not
gradually diminish, but becomes 0 after lag q. The simulated values in Figure 12.17
confirm this as they are largely stastistically non-significant past a lag of 2.

Theoretical ACF of an MA(2) model
ARMAacf(ma=c(1.5, -.75), lag.max=10)
Simulate an ARIMA(0,0,2) model with those MA coefficients
t.ma = arima.sim(list(ma=c(1.5, -.75)), n=200)
Compute and plot the ACF of the simulated series
acf1(t.ma, gg=T, lwd=2, col=4)
Add the theoretical values for comparison
lines(ARMAacf(ma=c(1.5, -.75), lag.max=26)[-1], lwd=2, col=2)

An autoregressive moving-average model of order (p, q), denoted by ARMA(p,q), com-
bines both autoregressive and moving-average terms in the same model:

xt = α+ ϕ1xt−1 + · · ·+ ϕpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q

Using the AR and MA operators defined above, this model can be written as:

ϕ(B)xt = θ(B)wt

12.8. ARIMA MODELS 395

5 10 15 20 25

−0.1

0.0

0.1

0.2

0.3

Series: t.ma

LAG

A
C

F

Figure 12.17: Simulated (blue) and theoretical (red) ACF of an MA(2) model

It turns out that every ARMA model has an equivalent MA only model. However, this
equivalent MA model in theory has an inifinite number of MA terms. In practice, a
reasonable approximation can be achieved by retaining a limited number of MA terms.

Moreover, many ARMA models (the class of invertible ones) have an equivalent AR
models. Again, this equivalent model has an infinite number of AR terms and again, in
practice, reasonable approximations can be achieved by retaining a limited number of
AR terms.

Equivalent models can be found using the ARMAtoMA() and ARMAtoAR() func-
tions in the astsa library, which return the MA and AR coefficients of the equivalent
models, as shows in the following R code example:

library(astsa)
MA coefficients of equivalent MA models
ARMAtoMA(ar = c(1.5, -.75), lag.max=10)
ARMAtoMA(ar = c(-.5), ma = c(-.9), lag.max=10)
AR coefficients of equivalent AR models
ARMAtoAR(ma = c(1.5, -.75), lag.max=10)
ARMAtoAR(ar = c(-.5), ma = c(-.9), lag.max=10)

As shown in Figures 12.16 and 12.17, the ACF of AR and MA models behave dif-
ferently. Similarly, the PACF behaves differently for the two types of models. Fig-
ure 12.18 shows the ACF and the PACF for an AR(2) model. While the ACF dimin-
ishes gradually, the PACF is zero immediately after lag 2. These properties of the ACF
and PACF can be used to select a suitable statistical model to fit a given time series, as
shown in Table 12.1. When a AR gradually diminishes and the PACF cuts off suddenly
after a lag p, this is an indication that an AR(p) model is suitable. Conversely, when
the ACF cuts off suddenly after lag q and the PACF diminishes gradually, this is an in-
dication for an MA(q) model. When neither ACF nor PACF cut off suddenly, a mixed
ARMA(p, q) model should be fitted.

A full autoregressive integrated moving average ARIMA(p, d, q) model adds a differ-
encing term to the ARMA(p,q) model to achieve weak stationarity of the time series.

396 CHAPTER 12. TIME SERIES ANALYSIS

5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

lag

A
C

F

5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

lag

PA
C

F

Figure 12.18: ACF and PACF of an AR(2) model

AR(p) MA(q) ARMA (p, q)

ACF Tails off Cuts off after laq q Tails off

PACF Cuts off after lag p Tails off Tails off

Source: Shumway&Stoffer, Table 3.1

Table 12.1: Properties of the ACF and PACF for AR and MA models

The AR operator can be factorized by (1−B), so that:

ϕ(B) =

1−
p′∑

j=1

ϕjB
j

=

1−
p′−d∑
j=1

ϕjB
j

 (1−B)d

With p = p′ − d, the ARIMA(p,d,q) model is then:1−
p∑

j=1

ϕjB
j

 (1−B)dxt =

1 +

q∑
j=1

θjB
j

wt

This can be generalized to:1−
p∑

j=1

ϕjB
j

 (1−B)dxt = δ +

1 +

q∑
j=1

θjB
j

wt

12.9 Fitting an ARIMA Model
Fitting an ARIMA model to time series data involves the following steps, from initial
data analysis and transformation to final model selection:

12.9. FITTING AN ARIMA MODEL 397

1. Plot the data

2. Possibly transform the data

3. Assess stationarity

4. Possibly difference the data

5. Identify the dependence orders (p, q) of the model

6. Estimate parameters

7. Model diagnostics

8. Model selection

Plotting the data is useful as an initial visual assessment of stationarity, trends, or sea-
sonality. A number of transformations have been discussed earlier that may be useful
to ”stabilize” a time series. If the series after transformation is still not stationary,
differencing can remove trends and seasonal components. Determining the order of
differencing needed to achieve stationarity is often done by trial and error, reassess-
ing stationarity after each difference. A slow decay in the sample ACF ρ̂(h) typically
indicates a need for differencing. However, over-differencing can introduce depen-
dence where non actually exists. Typically, differencing should be done in small steps,
beginning with a first difference, and then repeatedly checked with the ACF.

Identifying the initial ARMA order p and q should be done based on the ACF and
PACF functions, using Table 12.1 as a basis. Often, multiple model may need to be
tried, altering the AR and MA orders p and q in small steps.

The following R code example uses a quarterly time series of the US gross national
product (gnp) from the astsa library as an example. The acf2() function of the
astsa library produces simultaneous plots of ACF and PACF for ease-of-use. The
time series is then log-transformed and differenced once. The results are shown in
Figure 12.19.

Plot data
plot(gnp)
Plot ACF
acf2(gnp, 50)
Log transform, and first order differencing
gnpgr = diff(log(gnp))
Plot transformed and differenced data
plot(gnpgr)
Plot ACF of transformed and differenced data
acf2(gnpgr, 24)

Note how the ACF of the original series diminishes very gradually, indicating the need
for differencing. The sample ACF of the transformed and differenced series shows a
gradual decline after a lag of 2, while the sample PACF of the transformed and dif-
ferenced series cuts off to non-significance after a lag of 1. Together, this indicates

398 CHAPTER 12. TIME SERIES ANALYSIS

0 2 4 6 8 10 12

0.0
0.2
0.4
0.6
0.8
1.0

Series: gnp

LAG ÷ 4

A
C

F

0 2 4 6 8 10 12

0.0
0.2
0.4
0.6
0.8
1.0

LAG ÷ 4

PA
C

F

1 2 3 4 5 6
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

Series: gnpgr

LAG ÷ 4

A
C

F

1 2 3 4 5 6
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

LAG ÷ 4

PA
C

F

Figure 12.19: ACF and PACF of the original time series (top) and of the log-
transformed and differenced series (bottom)

that the time series may be appropriately modeled using an AR(1) model or an MA(2)
model. Converting the AR(1) model to an equivalent MA model shows that the two
initial models are approximately equivalent. Note that the following R code block uses
the sarima() function from the astsa library because this function also produces
the diagnostic plots shown in Figures 12.20 and 12.21. This function can fit ARIMA
models, as in the following example, but can also fit seasonal ARIMA, or SARIMA,
models.

Fit an AR(1) model
sarima(gnpgr, 1, 0, 0)
Fit an MA(2) model
sarima(gnpgr, 0, 0, 2)
Models are roughly equivalent
ARMAtoMA(ar=0.35, ma=0, 10)

ARIMA model diagnostics focus on the residuals of the fitted model and typically
assess the following criteria:

• Standardized residuals should be Gaussian (µ = 0, sd = 1)

• Residuals should not be autocorrelated

12.9. FITTING AN ARIMA MODEL 399

Standardized Residuals

Time

1950 1960 1970 1980 1990 2000

−
3

−
2

−
1

0
1

2
3

4

Model: (1,0,0)

1 2 3 4 5 6

−
0.

1
0.

0
0.

1
0.

2
0.

3

ACF of Residuals

LAG ÷ 4

A
C

F

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Normal Q−Q Plot of Std Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p values for Ljung−Box statistic

LAG (H)

p
va

lu
e

Figure 12.20: Diagnostics for an AR(1) model fitted to the GNP time series

• Residual ACF should be Gaussian with µ = 0 and sd = 1/
√
n

• Ljung-Box statistic Q of the error ACF ρ̂e for different maximum lags H should
be larger than the 1−α quantile of the χ2

H−p−q distribution (i.e. the test statistic
is not statistically signifantly different from 0)

Q = n(n+ 2)

H∑
h=1

ρ̂2e(h)

n− h

The diagnostic plots in Figure 12.20 and 12.21 shows the residuals in the top panels.
There are no visible trends or regularities and a few large outliers, but these can be
expected from a Gaussian distribution. The ACF of the residuals in the middle left
panel show that they are not autocorrelated and the QQ plot of residuals shows some
deviations from a linear diagonal in the bottom and top portions, indicating that the

400 CHAPTER 12. TIME SERIES ANALYSIS

Standardized Residuals

Time

1950 1960 1970 1980 1990 2000

−
3

−
2

−
1

0
1

2
3

4

Model: (0,0,2)

1 2 3 4 5 6

−
0.

1
0.

0
0.

1
0.

2
0.

3

ACF of Residuals

LAG ÷ 4

A
C

F

−3 −2 −1 0 1 2 3
−

4
−

2
0

2
4

Normal Q−Q Plot of Std Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p values for Ljung−Box statistic

LAG (H)

p
va

lu
e

Figure 12.21: Diagnostics for an MA(2) model fitted to the GNP time series

model over- and under-estimates extreme values. The bottom panel in each figure
shows the probability values (p-values) for the Ljung Box statistics and the 1 − α
dashed horizontal line. For both models, the p-values of the Ljung Box statistic are
above the horizontal line, that is, they are not significantly different. In summary, both
models show good fit to the data.

Because fitting a model typically uses maximum-likelihood estimation (MLE), the
model choice is often based on information criteria that are based on the log-likelihood
L of the model. Because more complex models naturally achieve a better fit to the
training data, that is, they have a smaller bias, the log-likelihood is adjusted (penal-
ized) for model complexity, that is, the number of parameters k, and is also adjusted
for sample size n. All information-theoretic criteria express a relative quality of fit with
smaller values being better. There are no absolute cut-off values that would indicate a
well-fitting model.

12.10. GARCH MODELS 401

AIC = −2 logL+ 2k Akaike Information Criterion

AICc = AIC +
2k(k + 1)

n− k − 1
Akaike Information Criterion, corrected

BIC = −2 logL+ k log n Bayesian Information Criterion

The R output of the sarima() function shows very similar model fit values:

> sarima(gnpgr, 1, 0, 0)

AIC = -6.44694 AICc = -6.446693 BIC = -6.400958

> sarima(gnpgr, 0, 0, 2)

AIC = -6.450133 AICc = -6.449637 BIC = -6.388823

Once the analyst has selected the final model and is satisfied that it fits well, future
values of the time series can be forecasted from the fitted model. An important property
of ARIMA predictions is that they quickly settle to the mean, with a constant prediction
error, reflecting the stationarity of the differenced and transformed time series.

The following R code example shows forecasting from using the sarima.for()
function in the astsa library. The results are shown visually in Figure 12.22, where
the prediction error is indicated by the gray shading.

forecasts <- sarima.for(gnpgr, n.ahead=10, p=1,d=0,q=0)

12.10 GARCH Models
General Autoregressive Conditional Heteroscedasticity (GARCH) models are a family
of time series models that are used to estimate the volatility and conditional variance of
time series data, particularly of financial time series that exhibit time-varying volatility
and volatility clustering. GARCH models are fundamental in the field of financial
econometrics for modeling financial time series data.

GARCH models predict the current variance (that is, the volatility or variability, not the
actual values) as a function of past squared ”innovations” (which represent unexpected
shocks or news in the data) and past conditional variances. In other words, the variance
at any time depends on the information available up to the previous period. GARCH
models are particularly effective at modeling volatility clustering, a phenomenon com-
mon in financial time series where high-volatility events tend to cluster together.

402 CHAPTER 12. TIME SERIES ANALYSIS

Time

gn
pg

r

1980 1985 1990 1995 2000 2005

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

Figure 12.22: Forecasting from an ARIMA(1,0,0) model with estimated prediction
errors

GARCH models are extensively used in risk management, asset pricing, and financial
forecasting. They help in estimating the volatility of asset returns for pricing deriva-
tives, calculating the value at risk for risk management, or forecasting volatility for
portfolio optimization.

An ARCH model considers a series of ”returns”, which are defined as deviations from
the prior value:

rt =
xt − xt−1

xt−1
(”Return”)

The series of returns is modelled as the product of a stochastic component ϵt and a
time-dependent standard deviation σt

rt = σtϵt

The ARCH model considers the time-dependent variance σ2
t at time t as a function of

the previous returns. For example, in the ARCH(1) model the variance σ2
t at time t

depends on the immediately prior squared return:

σ2
t = α0 + α1r

2
t−1

where ϵt is Gaussian.

12.10. GARCH MODELS 403

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2

Series: resid(u$fit)^2

LAG ÷ 4

A
C

F

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2

LAG ÷ 4

PA
C

F

Figure 12.23: Squared residuals after fitting an AR(1)+ARCH(1) model to the US GNP
time series data

The general ARCH(q) model of order q is defined as follows. Again, the variance
depends on the prior squared returns:

σ2
t = α0 + α1r

2
t−1 + α2r

2
t−2 + . . .+ αqr

2
t−q

= α0 +

q∑
i=1

αir
2
t−i

ARCH models can be combined with ARIMA models so that the ARCH model de-
scribes the error term. A simple example is an AR(1) model with ARCH(1) error
terms:

xt = ϕ0 + ϕ1xt−1 + σtϵt where σt = α0 + α1x
2
t−1

As an example, consider the US gross national product quarterly time series from the
astsa library. An initial AR(1) model shows that the squared residuals have some de-
pendence. This dependence can be accounted for by explicitly modeling the residuals
as ARCH(1). The fGarch library for R provides the garchFit() function to these
kinds of models. The squared residuals of the final model are shown in Figure 12.23.

404 CHAPTER 12. TIME SERIES ANALYSIS

library(astsa)
Fit an AR(1) model to the differenced, log-transformed series
u = sarima(diff(log(gnp)), 1, 0, 0)
Examine the squared residuals
acf2(resid(u$fit)^2, 20)

library(fGarch)
Fit an AR(1) + ARCH(1) model to the differenced, log-transformed
series and show the summary
summary(garchFit(~arma(1,0)+garch(1,0), diff(log(gnp))))

An extension to ARCH is to model the variance not only as a function of previous
returns, but also as a function of the p prior variances. In other words, the variance is
modelled as an autoregressive model in addition to the ARCH(q) terms. This leads to
a Generalized ARCH model, that is, a GARCH(p, q) model:

σ2
t = ω + α1r

2
t−1 + · · ·+ αqr

2
t−q

+ β1σ
2
t−1 + · · ·+ βpσ

2
t−p

= ω +

q∑
j=1

αjr
2
t−j +

p∑
j=1

βjσ
2
t−j

The following R example models the Dow Jones Industrial Average stock market time
series values (data set djiar in library astsa) using an AR(1)+GARCH(1,1) model.
Parameter estimates are shown below. Various diagnostic plots are available using the
plot() function for the resulting garchFit object and are shown in Figure 12.24.

library(zoo)
library(fGarch)
Log transform
djiar = diff(log(djia$Close))[-1]
Fit an AR(1) + GARCH(1,1) model
djia.g <- garchFit(~arma(1,0)+garch(1,1), data=djiar)
Show summary information
summary(djia.g)
Different plots available
par(mfrow=c(5,2)
plot(djia.g, which=1:10)

12.10. GARCH MODELS 405

0 500 1000 1500 2000 2500

−
0.

05
0.

05

Time Series

Index

x

0 500 1000 1500 2000 2500

0.
01

0.
03

0.
05

Conditional SD

Index

x

0 500 1000 1500 2000 2500

−
0.

05
0.

05

Series with 2 Conditional SD Superimposed

Index

x

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Lags

A
C

F

ACF of Observations

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Lags

A
C

F

ACF of Squared Observations

−30 −20 −10 0 10 20 30

−
0.

10
0.

00

Lags

A
C

F

Cross Correlation

0 500 1000 1500 2000 2500

−
0.

05
0.

05

Residuals

Index

re
s

0 500 1000 1500 2000 2500

0.
01

0.
03

0.
05

Conditional SD's

Index

xc
sd

0 500 1000 1500 2000 2500

−
6

−
4

−
2

0
2

Standardized Residuals

Index

sr
es

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Lags

A
C

F

ACF of Standardized Residuals

Figure 12.24: Diagnostic plots for a GARCH model

406 CHAPTER 12. TIME SERIES ANALYSIS

Estimate Std. Error t value Pr(>|t|)
mu 8.585e-04 1.470e-04 5.842 5.16e-09 ***
ar1 -5.532e-02 2.023e-02 -2.735 0.006238 **
omega 1.610e-06 4.459e-07 3.611 0.000305 ***
alpha1 1.244e-01 1.660e-02 7.496 6.55e-14 ***
beta1 8.700e-01 1.526e-02 57.022 < 2e-16 ***
shape 5.979e+00 7.917e-01 7.551 4.31e-14 ***

Log Likelihood:
8249.619 normalized: 3.27756

Appendix – Basic Time Series Functions in R

base or stats
filter Filters time series, through moving averages or autoregression
lag Creates a lagged version of a time series by shifting the time-

base back
diff Creates lagged differences
plot.ts Plot a time series
ts.plot Plot multiple time series
lag.plot Scatterplot of lagged values
acf ACF and plot
ccf CCF and plot
time Creates the vector or times at which a time series was sampled
cycle Gives the positions in the cycle of each observation
frequency Number of samples per unit time
ts.intersect Bind time series together that have a common frequency. Re-

strict to time covered by all series
ts.union Bind time series together that have a common frequency. Pad

with NA if necessary
ar Fit an autoregressive model
arima Fit an ARIMA model

astsa
tsplot Plot a time series
acf1 ACF and plot
ccf2 CCF and plot
sarima Fit seasonal ARIMA models (and nice diagnostic plots)
lag1.plot Scatterplot of lagged values

12.11. REVIEW QUESTIONS 407

12.11 Review Questions
Introduction

1. What is time series analysis and why is it important in various fields such as
economics, finance, and natural sciences?

2. What are some essential preprocessing steps required before performing time
series analysis?

3. Compare and contrast the time-domain approach and the frequency-domain ap-
proach in time series analysis. Which approach is particularly useful for fore-
casting and why?

Time Series Statistical Models

4. Explain the Moving Average (MA) model and describe how it uses past error
terms to forecast future values. What are the assumptions about these error
terms?

5. Discuss how the Moving Average (MA) model can be utilized to detect underly-
ing patterns in a time series that exhibits random fluctuations. What limitations
does this model have in handling trend and seasonality?

6. Explain the implications of choosing different window sizes (the number of
terms included) in the Moving Average model. How does it affect the forecasts
and smoothing?

7. Describe how the Autoregressive (AR) model differs from the MA model and
provide an example of its application in economic or financial time series.

8. In the context of the AR model equation xt = xt−1− 0.9xt−2 +wt, analyze the
impact of changing the coefficient −0.9 to values closer to 0 or 1.

9. What is a Random Walk with Drift? Describe how it models time series data and
give an example of its application in financial markets.

10. Critique the usefulness of the Signal in Noise model in various fields such as
economics, engineering, and environmental science. How might the assumptions
of this model limit its application?

11. Critically evaluate the effectiveness of each model (MA, AR, Random Walk with
Drift, Signal in Noise) in handling different types of time series data.

Smoothing a Time Series

12. Explain the purpose of smoothing in time series analysis. What are the general
goals of this technique?

13. Describe the moving average smoothing method. How does this method use
weights to smooth data, and what are the effects of changing these weights?

14. Discuss how the moving average method helps in reducing the impact of random
fluctuations in the data. What challenges might arise when using this method on
time series with trends or seasonality?

15. Explain what kernel smoothing is and how it uses a Gaussian kernel to weigh
data points. How does the choice of bandwidth affect the smoothing?

408 CHAPTER 12. TIME SERIES ANALYSIS

16. Detail the Lowess regression method. How does this method determine the
weights for smoothing and how do these weights contribute to the robustness
against outliers?

17. Explain the role of the parameter f in the lowess() function in R. How does
changing the value of f affect the results of the Lowess smoothing?

18. Define smoothing splines and describe how they fit a spline function to the data.
What does the regularization term in the loss function achieve?

19. Compare and contrast the advantages and potential drawbacks of using moving
average, kernel smoothing, Lowess regression, and smoothing splines. When
might one method be preferred over the others based on the characteristics of the
time series data?

Time Series Regression

20. Define time series regression and explain how it differs from other types of time
series analysis such as autoregressive models.

21. Describe the significance of including time as a variable in the regression models.
What does this imply about the data and its relationship over time?

22. Discuss the use of lagged variables in time series regression. What are the bene-
fits of including lagged terms?

Stationarity

23. Explain the difference between strict and weak stationarity. Why is weak sta-
tionarity more commonly used in statistical analysis of time series?

24. Elaborate on the impact of non-stationarity on the predictive performance of time
series models. How does failing to account for stationarity potentially mislead
forecasting?

25. Critique the assumption of constant variance in the definition of weak stationar-
ity. How might changes in variance over time affect the validity of time series
models?

26. Explain how the concept of weak stationarity might still inadequately describe
the nature of certain financial time series. What alternative forms of stationarity
might be considered?

27. Discuss how the mean, variance, and autocovariance function must behave for a
time series to be considered weakly stationary.

28. Define autocovariance and autocorrelation. How are these metrics useful in ana-
lyzing the properties of a time series?

29. Analyze the implications of having a high autocorrelation at large lags for a
given time series. What might this indicate about the underlying data generation
process?

30. What does it indicate if the ACF values are outside the 95% confidence interval?
How does this help in determining whether a time series is white noise?

31. Describe how you would assess the stationarity of a time series using graphical
methods in R. What plots would you use and what features would you look for?

12.11. REVIEW QUESTIONS 409

Dealing with Non-Stationarity

32. Discuss how the Box-Cox transformation generalizes other forms of transforma-
tions like logarithmic and square root transformations. What is the significance
of the parameter λ in this transformation?

33. Explain the statistical reasoning behind using logarithmic transformations for
time series data. What types of data characteristics make this transformation
particularly effective?

34. Explain the process of detrending a time series. Why is it necessary, and how
does it differ from differencing?

35. Describe the impact of detrending and differencing on the forecasting accuracy
of a time series model. How might these preprocessing steps improve or impair
the model’s performance?

36. Provide a detailed explanation of the first and second differences of a time series.
Under what circumstances might second differencing be necessary?

37. Explain how the autocorrelation function (ACF) can be used to verify the effec-
tiveness of detrending and differencing interventions on a time series.

ARIMA Models

38. Define an ARIMA model and explain the components of its notation: ARIMA(p,
d, q).

39. Describe a moving average model of order q, MA(q). How does it model the
current value of the series?

40. Describe the structure of an autoregressive model of order p, AR(p). What does
it mean for the model to have ”memory” or ”persistence”?

41. Discuss the role of the differencing operator∇ in making a time series stationary.
How does this relate to the integrated component of an ARIMA model?

42. Explain the purpose of the backshift or lag operator B in the context of ARIMA
models. Provide an example of how it is used to define the differencing of a
series.

43. Explain how the autoregressive operator ϕ(B) is used to form the equation of an
AR(p) model.

44. Explain the significance of the moving average operator θ(B) in an MA(q)
model.

45. Describe the combined model ARMA(p, q) and how it integrates features of both
AR and MA models.

46. Explain how the properties of the ACF and PACF can help in selecting an appro-
priate ARIMA model for a time series. Provide examples of what the ACF and
PACF might look like for different models.

Fitting an ARIMA Model

47. Detail how the orders of the AR and MA components (p and q) are identified
using the ACF and PACF plots.

48. Explain the importance of model diagnostics in the ARIMA modeling process.
What are some key diagnostic checks that should be performed?

410 CHAPTER 12. TIME SERIES ANALYSIS

49. Explain how information criteria such as AIC, AICc, and BIC are used to com-
pare the fit of different ARIMA models. What does each criterion take into
account?

50. Detail the process and importance of conducting model diagnostics after fitting
an ARIMA model. What specific plots and statistics are typically used?

51. Discuss the implications of the Ljung-Box test results when diagnosing the fit of
an ARIMA model. What does a significant result suggest about the residuals?

General Autoregressive Conditional Heteroscedasticity (GARCH) Models

52. Define an ARCH and a GARCH model and explain their importance in financial
econometrics.

53. Discuss how a GARCH models can account for volatility clustering in financial
time series.

54. Describe the basic structure of an ARCH(1) model and how it models the vari-
ance of a time series.

55. Explain how an AR(1) model with ARCH(1) error terms is constructed. Include
a description of how each component contributes to modeling the time series.

56. Explain the extension from an ARCH model to a GARCH model. What addi-
tional features does a GARCH model incorporate?

57. Describe how to interpret the output of a fitted GARCH model, including param-
eter estimates and their significance.

58. Discuss the significance of the parameters α and β in a GARCH(1,1) model.
What does each parameter represent, and how do they affect the model’s behav-
ior?

Chapter 13

Introduction to Neural
Networks and Deep Learning

Learning Goals

After reading this chapter, you should be able to:

• Explain the basic components of neural network, the importance of the activation
function, and the behaviour of common activation functions.

• Explain gradient descent optimization and different methods to adjust the step
sizes for parameter updates.

• Explain the problems of vanishing and exploding gradients and identify ways to
address them.

• Explain the purpose of dropout in neural networks.

• Build basic neural network regression and classification models with a widely-
used neural network software package, train the models, and evaluate the quality
of the fitted model.

• Encode categorical data in ways appropriate for neural network input.

Sources and Further Reading

The material in this chapter is based on the following sources.

411

412CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapter 10

While the James et al. book is otherwise very comprehensive, it only provides a single
chapter on neural networks. The benefit here is that neural networks are discussed in
context, as just one other regression or classification method. The downside is that it
does not dive sufficiently deep into neural network architectures and fitting of neural
network models that is at the heart of modern machine learning applications.

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/book1.html

Chapter 13, 14, 15

The book by Murphy is freely available under a Creative Commons license and pro-
vides three chapters on neural networks, one for structured data, one for images, and
one for sequences. It provides significant depth on convolutional and recurrent net-
work architectures, fitting the models, and problems the data analyst may encounter.
However, it tends to focus on the mathematical background, rather than application or
implementation.

Tensorflow Guides: https://www.tensorflow.org/guide

This section uses the Tensorflow programming framework for implementing neural
network machine learning applications. The Tensorflow website has a multitude of
introductory and advanced guides and tutorial that cover all aspects of machine learning
with neural networks and are all very accessible to the beginner. While they focus
heavily on implementation aspects, they provide significant coverage of the concepts
as well.

Tensorflow Playground: https://playground.tensorflow.org

The Tensorflow Playground, shown in Figure 13.1, is a very visual and interactive
introduction to how neural networks function. It allows playful exploration of a number
of features with a small simulated neural network.

https://www.statlearning.com
https://probml.github.io/pml-book/book1.html
https://www.tensorflow.org/guide
https://playground.tensorflow.org

13.1. INTRODUCTION 413

Figure 13.1: Tensorflow Playground

13.1 Introduction
Artificial Neural Networks (”ANN”) are a type of non-linear statistical model for re-
gression and classification. Their original motivation is the architecture of biological
brains whose elementary unit is the neuron. Figure 13.2 shows an image of a biological
neuron and its connections. Biological neurons in a brain are connected to many other
neurons via axons that connect to other neurons at their synapses. Neurons receive
electro-chemical inputs from other neurons through their axons. Once a certain thresh-
old of input is reached, neurons themselves generate an electro-chemical potential that
is transmitted to other neurons via their synapses. However, while this is the original
motivation for ANNs, the architecture of modern ANNs is not modelled after biologi-
cal brain architectures and ANNs are best understood as non-linear statistical models.
From now on, the term ”neural network” is used synonymously with ”artificial neural
network”.

A basic neural network cell or unit is defined by a simple non-linear equation. Inputs
xi are weighted by weights wi, then summed. A bias term b is added and the result is
then transformed by a non-linear activation function.

y = ψ(b+
∑
i

wixi) (13.1)

It is important that the activation function is non-linear. Otherwise, even a complex
network of such units would be nothing but an elaborate linear system and therefore
equivalent in capabilities to a linear regression model. In other words, it is the non-
linear activation functions that make neural networks more capable or more powerful
than simple linear models. In addition to allowing a neural network to fit complex
functional forms, the activation functions also serve to normalize, clip, or otherwise
constrain the outputs of the neural unit and the entire network.

414CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

Figure 13.2: Image of a biological neuron and its connections

Sigmoid σ(z) = ez

1+ez

Hyperbolic tangent tanh(z) = sinh(z)
cosh(z) = ez−e−z

ez+e−z = 2σ(2z)− 1

Softplus σ+(z) = log(1 + ea)

Rectified linear unit ReLU(z) = max(a, 0)

Leaky ReLU LReLU(z) = max(z, 0) + αmin(z, 0)

Exponential linear unit ELU(z) = max(z, 0) + min(α(ez − 1), 0)

Swish, Sigmoid linear unit SiLU(z) = zσ(z)

Gaussian error linear unit GeLU(z) = zΦ(z)

Table 13.1: Selection of frequently-used activation functions

A great many activation functions have been proposed and investigated over the years.
Table 13.1 shows frequently used ones and Figure 13.3 shows a selection of these
functions and their gradient, that is, their first derivative. The most frequently-used
functions, and often the defaults in software implementations, are the ReLU, the tanh,
and the sigmoid function. Note that a single neural unit with a sigmoid activation
function is equivalent to a logistic regression model as seen in an earlier section.

The basic neural network units are typically arranged in sequential layers. The simplest
form of a neural network is one with a single, fully-connected, hidden layer, shown in
Figure 13.4. The network in Figure 13.4 has four inputs in its input layer, labelled
X1 · · ·X4 and has a single cell or unit in its output layer. The layer of cells shown in
blue and labelled A1 · · ·A5 are called ”hidden” because they are neither input to the
network, nor observable output. The layer is called ”fully-connected” because each of
the units in the layer is connected to all units of the previous layer, in this case the input

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

13.1. INTRODUCTION 415

Source: Murphy, Fig. 13.14

Figure 13.3: Activation functions and their gradients

Source: ISLR2 Figure 10.1

Figure 13.4: Neural network with a single fully-connected hidden layer

layer. These characteristics make the network suitable to model a non-linear regression
of one output on four inputs.

Recall the definition of a neural network unit in terms of its weights and biases in
Equation 13.1. In the model in Figure 13.4, each connection from an input to a neural
unit receives a weight w, and each neural unit adds a bias term b to the sum of its
inputs. Counting the arrows and the units in Figure 13.4, the network has 25 weights
(20 in the fully-connected hidden layer and 5 in the output layer) and 6 biases (5 in
the fully-connected hidden layer and 1 in the output layer) for a total of 31 trainable or
learnable parameters.

The basic network architecture of Figure 13.4 can be readily extended to multiple hid-
den layers and multiple output units in the output layer, as shown in Figure 13.5. This
network has p inputs, K1 units in the first hidden layer, K2 units in the second hidden

416CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Source: ISLR2 Figure 10.4

Figure 13.5: Neural network with two fully-connected hidden layers and multiple out-
puts

layer, and 10 units in the output layer. Again counting the connections and the units,
this network has p×K1 +K1 ×K2 +K2 × 10 weights and K1 +K2 + 10 biases as
trainable or learnable parameters.

An output layer with more than one output unit, such as the one in Figure 13.4 can
be used for multi-objective regression analysis where more than one value is to be
predicted jointly from the inputs. Another use of multiple outputs is multi-class classi-
fication, where each output represents the probability for a particular class. This is very
similar to the multinomial logistic regression discussed in an earlier chapter. For multi-
class classification in neural networks, the final outputs (”logits”) are transformed to
class membership probabilities using a softmax activation function:

Pr(Y = m|X) =
eZm∑n
l=0 e

Zl

where the Zm are the logits, that is, the weighted sum of inputs plus the bias term, for
class m of a total of n possible classes.

13.2. PARAMETER ESTIMATION 417

13.2 Parameter Estimation

In order to learn (estimate) the parameters of a neural network, that is, to train the
neural network, a loss function must be defined. This is the function that serves as
the minimization objective and defines the difference between the outputs of the neu-
ral network and the target values, that is the correct or observed values. Typical loss
functions for a regression analysis are the MSE (mean squared error), MAE (mean
absolute error), Huber loss (a combination of MSE and MAE), or the MAPE (mean
absolute percentage error). Typical loss functions for a classification analysis are the
cross-entroy or KL-divergence after a softmax activation on the multiple output units.

As discussed above, the trainable or learnable parameters are the weights w and biases
b of the units in the network. Together, they form the parameter vector that is defined
as ϕ = (w, b).

13.2.1 Gradient Descent

Unlike the simple case of linear regression, there are no closed-form algebraic optimal
solutions for the parameters available for general neural networks. Therefore, opti-
mization is performed numerically using stochastic gradient descent (SGD). We first
explain the simple non-stochastic gradient descent process.

The gradient is simply the vector of partial first derivatives of a function with multiple
inputs and is designated by the ”nabla” symbol∇:

∇f(x1, . . . xm) =

∂f
∂x1

...
∂f
∂xm

For a simple function of one variable, like f(x) = x2, the gradient is simply the first
derivative:

∇f(x) = ∂f

∂x
=
df

dx
= 2x

As gradients are functions again, they can be evaluated for different inputs v, written
as∇f(x)|v . For example, the gradient of x2 evaluated at x = 2 is∇f(x)|x=2 = 4 and
the gradient of x2 evaluated at 3 is∇f(x)|x=3 = 6.

418CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg

Figure 13.6: Illustration of gradient descent

Gradient descent is an iterative method to find the minimum of a function of multiple
inputs:

1. Begin with random initial parameter values

2. Repeat the following two steps until convergence:

(a) Find the direction of steepest descent. This is the largest decrease in loss
function value and is given by the gradient vector∇L of partial derivatives.

(b) Move a step in that direction by adjusting the parameters. The step size is
determined by the learning rate)

This procedure can be summarized as follows. Consider the loss L at a certain input X
as a function of parameter values θ. Then, at each step t, update the parameters θ using
learning rate γ until the parameter values do not change anymore (in practice: until the
changes are smaller than a certain threshold):

θt+1 = θt − γ∇L(θ)|θt,X (13.2)

Recall that the vertical bar notation in the final term means ”evaluated at”, that is, the
gradient of L(θ) is evaluated at input values X and current parameter values θt.

Figure 13.6 shows an image of such a process. Beginning with an initial solution, the
process of gradient descent will eventually arrive at the optimal solution.

Numerical optimization via gradient descent is prone to a number of potential prob-
lems, among them slow convergence, no convergence (oscillations) and premature

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg

13.2. PARAMETER ESTIMATION 419

Murphy, Figure 8.11

Figure 13.7: Slow convergence and no convergence in gradient descent

convergence to a local optimum rather than the global optimum. The first two are
illustrated in Figure 13.7.

In the left panel of Figure 13.7, the gradient of a function of two parameters (vertical
and horizontal axis) is very ”shallow”, that is, the function changes values slowly with
the parameters and the gradient is very small. When the step size λ is too small, it will
take very many steps to reach the optimum.

One might imagine that the solution would be to simply increase the step size. How-
ever, the right panel of Figure 13.7 shows a lack of convergence that may be due to a
large step size. Because the gradient is so shallow, the gradient is similar in multiple
directions. Once a gradient descent step takes the parameter vector into a steeper region
of the gradient, the next step is likely to ”overshoot” the correction, leading to back-
and-forth oscillations shown in the right panel of Figure 13.7. The gradient descent
process will not converge to the optimum.

Finally, there may be functions not only with a global optimum but with multiple local
optima. In those cases, it is possible that the gradient descent process will converge to
a local optimum, that is, it will show premature convergence. Simply increasing the
step size to get out of the local optimum is not a solution, as it is often unclear whether
the optimum that is found is local or global and a larger step size can lead to the earlier
oscillation problem.

13.2.2 Stochastic Gradient Descent
Note that in Equation 13.2 the gradient is evaluated at the current parameters θt and
the inputs to the neural network X . In practice, this means that the gradient should be
computed as the mean gradient over all training observations. With large training sets,
this is computationally expensive and wasteful, as it is likely that a small sample of the
input can already point the gradient descent process in the right direction.

This is the motivation behind stochastic gradient descent. Instead of computing the
gradient and averaging over the entire input training set, gradient updates of the form in
Equation 13.2 are done for ”minibatches” that are randomly sampled from the training

420CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

data set. The gradient is evaluated for each observation of the minibatch and then
averaged over the minibatch. A typical minibatch size is anywhere between 16 and
256 observations. Minibatches should be randomly drawn and independent of each
other.

The processing of all minibatches in the training data set is called an ”epoch”. Typi-
cally, a neural network is trained for multiple epochs, until the parameters converge to
their optimal values. To avoid repetition of inputs, the training data should be randomly
shuffled between epochs.

The decision as to how many training epochs should be used can be made in different
ways. The simplest is to use a fixed, large number of episodes with the hope that
training will have converged to an optimum at the end of the procedure. However, this
simple method may be computationally wasteful if training converges rapidly, and if
may also lead to overfitting. Early stopping is typically used to prevent this. Here, the
data set is split into training, validation, and test samples. The training samples are used
for training. After each epoch, the validation set is used to assess the prediction error.
When the prediction errors are stable, that is, the changes in validation errors after a
number of successive epochs are smaller than a given threshold, training is stopped.
The prediction error of the final model is then evaluated using the test data set. Early
stopping thus serves as a regularization method that prevents overfitting, and also saves
computational resources, but at the expense of reducing the size of the training and/or
the test data set (because a separate validation sample is required).

Because each gradient update step (Equation 13.2) is evaluated at a different input X ,
the gradient can be different from update step to update step, even if the parameters are
largely unchanged. Hence, especially with small minibatch sizes, the gradient can be
highly unstable, and the gradient descent proceeds in more or less random directions,
further adding to the potential convergence problems note above.

13.2.3 Parameter Updates
In order to tackle the convergence issues in SGD, a number of solutions have been
proposed. The simplest of these is to use an adaptive learning rate, where the learning
rate is large in early training and then decreases. The idea is to accelerate early training
and prevent oscillations or ”overshooting” the optimum later in training. Figure 13.8
shows three examples of adaptive learning rates. The left panel shows a piece-wise
contant learning rate that is periodically decreased, the center panel shows an exponen-
tial decay of the learning curve, and the right panel shows a polynomial decay in the
learning curve. Which approach is best depends on the specifics of the problem. It is
not unusual for a business analyst to use small subsamples of the training data to try
different methods and evaluate their convergence behaviour before training on the full
training data set.

A more sophisticated way is the AdaGrad method (”adaptive gradients”) that was orig-
inally developed for sparse gradient vectors, that is, gradients with many 0 components.
This method scales the learning rate inversely to the square root of the sum of squared
gradients of all previous steps (Equations 13.3 and 13.4). The intuition is that large

13.2. PARAMETER ESTIMATION 421

Source: Murphy Figure 8.18

Figure 13.8: Adaptive learning rates

gradients should lead to small updates, and vice versa. The overall learning rate can
also be adjusted but is typically left constant (λt = λ). The term ϵ in Equation 13.3 is
a very small value to prevent division by zero in case all the st are 0 (or close to it).
Note that because the sum of previous squared gradients is monotonically increasing,
the learning rate monotonically decreases — it can never increase.

θt+1 = θt − λt
1√
st + ϵ

∇L(θ)|θt,X (13.3)

st =

t∑
τ=1

(∇L(θ)|θτ ,X)
2 Sum of all prior squared gradients (13.4)

The RMSProp (”Root Mean Square Propagation”) modifies AdaGrad to overcome its
monotonically decreasing learning rate and to prevent a learning reduction that is too
quick. Instead of accumulating all past squared gradients, RMSProp uses an exponen-
tial moving average that emphasizes recent gradients and makes it more robust to large
changes in gradients. Note how the square of previous gradients is propagated by the
term st on the right hand side of Equation 13.5. Equation 13.5 is used in place of
Equation 13.4 in the update equation (Equation 13.3).

st+1 = βst + (1− β) (∇L(θ)|θt,X)
2 (13.5)

The AdaDelta method is an extension of RMSProp that seeks to reduce its dependence
on a global learning rate λ. Instead of using λ, AdaDelta uses the ratio of the root mean
square of previous parameter updates to the root mean square of the current gradient.
This method adapts learning rates based on parameter update history, represented by
∆θt (Equation 13.6), providing a more stable and responsive adjustment mechanism.
The term st in Equation 13.6 is that of Equation 13.5.

422CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

θt+1 = θt +∆θt

∆θt = −λt
√
δt−1 + ϵ√
st + ϵ

∇L(θ)|θt,X (13.6)

δt = βδt−1 + (1− β)(∆θt)2

While Adagrad, RMSProp, and AdaDelta method all modify the parameter update step
sizes to allow a gradual reduction in learning rate in order to tackle problems of slow or
premature convergence, another way to look at these methods is as variance reduction
methods of the parameter or parameter updates between minibatches. In other words,
the variability of the parameter updates (and therefore, the variability of the parameters)
from taining batch to training batch is reduced. This then tackles the problems of
oscillations or rapid changes in the direction of parameter updates illustrated in the
right panel of Figure 13.7.

Momentum methods for SGD are another way to address rapit changes in parameter
updates. They are based on the intuition of physical momentum, that is, to keep going
in the general direction of previous updates and any changes have only small effects on
this direction, that is, to avoid ”sharp turns” in the direction of the parameter changes.
This is also intended to avoid the oscillations that can prevent convergence. The stan-
dard momentum method is defined as:

mt+1 = βmt −∇L(θ)|θt,X Momentum
θt+1 = θt − λmt+1 Parameter update

Typical values for β are ≈ 0.9 and good values for β must again be found by experi-
menting with subsamples and observing convergence behaviour.

The Nesterov momentum, a variant of the standard momentum method, incorporates
a look-ahead step to the parameter updates, making the convergence faster and more
responsive to the loss surface. Note how the gradient gradient in Equation 13.7 is
evaluated at θt +βmt — it is evaluated not at the current parameter values but at those
after the next update step, as defined in Equation 13.8.

mt+1 = βmt − λt∇L(θ)|θt+βmt,X Nesterov Momentum (13.7)
θt+1 = θt +mt+1 Parameter update (13.8)

Finally, the AdaM technique (Adaptive Moment Estimation) combines ideas from both
AdaGrad and RMSProp, adjusting learning rates based on both the gradient and the
squared gradient:

13.2. PARAMETER ESTIMATION 423

mt = β1mt−1 + (1− β1)∇L(θ)|θt,X (13.9)

st = β2st−1 + (1− β2) (∇L(θ)|θt,x)2 (13.10)

θt+1 = θt − λt
1√
st + ϵ

mt (13.11)

13.2.4 Gradient Problems
The issue of vanishing gradients arises when gradients of the network’s weights be-
come very small, effectively preventing weights from changing their values despite
large step sizes. As gradients of the loss function are propagated backwards through
the network to update weights, the gradient values diminish with each layer as small
derivatives are multiplied with other small derivatives. The gradients can become so
small that they have virtually no effect in updating some layers, especially those layers
close to the input. This problem is increasingly likely to occur the more layers the
network contains. Activation functions like the sigmoid or the tanh function contribute
to this problem because they asymptotically restrict values between 0 and 1. The gra-
dients at the left and right extremes are very small, the activation functions there are
shallow as seen in Figure 13.3. There are a number of solutions to tackle this problem:

• Using non-saturating activation functions, that is, functions that do not asymp-
totically approach a fixed value, like ReLU (Rectified Linear Unit) or its variants
(e.g., Leaky ReLU, ELU) is effective. The ReLU does not asymptically approach
a constant and its gradient therefore does not approach zero for large inputs.

• Architectures such as Residual Networks (ResNets) help mitigate the vanishing
gradient problem by incorporating ”skip connections” that allow gradients to
flow through an alternate shortcut path, bypassing several layers at a time. Fig-
ure 13.9 shows an example of a ResNet architecture, where the

⊕
sign indicates

addition of vectors.

• Batch normalization standardizes the inputs to a layer within a network. This
helps maintain a mean output close to zero where the gradients of sigmoid and

Source: Murphy, Figure 13.15

Figure 13.9: ResNet architecture

424CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

tanh functions are largest, preventing the gradients from vanishing too quickly
during training.

• Suitable initialization of weights can help in preventing the vanishing gradient
issue at the start of training. Initial values for neural network parameters θ0 are
typically drawn randomly from a normal distribution:

θ0 ∼ N(0, σ2)

A number of different ways of setting the variance σ2 of this distribution are
used in practice. Glorot initialization (also called Xavier initialization) sets the
variance as a function of the number of incoming connections nin and the number
of outgoing connections nout is from each unit:

σ2 =
2

nin + nout

In contrast, LeCun initialization focuses only on the number of inputs to each
unit:

σ2 =
1

nin

and He initialization doubles the variance of the LeCun initialization:

σ2 =
2

nin

Which of these results in the best learning performance is problem-specific and de-
pends on the type of neural network model, the loss function, and the data set. It is
typically explored experimentally with small subsamples of the training data for which
optimization progress is observed.

The opposite problem of vanishing gradients is that of exploding gradients. Gradients
can grow exponentially across layers as they are propagated through the network due
to the cumulative multiplication of large derivatives with other large derivatives. This
often results in the model parameters being updated in ways that cause the learning pro-
cess to diverge, leading to learning instability and oscillations of parameter estimates.
Gradient clipping is the most direct method to combat exploding gradients. Gradient
clipping involves setting a threshold value, and if the gradients exceed this value, they
are simply limited or cut to that value.

13.3. SOFTWARE FRAMEWORKS FOR NEURAL NETWORK MODELS 425

Source: Murphy, Figure 1.318

Figure 13.10: Example of dropout regularization in neural networks

13.2.5 Regularization with Dropout
In addition to early-stopping as a regularization method, using ”dropout” has been
shown to be effective in preventing overfitting a model. Dropout randomly, for each
observation in a minibatch, removes a fraction of units in a layer, or, equivalently,
randomly sets the output of a fraction of units to 0. The dropout effect mimics training
a large ensemble of neural networks, each with a slightly different architecture, and
each network trained on different subsets (minibatches) of data. Dropout is done for
training only, not when evaluating the performance for the validation or test sample.

Figure 13.10 shows an example. In the right panel, the crossed-out units of the model
in the right panel are dropped, that is, their output is set to 0. The intuition is that it
prevents the model to use particular units or connections to represent specific observa-
tions in the training data. Dropout rates are commonly set to ≈ 0.25 of all units in a
layer but is not uncommon to see rates as high as 0.50.

13.3 Software Frameworks for Neural Network Mod-
els

The landscape of neural network software frameworks has expanded significantly in
recent years, driven by an increasing demand for more sophisticated machine learning
solutions. These frameworks are designed to facilitate the design, training, and deploy-
ment of neural networks with high efficiency and flexibility. The choice of a neural
network software framework depends largely on the specific needs of the project, in-
cluding the ease-of-use, flexibility, and performance requirements, and the specific type
of neural network being implemented. Each of the following frameworks offers unique
strengths that cater to different aspects of neural network development and deploy-
ment. In the end, the choice of framework often comes down to developer familiarity
and preference, and the need to fit into a larger software system and development team.

426CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Tensorflow and Keras

TensorFlow, developed by the Google Brain team and released as
version 1.0 in 2018, is an open-source framework designed for
high-performance numerical computation, in particular for neural
network applications. TensorFlow supports both CPU and GPU
computing, and it can be scaled from single machines to large
clusters, making it suitable for a wide range of applications, from

developing simple models on a desktop to deploying complex systems in production
environments. Tensorflow provides automatic differentiation and computation of gra-
dients, supports distributed computing across clusters, and parallel computing on mul-
tiple GPUs per compute node. Tensorflow provides a wide range of loss functions,
optimizers, activation functions and neural network architectures.

Keras is a high-level neural networks API, written in Python and
originally developed for running on top of TensorFlow, Theano, or
Microsoft Cognitive Toolkit (CNTK). Later releases of Keras fo-
cused on TensorFlow only. Keras aims to enable fast experimen-
tation with deep neural networks, focusing on being user-friendly,
modular, and extensible. It provides simple and consistent high-
level APIs (application programming interfaces) that make it easy

to create deep learning models without getting bogged down in the details of the un-
derlying algorithms. Keras handles the specifics of creating complex network layers,
loss calculations, and optimization steps, allowing developers to focus on building the
core parts of their models. It provides a wide range of neural network layer types
to support different architectures and offers simplified data management for training.
Keras is officially integrated into TensorFlow as the tf.keras package, making it
the default high-level framework for building and training machine learning models in
TensorFlow.

PyTorch

Developed by Facebook’s AI Research lab, PyTorch is known for
its simplicity, ease of use, and dynamic computational graph that
allows for mutable graph executions. This feature is particularly
useful in research and development environments where iterative
and explorative approaches are common. PyTorch also provides
strong support for GPU acceleration and has gained a lot of pop-
ularity in the academic and research community for its ease in
prototyping.

Theano / PyTensor

Theano was originally at the University of Montreal. Although
development has stopped, the project lives on as PyTensor and re-
mains influential in the academic world. Theano or PyTensor are
Python libraries that allows for defining, optimizing, and evalu-

13.4. LINEAR REGRESSION USING TENSORFLOW AND KERAS 427

ating mathematical expressions involving multi-dimensional arrays efficiently. It is
particularly well-known for its performance and precision in computations, which is
why it was heavily used in academically oriented projects.

Microsoft Cognitive Toolkit (CNTK)

Also known as CNTK, this deep learning framework from Mi-
crosoft provides an efficient environment for training deep learn-
ing models at scale, across multiple GPUs and machines. CNTK
supports both declarative and imperative programming languages
and is known for its performance in handling large datasets.

13.4 Linear Regression using Tensorflow and Keras

Complete implementations for this and the other examples in this chapter are available on the
following GitHub repo: https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL: https://github.com/jevermann/

busi4720-ml.git

As noted in the previous section, Keras makes the construction of a neural network
model very easy, as the Python example in this section shows. This first example
shows a linear regression in Keras. In particular, no non-linear activation functions are
used.

First, the required packages are imported. The pandas package is required to read the
training data, and the tensorflow package includes Keras as well:

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

Next, the training data set is read from a CSV file. This example uses the Boston
housing price dataset that from the R package ISLR2was used previously in regression
analysis examples:

Use the Boston housing data set
boston_data = pd.read_csv("https://evermann.ca/busi4720/boston.csv")

The example uses all columns as input features, except the medv column, the median
value of house prices in a suburb, which is the prediction target or the true label for the
observation:

https://github.com/jevermann/busi4720-ml
https://github.com/jevermann/busi4720-ml.git
https://github.com/jevermann/busi4720-ml.git

428CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

boston_features = boston_data.copy()
boston_labels = boston_features.pop('medv')

Next, the neural network model is defined. It is a model that contains two sequential
layers, both fully-connected (”dense” in the Tensorflow/Keras terminology). Keras
provides the Sequential model type for defining this, which accepts a list of layer
definitions, here the Dense layer types:

boston_model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation=None),
tf.keras.layers.Dense(1, activation=None)

])

Keras provides many different model types and layer types, other than sequential layers
to allow the analyst to define more complex neural network architectures. Consult
the Keras documentation at https://keras.io/api/models/ and https://
keras.io/api/layers/ for an overview and details.

Note that the input layer and its dimensions are not explicitly described in this example.
When training this model, Keras will automatically adapt the first dense layer to the
actual input data provided. Later examples will require specification of the input layers
when the size of the input data cannot be determined automatically, or when layers
cannot be dynamically scaled or adjusted.

The second dense layer serves as the output layer with a single output unit. Note that
no activation function is specified for either layer. In other words, this example is a
linear regression.

Each of the k input features is passed to each of the 64 units in the first layer. From
Equation 13.1, this model will have k × 64 + 64 weights and 64 + 1 = 65 biases
as trainable parameters. With k = 12 feature colums in boston_features, this
model will have 832 + 65 = 897 trainable parameters.

Model compilation using the compile() function in Keras is used to specify the loss
function and the optimizer to use. As a regression analysis, this example uses the MSE
as loss function, and the Adam optimizer for SGD.

boston_model.compile(
loss = tf.keras.losses.MeanSquaredError(),
optimizer = tf.keras.optimizers.Adam())

With model compilation complete, the model can be trained, that is, fitted to the data
using the fit() function. This example trains the model for 25 epochs. When no
batch size is specified, as in this example, Keras by default chooses 32 as batch size.

https://keras.io/api/models/
https://keras.io/api/layers/
https://keras.io/api/layers/

13.5. NON-LINEAR REGRESSION USING TENSORFLOW AND KERAS 429

boston_model.fit(boston_features, boston_labels, epochs=25)
boston_model.summary()

The summary() function does not show a summary of training results but a summary
of the model architecture. It is only once the fit() function has been called that
Keras knows the size of the input layer, that is, the number of feature columns, and
therefore the exact architecture of the model. The output of the summary() function
is reproduced below. The output of each layer is two-dimensional, with the first dimen-
sion (the ”rows”) being the batch size, and the second dimension (the columns) being
the outputs of the neural units at that level. The word None in the output shapes of each
layer indicate that the minibatch size is flexible. The model summary also confirms the
number of trainable paramaters, as explained earlier.

>>> boston_model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
===
dense (Dense) (None, 64) 832
dense_1 (Dense) (None, 1) 65
===
Total params: 897 (3.50 KB)
Trainable params: 897 (3.50 KB)
Non-trainable params: 0 (0.00 Byte)

Verifying the number of parameters and understanding what they do is impor-
tant to understand and verify the correctness of the implemented model!

13.5 Non-Linear Regression using Tensorflow and Keras
The example in this section illustrates the use of non-linear activation functions, fea-
ture preprocessing (normalization), model fitting with a validation data set, additional
training and validation metrics, and final visualization of model training. It provides a
more realistic example of the use of Tensorflow and Keras.

For normalization of numerical features, Keras provides a Normalization pre-
processing layer that can be included in the model:

norm_layer = tf.keras.layers.Normalization()

This layer scales the input features to have a mean of 0 and a standard deviation of 1.
To do this, the layer needs to ”take a look at” the training data to determine the col-
umn means that must be subtracted from the data, and the column standard deviations

430CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

that it must divide the data by. This is done by calling the adapt() function of the
normalization layer on the training data, first converted to a numpy array.

norm_layer.adapt(boston_features.to_numpy())

This example also uses a sequential model. The first layer is the normalization layer
that has been adapted to the training data. The remaining hidden and output layers are
similar to the earlier example, but this example uses a ReLU activation function for the
hidden layer and leaves the output layer without an activation.

norm_boston_model = tf.keras.Sequential([
norm_layer,
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1, activation=None)

])

The model summary output below shows the normalization layer as part of the model.
Note that a summary can be produced in this case prior to model fitting, because the
normalization layer already ”knows” about the shape of the data through its adaptation.

>>> norm_boston_model.summary()
Model: "sequential_1"

Layer (type) Output Shape Param #
===
normalization (Normalizati (None, 12) 25
dense_2 (Dense) (None, 64) 832
dense_3 (Dense) (None, 1) 65
===
Total params: 922 (3.61 KB)
Trainable params: 897 (3.50 KB)
Non-trainable params: 25 (104.00 Byte)

The number of trainable parameters is the same as in the previous model. However,
the normalization layer contains 25 parameters that are not trainable: the 12 columns
means, the 12 column standard deviations, and one parameter for the number of obser-
vations used in adapt().

Verifying the number of parameters and understanding what they do is impor-
tant to understand and verify the correctness of the implemented model!

The loss and optimizer functions are set as in the previous example. However, the
following code block also illustrates the use of metrics specified in the compile()
function. These are additional metrics that Keras will compute during training and

13.5. NON-LINEAR REGRESSION USING TENSORFLOW AND KERAS 431

testing. They are accessible from the training history object that is returned by the
fit() function.

Define loss and specify optimizer
norm_boston_model.compile(

loss = tf.keras.losses.MeanSquaredError(),
optimizer = tf.keras.optimizers.Adam(),
metrics = ['mse', 'mae'])

The fit() function returns a history of the loss function and any additional metrics
specified in compile(). The following Python code block also illustrates specifying
a different minibatch size (20, the default is 32), and a training/validation split for the
sample. After every epoch, Keras will evaluate the trained model on the validation
sample.

Fit model to data
train_hist = norm_boston_model.fit(

boston_features,
boston_labels,
batch_size=20,
epochs=50,
validation_split=0.33)

The final output of this example looks like the following, indicating the loss function
values and the additional metric values for both training and validation data sets for
each epoch:

Epoch 1/50
1/17 [>.............................] - ETA: 8s - loss: 784.9610 -
mse: 784.961017/17 [==============================] - 1s 19ms/step -
loss: 693.6062 - mse: 693.6062 - mae: 24.9111 - val_loss: 366.6743 -
val_mse: 366.6743 - val_mae: 17.3806
...
Epoch 50/50
1/17 [>.............................] - ETA: 0s - loss: 8.3212 -
mse: 8.3212 - m17/17 [==============================] - 0s 4ms/step-
loss: 13.6148 - mse: 13.6148 - mae: 2.8122 - val_loss: 200.7858 -
val_mse: 200.7858 - val_mae: 11.5683

The metrics can also be plotted. The following Python code example uses the Plotly
Express package and produces the graph shown in Figure 13.11.

432CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Figure 13.11: Regression example training and validation loss (MSE)

import plotly.express as px
import numpy as np
Transform the training history into a suitable data frame
hist = pd.DataFrame({

'training': train_hist.history['mse'],
'validation': train_hist.history['val_mse']})

hist['epoch'] = np.arange(hist.shape[0])
hist = pd.melt(hist, id_vars='epoch',

value_vars=['training', 'validation'])
Plot training history
fig = px.line(hist, x='epoch', y='value', color='variable')
fig.show()

Hands-On Exercise

• Modify the above code to include different activation functions, e.g.
"tanh", "sigmoid", or "relu". Comment on the learning progress
and loss function values.

• Modify the above code to change the number of units in the dense layer.
Comment on the learning progress and loss function values.

• Modify the architecture to add one or more dense layers with different
numbers of units. Comment on the learning progress and loss function
values.

13.6. CLASSIFICATION USING TENSORFLOW AND KERAS 433

13.6 Classification using Tensorflow and Keras

The classification example in this section uses the wage dataset from the ISLR2 library
for R. The dataset has been adapted to include a column wagequart, the quartile of
the wage to be predicted. Many features are categorical, encoded as strings, and need to
be converted to numeric inputs. This example illustrates additional techniques beyond
what the regression examples has demonstrated. These include categorical predictors
and their pre-processing, as well as the use of TensorBoard for visualization of the
model and the learning results.

First, read the data set and separate features and target labels, as in the regression
example above:

Read data and separate features from target labels
wage_data = pd.read_csv("https://evermann.ca/wage.csv")

wage_features = wage_data.copy()
wage_labels = wage_features.pop('wagequart') - 1

This example encodes each categorical feature using one-hot encoding. Similar to con-
trasts in traditional regression models, one-hot-encoding uses binary dummy variables
to express the different categories. Unlike contrasts in traditional regression models,
which use k − 1 dummy variables to encode k categories, one-hot encoding uses k
dummy variables to encode k categories. There is no ”base” category encoded by all
dummy variables being zero, as in contrasts in traditional regression. Instead, every
category is represented by its own dummy variable, and exactly one of the dummy
variables is one.

Because there are many categorical variables in the data set, the transformation to one-
hot is done using a for loop in the Python code block below. This example introduces
the Keras Input object, which is used to specify the shape and type of input for
each categorical feature. The Keras StringLookup layer takes as input a character
string denoting the category and turns character strings into one-hot dummy variables
(or, alternatively) into integer category numbers. The layer must be adapted, that is,
the data set is used to determine the number of different categories and therefore the
number of binary dummy variables for that layer. After adaptation, the lookup layer
is applied to the input object to create the one-hot encoded feature. The Keras input
object is then added to a dictionary of input objects, and the pre-processed, one-hot
encoded feature is added to a list pre-processed.

434CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Keep track of inputs and preprocessed inputs
inputs = {}
preproc_inputs = []

Loop over all categorical features
for cat_feature in ['maritl', 'race', 'education', \

'jobclass', 'health', 'health_ins']:

An Input variable is a placeholder that
accepts data input when training or predicting
input = tf.keras.Input(shape=(1,),

name=cat_feature, dtype=tf.string)

This StringLookup layer accepts a string and
outputs its category as a one-hot vector (or,
alternatively as an integer)
lookup = tf.keras.layers.StringLookup(

name=cat_feature+"_lookup", output_mode="one_hot")

Adapt it to the different strings in the data
lookup.adapt(wage_features[cat_feature])

And tie the input to this layer
onehot = lookup(input)

Add the input feature to the list of inputs
inputs[cat_feature] = input
Append the preprocessed feature to list of preprocessed inputs
preproc_inputs.append(onehot)

As in the earlier example, numerical input features (here, only the feature age) are
normalized using a normalization layer. The layer is adapted to the data set (the column
”age” of the Pandas dataframe). Next, the normalized age feature is formed by applying
the normalization layer to the age input opbject. The ”age” input object feature is then
added to the dictionary of input objects, and the normalized feature is appended to the
list of pre-processed inputs.

age_input = tf.keras.Input(shape=(1,), name="age", dtype="float32")
norm_layer = tf.keras.layers.Normalization(name="age_norm")
norm_layer.adapt(wage_features["age"])
age_norm = norm_layer(age_input)

inputs["age"] = age_input
preproc_inputs.append(age_norm)

The integer feature year will also be treated as categorical, rather than numerical.
For this, Keras provides an IntegerLookup layer, which behaves analogous to the
StringLookupLayer above but for integer inputs instead of character string inputs.

13.6. CLASSIFICATION USING TENSORFLOW AND KERAS 435

Define the input placeholder
year_input = tf.keras.Input(shape=(1,), name="year", dtype="int32")

Define and adapt an IntegerLookup layer for the one-hot encoding
lookup = tf.keras.layers.IntegerLookup(name="year_lookup",

output_mode="one_hot")
lookup.adapt(wage_features["year"])
year_onehot = lookup(year_input)

Add the input and preprocessed input to the collections
inputs["year"] = year_input
preproc_inputs.append(year_onehot)

The next step concatenates all preprocessed input features into a single vector using a
Keras Concatenate layer:

preprocessed_inputs = \
tf.keras.layers.Concatenate(name="concat")(preproc_inputs)

The next step builds a first Keras model that is responsible only for the preprocessing
of inputs. Instead of using a Sequential model type construction, a Keras Model
object is created directly by supplying its inputs (inputs) and outputs
(the preprocessed_inputs) as well as a name for the model. Note that in defin-
ing the preprocessing in the above code blocks, the outputs can be traced back to the
preprocessing layers and then to the corresponding inputs; Keras assembles a model
using this information.

preproc_model = tf.keras.Model(inputs,
preprocessed_inputs,
name="preproc")

preproc_model.summary()

The summary for this model is printed below. Note the output shape of the input lay-
ers are one element each (that is, the character string expressing the category, or the
integer for the year, or the floating point value for the age), whereas the output of the
corresponding string lookup layers are one-hot-encoded and have as many elements as
there are categories for that feature. Also note last column that shows the connections
between a layer and its input. Finally, except for the normalization layer for age, no
other layer has any parameters. The age normalization layer has three parameters, cor-
responding to the mean, standard deviation, and number of observations of the inputs
it has received during adaptation. These are non-trainable parameters and their values
are determined from the data when the layer was adapted.

436CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

>>> preproc_model.summary()
Model: "preproc"

Layer (type) Output Shape Param Connected to
===
maritl (InputLayer) [(None, 1)] 0 []
race (InputLayer) [(None, 1)] 0 []
education (InputLayer) [(None, 1)] 0 []
jobclass (InputLayer) [(None, 1)] 0 []
health (InputLayer) [(None, 1)] 0 []
health_ins (InputLayer) [(None, 1)] 0 []
age (InputLayer) [(None, 1)] 0 []
year (InputLayer) [(None, 1)] 0 []
maritl_lookup (StringLo (None, 6) 0 ['maritl[0][0]']
race_lookup (StringLook (None, 5) 0 ['race[0][0]']
education_lookup (Strin (None, 6) 0 ['education[0][0]']
jobclass_lookup (String (None, 3) 0 ['jobclass[0][0]']
health_lookup (StringLo (None, 3) 0 ['health[0][0]']
health_ins_lookup (Stri (None, 3) 0 ['health_ins[0][0]']
age_norm (Normalization (None, 1) 3 ['age[0][0]']
year_lookup (IntegerLoo (None, 8) 0 ['year[0][0]']
concat (Concatenate) (None, 35) 0 ['maritl_lookup[0][0]',

'race_lookup[0][0]',
'education_lookup[0][0]',
'jobclass_lookup[0][0]',
'health_lookup[0][0]',
'health_ins_lookup[0][0]',
'age_norm[0][0]',
'year_lookup[0][0]']

===
Total params: 3 (16.00 Byte)
Trainable params: 0 (0.00 Byte)
Non-trainable params: 3 (16.00 Byte)

Verifying the output shapes of each layer is important to understand and verify
the correctness of the implemented model!

With the preprocessing complete, the actual classification model can be built. The
Python code block below defines this as a three-layer sequential model with four output
units, corresponding to the four classes to be predicted. The activation on the output
layer is a softmax so that the model outputs class-membership probabilities, rather than
logits (as an equivalent, Keras provides an explicit Softmax layer that could be used).
Instead of providing layers as a list to the Keras Sequential model constructor as in
the earlier example, this example uses the add() function to add layers to the model.

13.6. CLASSIFICATION USING TENSORFLOW AND KERAS 437

class_model = tf.keras.Sequential(name="classification")
class_model.add(tf.keras.layers.Dense(64, activation="relu"))
class_model.add(tf.keras.layers.Dropout(0.25))
class_model.add(tf.keras.layers.Dense(32, activation="relu"))
class_model.add(tf.keras.layers.Dropout(0.25))
class_model.add(tf.keras.layers.Dense(4, activation="softmax"))
Alternatively:
class_model.add(tf.keras.layers.Dense(4, activation=None))
class_model.add(tf.keras.layers.Softmax())

To connect the model for feature preprocessing and the classification model, it is impor-
tant to recall that the output of the preprocessing model is the input to the classification
model. That is, the output of the preprocessing model when applied to the inputs, is
the input to the class_model. In other words, the classification result is the output
of applying the class model to the output of the preprocessing model when applied to
the input objects, as shown in the following Python code block:

class_results = class_model(preproc_model(inputs))
class_model.summary()

The output of the summary() function is shown below. The reader should verify the
number of trainable parameters and understand what these parameters represent in the
model.

Model: "classification"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 64) 2304
dropout (Dropout) (None, 64) 0
dense_5 (Dense) (None, 32) 2080
dropout_1 (Dropout) (None, 32) 0
dense_6 (Dense) (None, 4) 132
===
Total params: 4516 (17.64 KB)
Trainable params: 4516 (17.64 KB)
Non-trainable params: 0 (0.00 Byte)

The final complete Keras Model has the dictionary of Input objects as input and the
classofication result as outputs:

wage_model = tf.keras.Model(inputs, class_results, name="wage_model")
wage_model.summary()

438CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Model: "wage_model"
__
Layer (type) Output Shape Param # Connected to
==
age (InputLayer) [(None, 1)] 0 []
education (InputLayer) [(None, 1)] 0 []
health (InputLayer) [(None, 1)] 0 []
health_ins (InputLayer) [(None, 1)] 0 []
jobclass (InputLayer) [(None, 1)] 0 []
maritl (InputLayer) [(None, 1)] 0 []
race (InputLayer) [(None, 1)] 0 []
year (InputLayer) [(None, 1)] 0 []
preproc (Functional) (None, 35) 3 ['age[0][0]',

'education[0][0]',
'health[0][0]',
'health_ins[0][0]',
'jobclass[0][0]',
'maritl[0][0]',
'race[0][0]',
'year[0][0]']

classification (Sequenti (None, 4) 4516 ['preproc[0][0]']
==
Total params: 4519 (17.66 KB)
Trainable params: 4516 (17.64 KB)
Non-trainable params: 3 (16.00 Byte)

With the model defined, it can now be compiled. That is, the loss function, the opti-
mizer, and any additional metrics are specified. This example uses cross-entropy as a
loss function, the Adam optimizer, and the accuracy and KL-divergence as additional
metrics to calculate and report. The Python code block below explicitly shows some of
the hyper-parameters for the Adam optimizer for illustration, but they are left at their
defaults. Note how these parameters are used in Equations 13.9 to 13.11.

wage_model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=False),
optimizer=tf.keras.optimizers.Adam(

learning_rate=0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07),

metrics=[
tf.keras.metrics.SparseCategoricalAccuracy(),
tf.keras.metrics.KLDivergence()])

Note: Specifying from_logits=True for the loss function can save
the softmax activation or the softmax layer at the bottom of the
sequential classification model.

As indicated in the model summary output above, the model has eight distinct inputs
in its InputLayer. Hence, when fitting the model, the training or validation data
must be provided as a dictionary with eight corresponding entries of Numpy arrays.

13.6. CLASSIFICATION USING TENSORFLOW AND KERAS 439

https://commons.wikimedia.org/wiki/File:Tensorboard_1.jpg

Figure 13.12: Tensorboard visualization

The following Python code block sets this up, converting Pandas dataframe columns to
Numpy arrays:

import numpy as np
wage_feature_dict = \

{name: np.array(value) for \
name, value in wage_features.items()}

TensorBoard is a tool to visualize neural network models and their training and valida-
tion data/performance, as shown in Figure 13.12. To use the TensorBoard visualization
tool, the training and validation performance is written to a set of files during the train-
ing process. The following code block specifies the folder where the files are to be
created, with a separate subfolder for each model that is fitted, named by date and time.
A callback function is then created that will be passed to the model fit() function:

import datetime
Construct the folder name
log_dir = "./tensorboard_logs/" + \

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

Define the Tensorboard callback function
tensorboard_callback = \

tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=0)

Next, the model is trained for 25 epochs, using 1/3 of the data for validation and the
remainder for training:

https://commons.wikimedia.org/wiki/File:Tensorboard_1.jpg

440CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

wage_hist = wage_model.fit(
x = wage_feature_dict,
y = wage_labels,
validation_split=0.333,
batch_size=20,
epochs = 25,
callbacks=[tensorboard_callback])

Training history can be plotted using Python graphics packages, here Plotly Express:

import plotly.express as px
hist = pd.DataFrame({

'training':
wage_hist.history['sparse_categorical_accuracy'],

'validation':
wage_hist.history['val_sparse_categorical_accuracy']})

hist['epoch'] = np.arange(hist.shape[0])
hist = pd.melt(hist, id_vars='epoch',

value_vars=['training', 'validation'])
fig = px.line(hist, x='epoch', y='value', color='variable')
fig.show()

However, TensorBoard provides a better and more interactive way to explore the model
and its training peformance. To use Tensorboard for models fitted with an appropriate
callback function, first start Tensorboard from a terminal application or other bash
shell and provide the log file directory that was specified in the TensorBoard callback
definition:

This following command is NOT a Python command, use a bash shell in a Terminal!

tensorboard --logdir tensorboard_logs

TensorBoard is a web-based application, visit the URL http://localhost:6006
in a web browser. Figures 13.13 to 13.15 show some excerpts of the TensorBoard visu-
alizations. Figure 13.13 shows a summary of the training and validation performance,
Figure 13.14 shows part of the computation graph that Tensorflow uses, showing the
lookup layers defined in the model and the concatenate operation of the preprocessed
inputs. Figure 13.15 shows an excerpt of the classification model, showing the dense
and dropout layers.

Callback functions like the Tensorboard callback used above, are a Keras mecha-
nism to perform certain actions as part of the training process. Keras calls these
callback functions while training the model. Another useful callback function is the
EarlyStopping callback. It allows the analyst to specify that Keras should stop

http://localhost:6006

13.6. CLASSIFICATION USING TENSORFLOW AND KERAS 441

Figure 13.13: Tensorboard visualization of classification model (1)

Figure 13.14: Tensorboard visualization of classification model (2)

model training when a certain metric does not change over a number of epochs. The
following Python code block gives an example:

earlystop_callback = tf.keras.callbacks.EarlyStopping(
monitor = 'val_loss',
patience = 3,
mode = 'min', # or 'max' or 'auto' depending on monitor metric
restore_best_weights = True)

The metric to monitor can be the loss function (training or validation as per the prefix)
or any of the additional metrics to be computed that are specified in the metrics
argument to compile(). The patience parameter indicates the number of epochs
to wait for an improvement before stopping the training; the mode parameter indicates
whether to wait for decrease, increase, or to automatically determine this from the
metric to monitor. Finally the restore_best_weights option is used to restore
the parameter values from the best epoch or to retain the parameter values from the final
training epoch. The early stopping callback can be provided to the fit() function in
the same list as the Tensorboard callback.

442CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

Figure 13.15: Tensorboard visualization of classification model (3)

Hands-On Exercise

• Examine the model summaries for the preprocessing, the classification,
and the complete wage model. Explain the number of trainable and total
parameters, and also explain the output shapes of each layer.

• Make the ”wage” prediction a binary classification problem:
1. Modify the wage_labels in the Pandas data frame and combine

classes 0, 1 and classes 2, 3 (class numbers should be 0 or 1)
2. Modify the classification network to have a single output node
3. Use the BinaryCrossentropy loss
4. Return the following metrics as part of the training history:

– Precision
– Recall
– AUC

5. Plot the metrics after training

13.7. REVIEW QUESTIONS 443

13.7 Review Questions
Introduction

1. What is the original motivation behind the development of artificial neural net-
works (ANNs)?

2. Explain the role of biological neurons and their connections in the brain. How
does this biological inspiration relate to ANNs?

Artificial Neural Networks

3. Describe the basic equation that defines a neural network unit or cell. Include
the role of inputs, weights, bias, and the activation function.

4. Why is it important for the activation function to be non-linear in neural net-
works?

5. List at least three frequently-used activation functions and provide their mathe-
matical definitions. Sketch them and their gradients.

6. What is the primary purpose of an activation function in a neural network?
7. Sketch and explain the architecture of a neural network with a single, fully-

connected hidden layer.
8. Sketch a diagram of a non-trivial neural network and calculate the number of

trainable parameters.
9. In the context of neural networks, what is the purpose of having an output layer

with multiple output units?
10. How do neural networks handle multi-objective regression problems? Provide

an example of a scenario where this might be useful.
11. Define multi-class classification in neural networks. How is the softmax activa-

tion function used in this context?
12. Write the mathematical expression for the softmax activation function and ex-

plain its components.
13. How does the architecture of a neural network influence its ability to learn from

data? Consider the depth (number of layers) and width (number of units per
layer) in your answer.

Parameter Estimation

14. What is the purpose of a loss function in training a neural network?
15. What loss functions are typically used for classification in neural networks?
16. Define the parameter vector ϕ of a neural network. What are its components?
17. How does the choice of loss function affect the training and performance of a

neural network?
18. Compare and contrast the Mean Squared Error (MSE) and Mean Absolute Error

(MAE) functions. When might you choose one over the other?

Gradient Descent

19. What is the gradient of a function and how is it used in gradient descent?

444CHAPTER 13. INTRODUCTION TO NEURAL NETWORKS AND DEEP LEARNING

20. Explain the iterative process of gradient descent. What are the steps involved?
21. Describe the potential problems encountered during gradient descent.
22. Why is it important to choose an appropriate learning rate in gradient descent?

Stochastic Gradient Descent

23. How does stochastic gradient descent (SGD) differ from non-stochastic gradient
descent? Why is it called ”stochastic”?

24. What is a minibatch in the context of SGD, and why are minibatches used?
25. Define an epoch in the context of training neural networks.
26. Explain the concept of early stopping and its purpose in training neural networks.
27. How does the size of a minibatch affect the performance and stability of SGD?
28. What are the advantages and disadvantages of using large versus small mini-

batches in SGD?

Parameter Updates

29. What is an adaptive learning rate and why is it used?
30. Describe the AdaGrad method and its purpose.
31. How does RMSProp modify AdaGrad to improve its performance?
32. Explain the AdaDelta method and how it differs from RMSProp.
33. What are momentum methods in SGD and what problem do they address?
34. Describe the Nesterov momentum method and how it improves upon standard

momentum.

Gradient Problems

35. What are vanishing gradients and why do they occur in neural networks?
36. List and explain three methods to address the vanishing gradient problem.
37. Describe the ResNet architecture and how it helps to address the vanishing gra-

dients problem.
38. Explain the concept of gradient clipping and its purpose.
39. How does batch normalization help address the vanishing gradient problem?
40. Discuss the importance of proper weight initialization in preventing gradient

problems.

Regularization with Dropout

41. What is dropout and how does it help to prevent overfitting in neural networks?
42. What are typical dropout rates used in practice?
43. Explain how dropout mimics the training of an ensemble of neural networks.
44. Discuss the impact of dropout on the training and evaluation phases of neural

network training.
45. How does dropout act as a form of regularization in neural networks?

Chapter 14

Convolutional Neural Networks

Learning Goals
After reading this chapter, you should be able to:

• Explain and calculate basic one-dimensional and two-dimensional convolutions,
including padding and striding.

• Explain the purpose of different pooling methods for convolutional networks and
calculate basic pooling in one and two dimensions.

• Explain the building blocks of a ConvNet for classification, their purpose, and
the concept of a feature map.

• Build convolutional networks for image and text classification using popular neu-
ral network software tools.

• Explain the concept of a word embedding and its use in neural networks.

Sources and Further Reading
The material in this chapter is based on the following sources.

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/book1.html

Chapter 13, 14, 15

445

https://probml.github.io/pml-book/book1.html

446 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

The book by Murphy is freely available and provides three chapters on neural networks,
one for structured data, one for images, and one for sequences. It provides significant
depth on convolutional and recurrent network architectures, fitting the models, and
problems that the data analyst may encounter.

Tensorflow Guides:
https://www.tensorflow.org/guide
https://www.tensorflow.org/tutorials/load_data/text

This course uses the Tensorflow programming framework for neural network applica-
tions. The Tensorflow website has a multitude of introductory and advanced guides
and tutorial that cover all aspects of machine learning with neural networks.

14.1 Introduction
Convolutional Neural Networks (CNNs) are a class of deep neural networks, most
commonly applied to analyzing images. They are also known as ConvNets and are
particularly powerful for tasks like image recognition and classification. CNNs have
been successful in identifying faces, objects, and traffic signs as well as powering vision
in robots and self driving cars. CNNs as they are known today were popularized in the
1990s by Yann LeCun and his colleagues, who used them for digit recognition in postal
codes.

The primary motivation for convolutional networks stems from the limitations of fully
connected networks in image processing. Fully connected networks that treat input
pixels independently lack the spatial hierarchies of features in an image, which leads
to inefficiencies and a loss of spatial relationships among pixels. CNNs address these
issues by leveraging spatial hierarchies through localized receptive fields called convo-
lution filters, shared weights, and pooling, which results in robustness to image trans-
formations and significant reduction in the number of parameters needed.

At its core, a CNN automatically learns and identifies various features in images at
multiple levels of abstraction. For example, the initial layers might detect edges and
textures, intermediate layers learn to identify larger motifs, and deeper layers interpret
these motifs as parts of familiar objects. CNNs have been successfully applied in a
wide range of visual data applications, including:

• Image and Video Recognition: CNNs can classify images and videos into cate-
gories, often surpassing human performance in tasks such as facial recognition
and object detection.

• Medical Image Analysis: In healthcare, CNNs are used for diagnosing diseases
by analyzing medical scans to detect anomalies like tumors in MRI scans or
X-rays.

• Autonomous Vehicles: They help in identifying obstacles, understanding traffic
signs, and enabling vehicles to make informed decisions.

https://www.tensorflow.org/guide
https://www.tensorflow.org/tutorials/load_data/text

14.2. CONVOLUTIONAL LAYERS 447

• Augmented Reality: CNNs can augment real-world environments by enhancing
image and video feeds in real-time, providing a richer user experience.

CNNs represent a significant advancement in the ability to automatically interpret large
sets of visual data, leading to improvements across various applications that require
automatic visual recognition. Their ability to understand the complexity of images
and videos with increasing accuracy has made them the backbone of modern artificial
intelligence in the visual domain.

14.2 Convolutional Layers
A convolutional layer is a fundamental building block of a Convolutional Neural Net-
work (ConvNet). It performs the primary operations that allow a ConvNet to capitalize
on the spatial structure of input data, such as images, by extracting features that be-
come increasingly complex and high-level as data progresses through deeper layers of
the network.

A convolutional layer applies a set of learnable convolution filters (also known as con-
volution kernels) to the input. Each filter is small spatially (along width and height),
but extends through the full depth of the input volume.

The convolution operation involves sliding each filter across the width and height of
the input image and computing dot products between the filter and the local regions of
the input image. As the filter slides over the input image, a 2-dimensional activation
map (or feature map) is created as output that gives the responses of that filter at every
spatial position. Intuitively, the network learns filters that activate when they see some
specific type of feature at some spatial position in the input.

Figure 14.1 shows an example in one dimension. The kernel vector [1, 2] is first multi-
plied element-wise with the first two elements of the input, yielding [0, 1][̇1, 2] = [0, 2].
The result is then summed, yielding 2. This is the first element of the output. The ker-
nel is then moved one position to the right. Multiplication with that input portion yields
[1, 2][̇1, 2] = [1, 4] and summing yields 5, the second element of the output or activa-
tion/feature map. This is done until the kernel is multiplied with the two right-most
elements of the input in Figure 14.1. Note that the kernel of length 2 can be applied 6
times to the input of length 7 in Figure 14.1, yielding an output of length 6.

Figure 14.2 shows an example in two dimensions. Here, the first multiplication and
summing yields 00̇ + 11̇ + 32̇ + 43̇ = 19, which is the top left element of the output in

Source: Murphy Fig. 14.4

Figure 14.1: 1-dimensional convolution filter

448 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Source: Murphy Fig. 14.5

Figure 14.2: 2-dimensional convolution filter

Figure 14.2. The kernel can then be moved once to the right, and once to the bottom.
This yields an output shape of 2× 2.

Figure 14.3 shows a mulit-channel 2D convolution. The kernel consists of two channels
that are applied to two channels of the input. There are as many channels in the kernel
as there channels in the input. The two channels are then summed to product a single
output channel. As a realistic example, consider an RGB image with three ”depth”
channels, one each for the red, green, and blue color components. A kernel might then
have a size of 3× 3× 3 (3 width, 3 height, and 3 for the three color channels).

A single convolutional network layer may have multiple filters. Each filter will yield
one output channel or activation/feature map. These output channels are in addition to
the depth of each filter. For example, the 2×2×2 filter applied to the 3×3×2 input in
Figure 14.3 yielded a single output channel of shape 2 × 2. Applying 10 independent
filters that are each of shape 2×2×2 to the input yields an output of shape 2×2×10.

Consider another simple example in image processing, with an input image of size
32× 32× 3 (width x height x channel (red, green, blue)). A convolutional layer might
have 10 filters of size 5 × 5 × 3. The output of applying these filters will result in an
output of size 28× 28× 10 (when using a stride of 1 and no padding, see below).

Source: Murphy Fig. 14.9

Figure 14.3: Multi-channel 2D convolution

14.2. CONVOLUTIONAL LAYERS 449

Source: Murphy Fig. 14.8(b)

Figure 14.4: Striding and padding in a convolutional network

While the examples show fixed numbers in the kernels, the kernel elements are
actually trainable parameters.

Verifying the shape/dimensions of inputs, kernels, and outputs, and understand-
ing how they are related to each other is important to understand and to verify
the correctness of the implemented model!

There are two key considerations when defining a convolutional network layer, stride
and padding. When moving the kernel over the input, the stride controls the size of the
steps in each direction. A stride of 1 means the kernel moves one column or row at a
time. A larger stride results in downsizing of the feature map, in removing redundancy
in the output feature map (it avoids an input element being processed multiple times by
a filter) and in increasing the efficiency of the data representation in the neural network.

Second, the input is often padded with zeros around the edges (”zero-padding”). This
allows control over the shape of the output feature map and it also increases the weight
or emphasis given to edge values, which are otherwise captured only once by a filter, in
contrast to interior values, which are captured multiple times as the kernel moves over
the input. Inputs may be padded by one ”frame” of zeros or by multiple zero-frames,
limited only by the size of the convolution kernel.

Figure 14.4 shows an example of a zero padded input (bottom, dark gray squares sur-
rounding the light gray squares indicate padding) and a striding of 2 in each direction.
The output feature map is shown on top.

While the convolution layer may look complicated and complex, it essentially pro-
duces a weighted sum of inputs where the convolution kernel entries are the weights,

450 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Source: Murphy Fig. 14.12

Figure 14.5: Pooling in a ConvNet

very much like the general neural network unit definition in the previous chapter. A
bias term is added to the weighted sum produced by the convolution, before the sum
is transformed using a non-linear activation function. In many ConvNets, the activa-
tion function is the ReLU (Rectified Linear Unit). In other words, the CNN functions
very much like the general neural networks introduced in the previous chapter, except
that the connections between inputs and weights are more complex and focus on spa-
tial relationships. As with fully connected networks, it is important to understand the
number of parameters (weights and biases) in order to verify the correctness of the
implemented model.

14.3 Pooling Layers
Pooling layers within ConvNets are used to reduce the spatial dimensions (width and
height) of the convolution output for the next convolutional layers or for subsequent
dense, fully-connected layers. This reduction in dimensions serves several purposes. It
decreases the computational load and the memory usage, helps prevent overfitting by
providing an abstracted form of the representation, and makes the network invariant
to small transformations, distortions, and translations in the input. Pooling is applied
separately to each output channel of a convolution.

The most common types of pooling include max pooling and average pooling. Max
pooling partitions the convolution output into a set of overlapping or non-overlapping
regions, and outputs the maximum value for each such region. For instance, a 2 × 2
max-pooling layer applied with a stride of 2 reduces the size of the input by a factor of
four (halving the height and width separately). Instead of taking the maximum value
from each distinct region, average pooling computes the average of the values in each
patch on a feature map.

Figure 14.5 shows an example of 2× 2 max pooling on a 3× 3 input with stride 1. In
this example, the pooling stride is less than the pooling filter size, so that the pooled
regions are overlapping. Each convolution output may be captured multiple times in
different pooling outputs. When the stride is chosen to the same size as the pooling
filter, the regions are not overlapping. Overlapping regions retain more information but
are computationally more intensive and require additional memory, as the size of the
pooling output and therefore the size of all subsequent layers is larger.

14.4. UNDERSTANDING CONVNETS 451

In image processing in particular, pooling helps the network become invariant to small
translations, rotations, and scalings of an image. Max pooling in particular helps in
detecting features like edges, textures, and shapes, even if they appear in different
areas of the image in different instances. Although pooling reduces the resolution of
the feature map, important features (like the presence of certain edges or textures) are
retained due to the nature of max or average operations within localized regions of the
input.

Hands-On Exercise

1. Assume the following 5× 5 input matrix:
1 2 3 2 1

2 3 2 1 3

3 2 1 3 2

2 1 3 2 1

1 3 2 1 3

and the following 3× 3 convolution kernel:1 2 1

2 4 2

1 2 1

Zero-pad the matrix with two zeros on all sides and using stride 2, calcu-
late the convolution result. What are the dimensions of the convolution
output?

2. Apply a 2x2 max pooling layer to the result of the previous exercise.

14.4 Understanding ConvNets
The convolutional and pooling layers of a CNN are only part of the complete neural
network. The purpose of the these layers is essentially feature extraction or feature
learning, that is, to identify or learn features in the input that might be useful for
subsequent tasks like classification. For images processing tasks, the convolutional
and pooling layers may detect features such as edges, textures, geometric shapes, etc.
These features are useful in classifying the image content, e.g. does the image show a
bee or a tiger.

Figure 14.6 shows an example of a complete network. Multiple convolutional and
pooling layers are stacked in a sequential model. The output of the final pooling layer
is then ”flattened”, that is, the information in the two or three dimensional output (width
x height x channels) is arranged linearly in a one-dimensional vector. This vector forms
the input to a classification network, which typically consists of a sequence of dense,

452 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Source: Murphy Fig. 14.13

Figure 14.6: Convolutional network for image classification

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.7: Convolutional network for image classification, with dimensionality

fully-connected layers and a final softmax output layer, as illustrated in the previous
chapter. Thus, one can think of the convolutional part of the network as the feature
extraction or feature learning part whose output are the features for the classification
part of the network.

Figure 14.7 shows another useful diagram. In addition to the general architecture it
shows the dimensionality of the output at each stage, which is very helpful in under-
standing how convolution and pooling filters operate. For example, the input image is
of shape 224 × 224 × 3. There are 96 convolutional filters operating on this image,
each with a kernel shape of 7×7×3 and a stride of 2. This yields an output with shape
110×110×96. The subsequent 3×3 pooling with stride 2 reduces this to 55×55×96
for the final layer 1 output.

Verifying the shape/dimensions of inputs, kernels, and outputs, and understand-
ing how they are related to each other is important to understand and to verify
the correctness of the implemented model!

https://doi.org/10.48550/arXiv.1311.2901

14.4. UNDERSTANDING CONVNETS 453

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.8: DeconvNet architecture

This term ”feature map” may be used in various ways. Some authors use it
to describe the convolution output before the application of activation function
and pooling, some authors use it to describe the convolution output after ap-
plication of the activation function but prior to pooling, some authors use it to
describe the output after pooling and some authors use it to describe any of the
three. Hence, when the term ”feature map” is used, it is important to identify
the precise meaning in a particular context.

To understand how convolutional networks perform feature extraction or feature learn-
ing, it is instructive to visualize the feature maps. There are multiple ways of doing this.
One of the earliest techniques developed for this is the ”DeconvNet1”. The general ar-
chitecture of a DeconvNet is shown in Figure 14.8. Using an unpooling operation, a
DeconvNet successively reconstructs the image input for a feature map.

Figures 14.9 to 14.12 show reconstructed visualizations for a selection of feature maps
in a 5-layer convolutional network. The feature maps on the left of each image give an
indication of the type of feature they represent, and the corresponding visualization on
the right of each figure gives examples of input images that correspond to the detected

1Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.48550/arXiv.1311.2901

454 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.9: Layer 1 feature map visualization by a DeconvNet

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.10: Layer 2 feature map visualization by a DeconvNet

features. The images on the right of each figure are not training images, they are
reconstructed by the DeconvNet.

Figure 14.9 indicates that the first layer appears to have learned to recognize basic
features such as edges or image contrasts as well as colours of an image.

The second layer in Figure 14.10 appears to have learned to recognize geometric shapes
such as lines, circles, squares, but also colors.

Layer 3, shown in Figure 14.11, has learned to recognize more complex features that
resemble simple objects, such as wheels, fruits, people, but also complex geometric
patterns.

https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.48550/arXiv.1311.2901

14.4. UNDERSTANDING CONVNETS 455

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.11: Layer 3 feature map visualization by a DeconvNet

Source: Matthew D. Zeiler and Rob Fergus (2013) Visualizing and Understanding Convolutional Networks.
https://doi.org/10.48550/arXiv.1311.2901

Figure 14.12: Layers 4 and 5 feature map visualization by a DeconvNet

Finally, layers 4 and 5 have learned to extract specific objects or object parts, such as
dogs, birds, but also geometric shapes. The final layer shows a clear ability to extract
the presence of specific object classes in an image.

https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.48550/arXiv.1311.2901

456 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

14.5 Image Classification Example using Tensorflow
This section illustrates how to implement convolutional neural networks in Tensor-
flow/Keras2. This example uses the CIFAR10 data set, a standard data set used to
benchmark image classification methods. The data set consists of 60,000 images with
resolution of 32×32 pixels and 3 RGB channels. There are ten classes. The latest error
rates on this data set are less then 0.5%, showing that it is no longer useful as a realistic
or competitive benchmark — it is essentially a solved problem. However, due to the
small image size and data set size, it is computationally easy to analyze and useful as
an illustrative example.

Complete implementations for this and the other examples in this chapter are available in the
following GitHub repo: https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL: https://github.com/jevermann/

busi4720-ml.git

The data set is part fo the Keras Python package, making import easy. The function
load_data() provides separated training and testing images and labels:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import datetime

(train_images, train_labels), (test_images, test_labels) \
= datasets.cifar10.load_data()

The RGB values in the original images are coded on a scale of 0 to 255. The first step
is to scale these values to the range of 0 to 1 in order to avoid gradient problems during
model training:

Normalize pixel values to be between 0 and 1
train_images, test_images = train_images/255.0, test_images/255.0

Keras makes it easy to create a convolutional network similar to the one shown in
Figure 14.7. This example uses three convolutional layers, each with a ReLU activation
and followed by max-pooling.

The first argument to the Conv2D() layer creation function specifies the number of
output channels, that is, the number of independent convolution kernels. In the exam-
ple, the first layer has 8 output channels, the second and third layers have 16 output
channels. The second argument specifies the shape of the convolution kernel, which is
3 × 3 for all layers in this example. The input shape for the first convolutional layer

2Python code for this example is taken from TensorFlow.org that is made available under a Apache 2.0
license.

https://github.com/jevermann/busi4720-ml
https://github.com/jevermann/busi4720-ml.git
https://github.com/jevermann/busi4720-ml.git
https://www.tensorflow.org/tutorials/images/cnn
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

14.5. IMAGE CLASSIFICATION EXAMPLE USING TENSORFLOW 457

must be provided explicitly. Note that no batch size is specified, only the image in-
put dimensions are needed; the batch size can be specified later. The input shapes for
subsequent layers are automatically determined from the output shapes of the previous
layers.

Create a simple convolutional model:
model = models.Sequential()
model.add(layers.Conv2D(8, (3, 3), activation='relu',

input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (3, 3), activation='relu'))

After the convolutional layers for feature extraction, the remainder of network uses
fully-connected, dense layers for classification. Because there are 10 target classes, the
final, output layer has 10 units.

Add dense (fully-connected) layers for classification.
There are 10 target classes
model.add(layers.Flatten())
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10))
Show model summary
model.summary()

The model summary is shown below. It is easy to verify the number of parameters.
For example, the first Conv2D layer uses 3× 3 kernels on 3 channels, for a total of 27
parameters. There are 8 such kernels, each creating one of the 8 output channels,
and each adding a bias term before applying the activation function, for a total of
8 × 27 + 8 = 224 parameters. The output shape is 30 × 30 because a kernel of
shape 3× 3 can be moved 30 times in each direction with a stride of 1.

The max pooling layer uses a kernel size of 2×2 and the default for Keras max-pooling
layers is to use non-overlapping regions, that is, a stride of the same size as the kernel
size. Hence, the output shape of the first max-pooling layer is 15 × 15 for each of the
8 channels.

The second Conv2D layer operates on this input size and produces 16 output channels
with a kernel size of 3 × 3. It needs to operate on the 8 channels of the input yielding
3 × 3 × 8 = 72 parameters for each kernel. There are 16 of such kernels that each
create one output channel. Each such kernel again adds one bias term to the weighted
sum of the convolution for a total of 72 × 16 + 16 = 1168 parameters. With a stride
of 1, the kernel can be moved across the input 13 times, resulting in an output shape of
13× 13× 16. The secon max-pooling layer also uses a 2× 2 non-overlapping kernel,
yielding an output size of 6× 6× 16.

458 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

The third Conv2D layer uses 16 output channels of a 3×3 kernel. Each kernel operates
on 16 input channels. Thus, the total number of parameters in this layer is 3×3×16×
16 + 16 = 2320. A kernel this size can be moved 4 times in each direction over an
input of size 6× 6, yielding a final output shape of 4× 4× 16 for a total of 256 values.
The flatten layer simply transforms them to a one-dimensional layer of 256 values.
The following dense layer with 32 units then has 32 × 256 + 32 = 8224 trainable
parameters (refer to the previous chapter for details), and the output layer for 10 classes
has 10 × 32 + 10 parameters. Note that the model contains no softmax activation or
softmax layer, so the final output are logits, not class membership probabilities.

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 30, 30, 8) 224
max_pooling2d (MaxPooling2 (None, 15, 15, 8) 0
conv2d_1 (Conv2D) (None, 13, 13, 16) 1168
max_pooling2d_1 (MaxPoolin (None, 6, 6, 16) 0
conv2d_2 (Conv2D) (None, 4, 4, 16) 2320
flatten (Flatten) (None, 256) 0
dense_3 (Dense) (None, 32) 8224
dense_4 (Dense) (None, 10) 330
===
Total params: 12266 (47.91 KB)
Trainable params: 12266 (47.91 KB)
Non-trainable params: 0 (0.00 Byte)

Verifying the shape/dimensions of inputs, kernels, and outputs, and understand-
ing how they are related to each other is important to understand and to verify
the correctness of the implemented model!

Next, the callback function for writing TensorBoard log files is specified, similar to
examples in the previous chapter:

Construct log file folder name
log_dir = "./tensorboard_logs/" + \

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
Create TensorBoard callback function
tensorboard_callback = \

tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=0)

Finally, the model is compiled and trained for 100 episodes. Note that from_logits
must be set for the loss function because the model’s output layer provides logits, not
probabilities.

14.6. OTHER COMPUTER VISION TASKS FOR CNNS 459

Compile and train the model:
model.compile(optimizer='adam',

loss=tf.keras.losses \
.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

history = model.fit(train_images, train_labels,
epochs=10,
validation_data=(test_images, test_labels),
callbacks=[tensorboard_callback])

The training accuracy after 100 episodes is ≈ 75% and the validation accuracy is ≈
66% showing relatively poor performance and some evidence of overfitting. However,
noting that random performance should yield an accuracy of 0.1 for 10 classes, it also
shows that a relatively simple network with only a few thousand parameters is already
quite capable at image classification.

Hands-On Exercise

Adapt the network architecture to identify the impact on training and validation
performance of the following:

1. Convolution kernel size (originally 3× 3)
2. Number of convolution filters (output channels) (originally 8, 16)
3. Convolution stride (originally 1)
4. Number of 2D-Conv layers (originally 3)
5. Type of pooling (originally max-pooling)

Comment on your findings and identify the best model.

Tip: You can find information on how to change the layers in the Keras
documentation for convolution layers and for pooling layers.

In particular, explore the trade-offs between using a large number of smaller
filters versus a smaller number of larger filters in the context of convolution
followed by pooling.

Explore how does the choice of pooling strategy (max vs average) affects
the features extracted by a convolutional neural network and the predictive
performance of the model.

14.6 Other Computer Vision Tasks for CNNs
Two additional tasks that CNNs are useful for are object detection and semantic seg-
mentation. These two tasks are the basis of a wide array of applications including
autonomous driving, medical image analysis, and surveillance.

https://keras.io/2.16/api/layers/convolution_layers/
https://keras.io/2.16/api/layers/pooling_layers/

460 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Source: Murphy Fig. 14.27

Figure 14.13: Object detection example input and bounding boxes

Object Detection is the task of identifying and localizing objects within an image or
a video. The task is not just to classify whether certain objects are present (as in image
classification) but also to find their boundaries or ”bounding boxes” within the image.
Object detection is crucial in scenarios where the context provided by the location of
an object within a scene affects the decision-making process, such as in security for
detecting suspicious activities or in retail for counting products.

Figure 14.13 illustrates the problem for the input image in the left panel. The right
panel overlays this input image with a set of potential bounding boxes or ”anchor
boxes”. For each anchor box, the CNN must learn the object presence probability,
the object category, and two offset vectors that to be added to the center of the box that
shifts the position of the box and scales the size of the box. Formally, the problem is
defined as function fθ of some paramters θ such that:

fθ : RH×W×K → [0, 1]A×A × {1, . . . , C}A×A × (R4)A×A

Early approaches like R-CNN (Regions with CNN features) generated potential bound-
ing boxes in an image and then ran a classifier on these regions to detect objects. More
advanced models like YOLO (You Only Look Once) and SSD (Single Shot Detector)
view this as a single regression problem, straight from image pixels to bounding box
coordinates and class probabilities.

Semantic Segmentation is the task of classifying each pixel of an image into a pre-
defined category. This is more granular than object detection, which only discerns ob-
jects at the bounding box level. Semantic segmentation is used extensively in medical
imaging (e.g., to delineate different types of tissue), road segmentation for autonomous
vehicles, and landscape classification in geographic information systems.

Figure 14.14 shows an example input image on the left. The task is to identify the
road surface, sidewalks, background objects, and the sky. An example output is shown
on the right of that figure with different colors indicating the different classes of image
pixels. One way to tackle the problem is with a convolutional encoder-decoder network
as shown in the center of the figure.

14.7. TEXT CLASSIFICATION EXAMPLE USING TENSORFLOW 461

Source: Murphy Fig. 14.29

Figure 14.14: Semantic segmentation example input, network architecture, and output

https://github.com/matterport/Mask_RCNN

Figure 14.15: Object detection and semantic segmentation for an autonomous driving
task

For some applications, object detection and semantic segmentation must be combined.
Consider as an example the input image for an autonomous vehicle task shown in Fig-
ure 14.15. Object detection delivers bounding boxes and image classes while subse-
quent semantic segmentation within each bounding box can provide the specific shapes
of the objects.

The Keras web site has a large number of Keras tutorials on all kinds of com-
puter vision problems, including object detection and semantic segmentation.
See this site for more information: https://keras.io/examples/vision/.

14.7 Text Classification Example using Tensorflow
Convolutional neural networks, while originally developed and most widely used for
image and video processing, have also been adapted to text classification tasks. This
adaptation builds on the hierarchical structure of text, much like the hierarchical fea-
tures in images, to effectively classify text into predefined categories. Common appli-

https://github.com/matterport/Mask_RCNN
https://keras.io/examples/vision/

462 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

cations include sentiment analysis, topic labeling, spam detection, and others. CNNs
have emerged as an alternative to RNNs (recurrent neural networks).

The two examples in this section use the StackOverflow 16k data set3. This data set
consists of 16,000 user-generated questions about programming problems from the
StackOverflow web site. The task is to classify the questions by programming lan-
guage. Four classes are defined: CSharp, Java, JavaScript, and Python. The data set
can be downloaded directly from the Tensorflow website.

First, import the required packages:

import collections
import pathlib
import datetime
import tensorflow as tf
from tensorflow.keras import layers, losses, utils
from tensorflow.keras.layers import TextVectorization

Next, download the StackOverflow data set. The data set will be placed in the local
Keras cache directory and will be separated by training and test data, as well by the
four classes, as shown in Figure 14.16.

Get the data
url='http://download.tensorflow.org/data/stack_overflow_16k.tar.gz'
dataset_dir = utils.get_file(origin=url, untar=True,

cache_subdir='stack_overflow')

Remember where we put it
dataset_dir = pathlib.Path(dataset_dir).parent
train_dir = dataset_dir/'train'
test_dir = dataset_dir/'test'

Print a sample
sample_file = train_dir/'python/1755.txt'
with open(sample_file) as f:
print(f.read())

The sample output from the code above is shown here (training data for python, obser-
vation 1755). Note that the actual input has been ”blinded”, that is, direct mentions of
the programming language have been removed.

why does this blank program print true x=true.def stupid():.
x=false.stupid().print x

3Python code for this example is taken from TensorFlow.org that is made available under a Apache 2.0
license.

https://www.tensorflow.org/tutorials/load_data/text
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

14.7. TEXT CLASSIFICATION EXAMPLE USING TENSORFLOW 463

Figure 14.16: Screenshot of StackOverflow 16k data set downloaded to local Keras
cache directory

Next, the training data portion is split into training and validation sets, yielding a total
of three portions of data: training, validation, and testing:

raw_train_ds=utils.text_dataset_from_directory(
train_dir, batch_size=32, validation_split=0.2,
subset='training', seed=42)

raw_val_ds=utils.text_dataset_from_directory(
train_dir, batch_size=32, validation_split=0.2,
subset='validation', seed=42)

raw_test_ds=utils.text_dataset_from_directory(test_dir, batch_size=32)

The first step in applying neural networks to text data is to pre-process and standardize
the text representation itself. This includes at least the following activities:

• Standardization converts text to lower-case, repairs spelling errors, removes stop
words (such as ”if”, ”the” etc.), removes punctuation (commas, periods), HTML
code, and other special characters, and stems words (for example, turning ”pro-
gramming” into ”program”)

• Tokenization splits character strings into separate tokens, for example splitting
sentences into words on whitespace (spaces, tab characters, etc.), or splitting
words into subwords (for example, ”subword” is split to ”sub” and ”word”).

• Vectorization converts tokens into numberical values for input to the neural net-
work. It uses methods such as one-hot encoding, word embeddings, or relative
word frequencies.

464 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

14.7.1 Text classification using Bag-of-Word encoding without a
CNN

This example uses the ”Bag-of-Words” word frequency model that encodes the input
as the number of times that a word occurs. Consider the following example where the
input sentence is represented as a dictionary of word counts.

John likes to watch movies. Mary likes movies too.
{"John":1,"likes":2,"to":1,"watch":1, "movies":2,"Mary":1,"too":1}

This is a simple encoding that may suffice for the classification task, but it does ne-
glect word order which could be important for other tasks. The second example below
will use a different encoding that respects word order and is therefore suitable for the
use with CNNs. This first, simple example serves as a baseline to compare the later
example to.

Keras provides an easy way to preprocess text using the TextVectorization
layer. The following Python code block creates such a layer for a maximum of 10,000
different tokens (approximately the first 10,000 unique words). It standardizes the in-
put by converting all words to lower-case and removing punctuation. Tokenization then
splits the input on whitespace into separate words. The words are not stemmed or pro-
cessed further. Finally, vectorization produces ”multi-hot” output, that is, the frequency
of words for each input as seen in the above example. The TextVectorization
layer is then adapted to the training set. Essentially, adaptation creates the list of 10,000
unique words to count when the actual input is processed.

Use the Keras TextVectorization pre-processing layer:
multi_hot_vectorize_layer = TextVectorization(

max_tokens=10000,
standardize='lower_and_strip_punctuation',
split='whitespace',
output_mode='multi_hot')

train_text = raw_train_ds.map(lambda text,labels: text)
multi_hot_vectorize_layer.adapt(train_text)

The following Python code block illustrates the type of output generated by the text
vectorization layer for the first element of the first batch of the training data set. The
next() function gets the next element of an iterator, in this case an iterator over the
training data set and the first element is a batch of text input and corresponding labels.

14.7. TEXT CLASSIFICATION EXAMPLE USING TENSORFLOW 465

Retrieve a batch from the dataset
text_batch, label_batch = next(iter(raw_train_ds))

Applying the text vectorization layer
to the first example and print its output
print(text_batch[0])
print(list(multi_hot_vectorize_layer(text_batch[0]).numpy()))

The first element of the text_batch is a tensor containing the raw text, while the
output is a set of 10,000 numbers that represent the count of individual words (after
standardization and tokenization).

>>> print(text_batch[0])
tf.Tensor(b'"unit testing of setters and getters teacher wanted us
to do a comprehensive unit test. for me, this will be the first time
that i use junit. i am confused about testing set and get methods.
do you think should i test them? if the answer is yes; is this code
enough for testing?.. public void testsetandget(){. int a = 10;.
class firstclass = new class();. firstclass.setvalue(10);. int
value = firstclass.getvalue();. assert.asserttrue(""error"",
value==a);. }...in my code, i think if there is an error, we can\'t
know that the error is deriving because of setter or getter."\n',
shape=(), dtype=string)

>>> print(list(multi_hot_vectorize_layer(text_batch[0]).numpy()))
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0,
1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
...

This simple example uses a classification model defined with a single fully-connected
output layer. The four output units represent class probability logits. Cross-entropy is
specified for the loss function, and accuracy metrics will be examined. Note the use
of the from_logits parameter when specifying the loss function. This avoids the
use of softmax activation function for the dense layer or adding a softmax layer to the
sequential network model.

Define a simple model
multi_hot_model = tf.keras.Sequential([

multi_hot_vectorize_layer,
layers.Dense(4)]

)
Set loss function, optimizer and metrics
multi_hot_model.compile(

loss=losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer='adam', metrics=['accuracy'])

466 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

The training accuracy of this model is ≈ 99% and the validation accuracy is ≈ 83%
showing the power of a relatively simple network architecture, albeit with signifi-
cant number of trainable parameters (with 10,000 inputs from the vectorization pre-
processing layer and four outputs, the network has 400004 trainable parameters).

Hands-On Exercise

Adapt the network architecture to identify the impact on training and validation
performance of the following:

1. Vocabulary size (originally 10 000)
2. Number of layers (originally 1)

Comment on your findings and identify the best model.

14.7.2 Text classification using word embedding with a CNN
The example in this section illustrates a different way to encode words that is more
space efficient while also accounting for the word sequence in a text. Instead of count-
ing the number of times a word appears in the input, each word is first represented by
a unique integer number.

The Keras TextVectorization layer can perform this, with a small change from
the above example: Instead of the multi_hot output mode, the following code block
specifies the int output model for the layer:

Use the Keras TextVectorization pre-processing layer:
int_vectorize_layer = TextVectorization(

max_tokens=10000,
standardize='lower_and_strip_punctuation',
split='whitespace',
output_mode='int')

train_text = raw_train_ds.map(lambda text,labels: text)
int_vectorize_layer.adapt(train_text)

The following Python code block illustrates the type of output generated by the text
vectorization layer for the first element of the first batch of the training data set.

Retrieve a batch from the dataset
text_batch, label_batch = next(iter(raw_train_ds))

Applying the text vectorization layer
to the first example and print its output
print(text_batch[0])
print(list(int_vectorize_layer(text_batch[0]).numpy()))

The printed output below illustrates how raw input text, the first element of the first
batch of the training data set, is converted into a set of integer numbers by this layer.

14.7. TEXT CLASSIFICATION EXAMPLE USING TENSORFLOW 467

The output is a list of 21 tokens (among the 10,000 most frequent ones). For example,
the word ”how” is coded as 5, the word ”to” is coded as 4, etc.

>>> print(text_batch[0])
tf.Tensor(b'"how to crop a portion from an existing pdf and create
a new pdf in blank? i want to crop a portion in sizes like a5, a6
from an existing pdf of size a4 and want to create a new pdf"\n',
shape=(), dtype=string)

>>> print(list(int_vectorize_layer(text_batch[0]).numpy()))
[24, 4, 6757, 5, 2173, 31, 32, 1183, 962, 8, 124, 5, 15, 962, 7, 16,
3, 46, 4, 6757, 5, 2173, 7, 2661, 48, 6931, 1, 31, 32, 1183, 962, 9,
319, 2877, 8, 46, 4, 124, 5, 15, 962]

Word Embeddings However, these word numbers should not be treated as numerical
data; they are categorical with no implicit ordering. Each word number is entirely
abitrary and the numbers could be permuted in any way. So rather than operate on
token numbers this example uses word embeddings to generate an embedding vector
of numbers of length k that maps each word to a point in a k dimensional space. That
is, the set of numbers in the embedding vector characterizes or describes each word.
The dimensionality of the space k can be chosen arbitrarily. Larger k can provide a
better separation of many different unique words in the vector space, but require more
computation, more memory, and may be more prone to overfitting. Smaller k may
provide a poorer separation of words in the vector space, that is, multiple words are
close together and difficult to differentiate. Essentially, word embeddings function as
a lookup table where each row represents one word and the data in that row forms the
embedding vector. Figure 14.17 shows a simple example of a word embedding table
with k = 4 dimensions, that is, each word is represented by an embedding vector of
length 4. In practice, dimensionality is often chosen as log10 or a similar function of
the input vocabulary size.

This example uses a sequential model beginning with the integer vectorization layer.
An embedding layer with embedding size of 64 follows this. The input to the embed-
ding layer is the output of the vectorization layer, that is, an integer for each token
in the preprocessed input text. The embedding layer converts each word into a vec-
tor of 64 numeric values. The embedding layer is defined with a vocabulary size of
10,001 so that unknown tokens can be represented, that is, tokens not in the maximum
10,000 unique tokens of the vectorization layer. In effect, the embedding layer is a
large lookup table with 10,001 rows and 64 columns. Hence, it contains 64,064 train-
able parameters. The mask_zero parameter for the embedding layer instructs the
layer to treat the number 0 as a padding value, rather than as the number for a specific
word. Because the length of the word sequence can vary with the length of the input
text, padding inputs with 0 ensures that all inputs in batches are of the same size.

A dropout layer with a dropout rate of 0.5 is added to the sequential model for regular-
ization. This is followed by a 1-dimensional convolution layer with kernel length of 5.
The Conv1D layer uses 64 separate filters to produce 64 output channels from an input

468 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

https://www.tensorflow.org/text/guide/word_embeddings

Figure 14.17: Example of word embedding

depth of 64. The global max pooling layer reduces the input to the maximum value
along each convolution output channel.

int_model = tf.keras.Sequential([
int_vectorize_layer,
layers.Embedding(10001, 64, mask_zero=True),
layers.Dropout(0.5),
layers.Conv1D(filters=64, kernel_size=5, \

padding="valid", activation="relu", strides=2),
layers.GlobalMaxPooling1D(),
layers.Dense(4)
])

int_model.summary()

It is instructive to examine the model summary, printed below. Note that the output
shapes have no value for the first dimension, that is, the batch size. This will be deter-
mined when the model is trained using the batch size provided by the training data set
(The above code segment when preparing the data set defined the batch size as 32). The
second dimension of the output shapes for any layer that processes sequences of words
is also not explicitly defined. This second dimension indicates the sequence length. It
will be determined from at training time when the training data set is provided as input,
potentially padded by 0 if necessary. Note that the global max pooling layer reduces
the dimensionality as its output is the maximum value along the second dimension, that
is, the maximum value over the sequence of convoluation ouputs.

The model summary output below also confirms the number of parameters of the word
embedding layer. From the parameter count of the 1-dimensional convolution layer,
one can deduce the specific kernel size. Knowing there are 64 filters one can subtract
one bias term for each filter, leaving 20,480 parameters for 64 output channels. That
is, each output channel is calculated by a kernel with 320 parameters. This is because

https://www.tensorflow.org/text/guide/word_embeddings

14.7. TEXT CLASSIFICATION EXAMPLE USING TENSORFLOW 469

these are one-dimensional kernels of length 5 and the input (output of the dropout layer)
is of depth 64, that is, the full kernel must be of shape 5× 64 with 320 parameters.

Model: "sequential_2"

Layer (type) Output Shape Param #
===
text_vectorization_1 (Text (None, None) 0
embedding (Embedding) (None, None, 64) 640064
dropout_2 (Dropout) (None, None, 64) 0
conv1d (Conv1D) (None, None, 64) 20544
global_max_pooling1d (Glob (None, 64) 0
dense_6 (Dense) (None, 4) 260
===
Total params: 660868 (2.52 MB)
Trainable params: 660868 (2.52 MB)
Non-trainable params: 0 (0.00 Byte)

Next, the model is compiled with cross-entropy as loss function and accuracy as a result
metric:

Compile the model using cross-entropy loss and report accuracy
int_model.compile(

loss= losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer='adam',
metrics=['accuracy'])

Finally, the model is trained for 25 epochs:

int_model.fit(raw_train_ds,
validation_data=raw_val_ds,
epochs=25)

The training accuracy of this model is≈ 99.95% but with a validation accuracy similar
to the earlier, simpler model of ≈ 80%, showing very good training performance but
also more evidence of overfitting. To some degree this is unsurprising, as the number
of parameters in this model is about 50 times that of the simpler model, making this
model more powerful and more flexible to adapt to the specific training set. This short
example illustrates another use of convolutional networks besides computer vision,
where they were first used.

The Keras web site has a large number of Keras tutorials on all kinds of natural
language processing problems. See this site for more information: https:

//keras.io/examples/nlp/.

https://keras.io/examples/nlp/
https://keras.io/examples/nlp/

470 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

Hands-On Exercise

Adapt the network architecture to identify the impact on training and validation
performance of the following:

1. Vocabulary size (originally 10 000)
2. Embedding size (originally 64)
3. Dropout probability (originally 0.5)
4. Convolution kernel size (originally 5)
5. Number of convolution filters (originally 64)
6. Convolution stride (originally 2)
7. Number of 1D-Conv layers (originally 1)

Comment on your findings and identify the best model.

In particular, explore the trade-offs between using a large number of smaller
filters versus a smaller number of larger filters in the context of convolution
followed by pooling.

Explore how does the choice of pooling strategy (max vs average) affects
the features extracted by a convolutional neural network and the predictive
performance of the model.

14.8 Review Questions
Introduction to CNNs

1. What are Convolutional Neural Networks (CNNs) commonly used for in the field
of computer vision?

2. Explain the primary motivation for using convolutional networks over fully con-
nected networks in image processing.

3. Explain why convolutional layers are more efficient than fully connected layers
in the context of image data.

4. Describe the typical structure of a CNN in terms of how it processes features at
different levels of abstraction.

5. Illustrate with examples how CNNs can be used in automated surveillance sys-
tems.

6. Discuss the role of CNNs in enhancing user experiences in augmented reality
applications.

7. Explain the challenges and considerations in using CNNs for medical image
analysis, particularly in ensuring reliability and accuracy.

8. How do advancements in CNN technologies potentially impact the development
of autonomous driving technologies?

Convolutional Layers

14.8. REVIEW QUESTIONS 471

9. Define a convolutional layer. What role do the filters (kernels) play within such
a layer?

10. Explain the convolution operation in the context of a CNN. How does it differ
from the operations performed by traditional neural networks?

11. What is meant by an ‘activation map‘ or ‘feature map‘ in the context of CNNs?
12. Discuss the purpose of striding and padding in convolution operations, providing

examples of their effects on the output dimensions.
13. Given a CNN with an input size of 32×32×3 (where 3 stands for RGB channels)

and a convolutional layer with 10 filters of size 5 × 5 × 3, calculate the output
dimensions assuming a stride of 1 and no padding. Also, discuss how the output
dimensions would change with a stride of 2 and padding size of 1.

14. Describe the roles of biases and activation functions in the context of convolu-
tional layers. What is a commonly used activation function in CNNs?

15. Refer to Figure 14.1 and explain the process depicted in a 1-dimensional convo-
lution example.

16. Analyze Figure 14.2 to describe how 2-dimensional convolution differs from 1-
dimensional convolution.

17. Explain how padding can influence the learning process in CNNs, particularly in
relation to border information in images.

18. Discuss the potential benefits and drawbacks of using large strides in convolu-
tional layers.

19. What are the advantages of using small kernel sizes (e.g., 3× 3) in CNN layers,
and how might using such kernels affect the learning capacity of the network?

Pooling

20. Define pooling in the context of Convolutional Neural Networks. What is its
main purpose?

21. Compare and contrast max pooling and average pooling. How does each affect
the feature map it processes?

22. Explain how pooling layers contribute to the invariance of ConvNets to small
transformations, distortions, and translations in the input.

23. Discuss the impact of pooling size and stride on the dimensionality of the out-
put. How do these parameters influence the model’s ability to detect fine-grained
features versus more abstract features?

24. Discuss the advantages and potential drawbacks of using overlapping pooling
regions in ConvNets.

25. Can pooling layers lead to loss of important information? Provide reasons for
your answer and discuss how this might affect the overall performance of a CNN.

26. Explain why pooling might be useful in terms of computational efficiency and
model generalization.

Object Detection

27. Explain how CNNs can be applied to the task of object detection. Include a
discussion of how bounding or anchor boxes are used.

472 CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS

28. Compare and contrast the approaches of R-CNN and YOLO in object detection.
How do they handle the detection task differently?

29. Discuss the significance of anchor boxes in modern object detection models like
YOLO and SSD.

Semantic Segmentation

30. How does semantic segmentation differ from object detection in terms of output
and application areas?

31. How does integrating object detection with semantic segmentation enhance the
performance of a vision system in autonomous driving scenarios?

32. Evaluate the challenges in training CNNs for semantic segmentation of irregular
objects, such as trees or clouds. What techniques can be used to address these
challenges?

33. Evaluate the impact of image resolution on the performance of semantic segmen-
tation. How does it affect the accuracy of pixel classification?

34. How can real-time constraints influence the design of CNN architectures for ob-
ject detection and semantic segmentation in systems like autonomous vehicles?

35. Discuss the computational trade-offs involved in running both object detection
and semantic segmentation in real-time applications such as video surveillance.

36. Consider the ethical implications of deploying CNN-based object detection and
semantic segmentation technologies in public spaces. What privacy concerns
arise, and how can they be mitigated?

Word Embeddings

37. Discuss the advantages of using word embeddings over traditional one-hot en-
coding in natural language processing.

38. How does the dimensionality k of word embeddings affect the performance of
neural networks in NLP tasks? Include a discussion of the trade-offs involved
with choosing a higher or lower k.

39. Describe how an embedding layer works in the context of a neural network.
What are the trainable parameters within an embedding layer?

40. Describe the role of padding in text sequences when using embedding layers.
How does this affect the processing of batched text data?

41. Explain the interaction between the embedding layer and subsequent layers in
a neural network, such as a 1-dimensional convolutional layer. How does the
output of the embedding layer serve as input to the convolutional layer?

42. How can embeddings be shared across different tasks or models in machine
learning? Discuss the advantages and potential issues with this approach.

43. Consider the ethical implications of using word embeddings in text processing.
What biases might be inherent in pretrained embeddings, and how can they affect
the outcomes of NLP applications?

Chapter 15

Recurrent Neural Networks

Learning Goals
After reading this chapter, you should be able to:

• Explain different types of neural network models for sequence data and identify
an appropriate model type for a given classification or regression task.

• Explain the concept of unrolling or unfolding a recurrent neural network.

• Describe the functioning of an LSTM and GRU cell in a recurrent neural network
and their main differences.

• Explain the concept of stateful recurrent neural networks and identify use cases
when they are appropriate.

• Build classification and regression models using recurrent neural networks with
popular neural network software tools, fit them to sequence data, and evaluate
their performance.

Sources and Further Reading

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/book1.html

Chapter 15

The book by Murphy is freely available and provides three chapters on neural networks,
one for structured data, one for images, and one for sequences. It provides significant

473

https://probml.github.io/pml-book/book1.html

474 CHAPTER 15. RECURRENT NEURAL NETWORKS

depth on convolutional and recurrent network architectures, fitting the models, and
problems the data analyst may encounter.

Guides and examples on the Tensorflow and Keras web sites:

• Time Series Forecasting (Tensorflow)

• Working with RNNs (Tensorflow)

• Text Generation with an RNN (Tensorflow)

• Timeseries Forecasting for Weather Prediction (Keras)

This course uses the Tensorflow programming framework for neural network applica-
tions. The Tensorflow website has a multitude of introductory and advanced guides
and tutorial that cover all aspects of machine learning with neural networks.

Introductory tutorials:

Olah, Christopher (2015) Understanding LSTM Networks

Karpathy, Andrej (2015) The Unreasonable Effectiveness of Recurrent Neural
Networks

Chris Olah has been lead researcher at OpenAI and Google Brain and co-founded An-
thropic. Andrej Karpathy has been lead reaserchers at OpenAI and Tesla. Both tutorials
are very useful and easy introductions to the topic of recurrent LSTM networks.

15.1 Introduction
Recurrent Neural Networks (RNNs) are a class of neural networks that are used for
modeling sequence data such as time series, natural language, or audio. Characterized
by their ability to maintain a ”memory” of previous inputs while processing new ones,
RNNs are particularly useful for tasks where historical context is important.

The development of RNNs can be traced back to the 1980s with the introduction of ar-
chitectures that could use their internal state (memory) to process sequences of inputs.
This concept was refined in the 1990s through the introduction of the Long Short-Term
Memory (LSTM) network, which significantly improved the performance of RNNs on
tasks requiring learning long-term dependencies.

RNNs are employed in a variety of applications, handling different types of data and
tasks:

• Natural Language Processing (NLP): RNNs are the basis for many NLP tasks
such as machine translation, speech recognition, and text generation. Their abil-

https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/guide/keras/working_with_rnns
https://www.tensorflow.org/text/tutorials/text_generation
https://keras.io/examples/timeseries/timeseries_weather_forecasting/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

15.2. SEQUENCE MODELS 475

ity to process sequences of words and maintain context helps in producing better
translations and recognizing speech accurately.

• Time Series Prediction: RNNs are suitable for forecasting future events in finan-
cial markets, weather conditions, and other time-dependent phenomena due to
their ability to remember past data.

• Music and Video Generation: By learning from sequences of musical notes or
frames of videos, RNNs can generate new music pieces and video clips that are
similar in style to their training data.

• Audio Transcription and Video Captioning: By examining sequences of audio
or visual images, RNNs can generate text transcripts or captions of the video
content.

• Healthcare: In medical diagnostics, RNNs can predict disease progression and
patient outcomes by analyzing sequential data such as patient records and time-
series observations from medical sensors.

• Business Processes: In business processes, RNNs can be used to predict the next
activity, potential problems, time to completion, or other outcomes based on the
series of actions already completed.

15.2 Sequence Models
Recurrent Neural Networks (RNNs) are called ”recurrent” because they perform the
same task for every element of a sequence, with the output being dependent on the
previous computations. RNNs can pass information from one (time or sequence) step
of the network to the next. This mechanism is what makes RNNs ”recurrent” – they
recur or repeat the same process over each part of the input, while maintaining some
memory of what has happened before. This memory is maintained through internal or
”hidden” states of the network, which capture information about earlier elements in the
sequence, thereby providing a form of memory. This allows RNNs to process not just
individual data points, but entire sequences of data (such as a sentence or a time series),
making them effective for tasks where context and order are important.

In using RNNs with sequence data, one can distinguish three types of general model
architectures that are useful for different tasks.

Seq2Vec

The sequence-to-vector (”Seq2Vec”) model predicts a single outcome or target from a
sequence of inputs. This type of model can be a regression or classification model. The
general model architecture is shown in Figure 15.1. The hidden states hi are connected
to model the memory through time. The state of the network depends not only on the
current input but also on the previous state, and therefore implicitly on all prior inputs.
In practical applications, the inputs, outputs, and hidden state can be high-dimensional
vectors or arrays.

476 CHAPTER 15. RECURRENT NEURAL NETWORKS

This type of architecture is useful for example in sentiment analysis, where it can an-
alyze sequences of text to determine the sentiment expressed, summarizing the overall
sentiment in a single vector for classification.

Vec2Seq

The vector-to-sequence (”Vec2Seq”) models are designed to generate a sequence from
a fixed-length input vector. This approach is commonly used in tasks where a sequence
needs to be generated from a compact representation. Figure 15.2 shows an example of
such an architecture. A single input x gives rise to multiple outputs y with the hidden
states h mainting information about the history. Here, the state of the network depends
not only on the single input but also on the previous state and previous output.

The Vec2Seq architecture is useful for example in image captioning, generating a se-
quence of words as descriptive text for a single input image (a vector of pixels). An-
other use case is music generation, creating a sequence of musical notes from an input
vector that encodes a particular style or mood.

Seq2Seq

Sequence-to-sequence (”Seq2seq”) models are designed to transform an input sequence
into an output sequence. These models are useful for tasks that involve translation or
conversion from one sequence to another, maintaining the context from the input to
the output. The general architecture is shown in Figure 15.3. For each input x, one
output y is generated and the hidden state h maintains information about the history.
The state of the network depends not only on the current input, but also on the previous
state. Depending on the application, Seq2Seq networks may also employ bi-directional
connections between hidden layers, as shown in the right panel of Figure 15.3.

A typical use case for Seq2Seq models is machine translation from one language to
another, where both the input and output are sequences of words. In speech recognition,
spoken language is converted into written text, where the audio input is a sequence of
phonetic features, and the output is a sequence of words. In video-to-text applications,
textual descriptions are generated from video sequences, which involves interpreting
sequences of images and producing corresponding sequences of descriptive text.

Source: Murphy Fig. 15.4

Figure 15.1: Seq2Vec recurrent neural network architecture

15.3. UNROLLING AN RNN 477

Source: Murphy Fig. 15.1

Figure 15.2: Vec2Seq recurrent neural network architecture

Source: Murphy Fig. 15.5

Figure 15.3: Seq2Seq recurrent neural network architecture

15.3 Unrolling an RNN
The concept of ”unfolding” or ”unrolling” in recurrent neural networks (RNNs) is a
fundamental technique used not only to visualize but more importantly, to implement
these networks for sequence processing. Unrolling an RNN refers to the process of
expanding the recurrent network through time, transforming it into an equivalent feed-
forward neural network that represents each time or sequence step explicitly. This helps
in understanding and analyzing the behavior of RNNs, especially in training.

An RNN is designed to handle sequences by recursively processing each element of
the sequence, maintaining a hidden state that captures information about the past ele-
ments of the sequence. When RNN is unrolled, each recurrence becomes a separate,
but identical, unit of the network. Each unit corresponds to a time step in the input
sequence.

Consider the example in Figure 15.4. The recurrent network on the left feeds back
information to itself by vector v. This information updates the hidden layer’s state h

478 CHAPTER 15. RECURRENT NEURAL NETWORKS

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Figure 15.4: Unrolling a recurrent neural network

from one recurrence (time or sequence step) to the next. This recurrent network is
unrolled to separate instances of input, hidden layers, and output for each sequence
step or time step as shown in the right part of Figure 15.4. The hidden state h and
output o in Figure 15.4 can be described using basic neural network units:

ht = σ(Wx · xt +Wh · ht−1 +Bh) (15.1)
ot = σ(Wo · ht +Bo) (15.2)

For example, if the input are sequences of five words and an RNN is designed to pro-
cess this sequence, unrolling this RNN would result in a chain of five identical neural
network units (one for each word). Each unit takes as input the current word, however
encoded, and the hidden state output by the previous unit. The first block receives an
initial hidden state, often set to zero, which is a starting state.

Unrolling makes the sequence processing capabilities of RNNs explicit and easier to
understand, showing how inputs are processed over time. In practice, unrolling an RNN
simplifies its implementation, especially for training where gradients are computed
across the unfolded network.

Unrolling an RNN over many time steps can lead to practical challenges. In particular,
long unrolled networks with simple units as in Equations 15.1 and 15.2 often suffer
from vanishing or exploding gradient problems during training, which makes learning
unstable. The vanishing gradient problem in particular means that the network loses
its ”memory” of inputs in the distant past. In other words, such a network is unable to
have ”long term” memory that is useful for many applications.

15.4 LSTM Cells
Long Short-Term Memory (LSTM) cells are a special kind of unit used in recurrent
neural networks (RNNs) that are designed to address some of the limitations of tradi-
tional RNNs. In particular, they enable networks to learn long-term dependencies that

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

15.4. LSTM CELLS 479

https://en.wikipedia.org/wiki/File:Long_Short-Term_Memory.svg

Figure 15.5: Long Short-Term Memory Cell

are critical in many sequential tasks such as language modeling or time series predic-
tion. LSTMs were introduced in 1997 as a solution to the vanishing gradient problem
commonly encountered in traditional RNNs. Traditional RNNs could perform well on
short sequences but struggled with longer ones.

An LSTM cell, shown schematically in Figure 15.5, is complex and contains multiple
”gates” that regulate the flow of information. LSTM networks have two components to
their state. The cell memory is represented by ct and the hidden state is represented by
ht in Figure 15.5. Each LSTM cell consists of the following components:

• Forget Gate: This gate decides which information is discarded from the cell
memory c. It looks at the previous hidden state and the current input and passes
its output through a sigmoid function, which outputs a number between 0 (”for-
get this vector element completely”) and 1 (”keep this vector element entirely”).
The forget gate is represented by Ft in Figure 15.5 and formally defined as:

Ft = σ(Wf · [xt, ht−1] + bf) (15.3)

• Input Gate: This gate updates the cell memory c by adding new information. It
looks at the previous hidden state and the current input and includes a sigmoid
layer which decides which values to update. It outputs a number between 0 (”do
not update this vector element”) and 1 (”update this vector element completely”).
This input gate is represented by It in Figure 15.5 and formally defined as:

It = σ(Wi · [xt, ht−1] + bi) (15.4)

• Output Gate: The output gate examines the prior hidden state and current input.
It includes a sigmoid layer which decides which values of the new cell memory
to output and pass on to the next cell as the new hidden state. It outputs a number
between 0 (”do not include this vector element in the output”) and 1 (”include

https://en.wikipedia.org/wiki/File:Long_Short-Term_Memory.svg

480 CHAPTER 15. RECURRENT NEURAL NETWORKS

this vector element in the output”). The output gate is shown asOt in Figure 15.5
and formally defined as:

Ot = σ(Wo · [xt, ht−1] + bo) (15.5)

The outputs of these three gates are used to manipulate the cell memory ct−1 that was
received from the previous LSTM unit. First, a tanh unit creates a new candidate cell
memory vector (not explicitly labeled in Figure 15.5), formally defined as:

c̃t = ϕ(Wc · [xt, ht−1] + bc) (15.6)

The new cell memory ct is created by first multiplying the old cell memory ct−1 with
the output of the forget gate Ft (Eq. 15.3), thus removing some information. Second,
information from the candidate cell memory (Eq. 15.6) is selected by multiplying it
with the values of the input gate It (Eq. 15.4) and is then added to the new cell memory.
Formally:

ct = Ft ⊗ ct−1 + It ⊗ c̃t (15.7)

The output of the LSTM cell is also the new cell state ht. It is formed by applying
the output gate Ot (Eq. 15.5) to the cell memory. That is, it selectively outputs and
passes on parts of the new cell memory as determined by the output gate. It is formally
defined as:

ht = Ot ⊗ ϕ(ct) (15.8)

In Equations 15.3 to 15.8, · denotes the dot-product (vector product),⊗ denotes element-
wise multiplication, and [.] denotes vector concatenation. σ is the sigmoid/logistic
function and ϕ is the hyperbolic tangent (tanh).

The parameters in an LSTM layer are ”re-used” for each time step. In other words,
there is only one set of weights and biases that is applied recurrently for each time step.
That means that the number of time steps has no effect on the number of parameters.

Examining the dimensionality of the inputs and outputs to an LSTM cell allows calcu-
lating the number of trainable parameters in an LSTM layer. As equations 15.3 to 15.6
are identical in form, it suffices to focus on one and multiply the resulting number of
parameters by four.

Consider an LSTM cell with hidden state ht and cell memory ct sizes of n = 16 and
an input size xt of m = 10. This means that there must be m + n = 26 weights for
the forget gate Wf in equation 15.3. That is, Wf is a 1 × (m + n) row vector that is
multiplied with the (m + n) × 1 column vector [xt, ht−1] to yield a single number (a

15.5. GRU CELLS 481

1× 1 ”vector”). The bias term is then added and the sigmoid function is applied to this
sum. The total number of parameters is then of m+ n+ 1 = 27.

However, the output of the forget gate must be of the same dimensionality as the hid-
den state because of the element-wise multiplication and addition operations in Equa-
tions 15.7 and 15.8. This means thatWf must be a n×(n+m) matrix that is multiplied
with the (m+n)×1 column vector [xt, ht−1] to yield a n×1 column vector. As well,
the bias is not simply a single number but an n× 1 column vector. In other words, Wf

contains n× (n+m) parameters and the bias term contains another n parameters for
a total of n + n × (n +m) parameters. The sigmoid function (or the tanh function in
Equation 15.6) are applied to each row.

Another way to grasp this intuitively is by recognizing that the simpler representation
in terms of (m+ n) sized vectors determines the gate function (in this case, the forget
function) for a single element in the hidden state. As the hidden state comprises n such
elements, this formula must be ”replicated” n = 16 times in this example, yielding
again n(m+ n+ 1) parameters.

For the total LSTM cell, the number of trainable parameters is therefore 4× (n+m+
1)× n.

15.5 GRU Cells
Gated Recurrent Unit (GRU) cells are a type of recurrent neural network (RNN) archi-
tecture introduced as an alternative to Long Short-Term Memory (LSTM) cells. The
motivation behind the development of GRUs was to simplify the LSTM architecture,
which, although powerful, is also quite complex due to its multiple gates and states. By
reducing the number of gates from three to two, GRUs aim to offer a model that can
train faster and require fewer computational resources, while still capturing long-range
dependencies within the data. GRUs also do not have an internal memory unit separate
from the hidden state. While GRUs tend to train faster due to their simpler structure,
in some cases LSTMs outperform GRUs in predictive performance, if the additional
complexity of LSTMs are appropriate to the data set and task.

A GRU cell, schematically shown in Figure 15.6 consists of only two gates, the reset
gate and the update gate. It also merges the cell memory and the hidden state.

• Reset Gate: This gate, represented as Rt in Figure 15.6, determines how much
past information to forget, which is important for making the model more adapt-
able to changes in the data sequence. It examines the previous state and current
input and applies a sigmoid function. It outputs value between 0 (”reset this
vector element completely”) and 1 (”retain this vector element completely”).

Rt = σ(Wr · [xt, ht−1] + br) (15.9)

• Update Gate: This gate, represented as Zt in Figure 15.6, decides how much of
the past information (from previous time or sequence steps) needs to be passed
along to the future. It is similar to the combination of the forget and input gates

482 CHAPTER 15. RECURRENT NEURAL NETWORKS

https://en.wikipedia.org/wiki/File:Gated_Recurrent_Unit.svg

Figure 15.6: Gated Recurrent Unit (GRU)

in an LSTM. It examines the previous state and current input, applies a sigmoid
function and outputs a value between 0 (”do not update this vector element, retain
the old state”) and 1 (”update this vector element, discard the old state”).

Zt = σ(Wz · [xt, ht−1] + bz) (15.10)

The candidate new hidden state is calculated by applying the reset gate to the prior
hidden state and then combining the result with the current input and applying a tanh
activation function. This ”forgets” certain information from the prior state. Formally:

ĥt = ϕ(Wh · [xt, Rt ⊗ ht−1] + bh) (15.11)

Finally, the actual new hidden state is calculated as a weighted sum of the past hidden
state, weighted by 1− Zt, and the candidate state, weighted by Zt.

ht = (1− Zt)⊗ ht−1 + Zt ⊗ ĥt (15.12)

In Equations 15.9 to 15.12, · denotes the dot-product (vector product), ⊗ denotes
element-wise multiplication, and [.] denotes vector concatenation. σ is the sigmoid/logistic
function and ϕ is the hyperbolic tangent.

The number of trainable parameters for a GRU layer is determined analogously to that
for an LSTM layer, except by noting that there is one less gate to consider. In other
words, for a hidden state ht size n and input sizem, the number of trainable parameters
is 3× (n+m+ 1)× n.

15.6 Statefulness
Recurrent Neural Networks (RNNs) are designed to handle sequence data. One of the
key decisions in designing RNNs is whether to use a stateful or stateless configura-

https://en.wikipedia.org/wiki/File:Gated_Recurrent_Unit.svg

15.7. EXAMPLE – STOCK MARKET PREDICTION 483

tion. This choice affects how the network processes sequences and learns from data,
influencing both the training process and application effectiveness.

In stateless RNNs, the internal state is reset for each batch of training data. This means
that the learning and predictions are independent of the previous batch. The network
starts with a clean slate for every input sequence, making no assumptions based on
past data points within the same batch. Since stateless RNNs treat each input sequence
as independent, training can be simpler and faster. There is no need to maintain and
manage state continuity across batches, and batches can be assembled from the input
sequences in arbitrary order and randomly shuffled. Stateless RNNs are typically used
when sequences are short enough to fit within the number of unrolled RNN steps and
the context within a single sequence is sufficient for the prediction task.

Stateful RNNs maintain the internal state between batches, allowing the network to
retain information across different input batches. This is useful when sequences are
longer than the number of unrolled steps. Training stateful RNNs requires careful
management of the state so that it is carried over appropriately across batches. Batches
cannot be randomly drawn and cannot be shuffled. The state must be reset manually
at the start of each epoch or when starting a new sequence. Stateful RNNs are advan-
tageous for tasks involving long sequences where the context needs to be maintained
over long periods, such as in time-series analysis or long-form text processing.

15.7 Example – Stock Market Prediction

This example uses historic stock market data to predict future performance. In partic-
ular, it uses data for the Dow Jones Industrial Average (DJIA) that was exported from
the quarks library for R. The data set encompasses opening closing, low, and high
values, as well as trading volume for every day between the years 2000 and 2021 (con-
verted to Euros). This is a regression problem with the targets being the difference in
closing prices to the next day.

Complete implementations for this and the other examples in this chapter are available in the
following GitHub repo: https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL: https://github.com/jevermann/

busi4720-ml.git

First, load all required packages, specify parameters for the network architecture and
training, and then read the data file:

https://github.com/jevermann/busi4720-ml
https://github.com/jevermann/busi4720-ml.git
https://github.com/jevermann/busi4720-ml.git

484 CHAPTER 15. RECURRENT NEURAL NETWORKS

import math
import tensorflow as tf
from tensorflow import keras
from keras import layers
import pandas as pd

tf.random.set_seed(123) # Set random seed
n_steps = 20 # Unfold for 20 steps
n_epochs = 25 # Train for 25 epochs

The read the data set
data = pd.read_csv('https://evermann.ca/busi4720/djia.data.csv')

In the next step, additional features are created. In time series analysis it is often useful
to examine the differences between successive values and the relative or percentage
changes. The following Python code fragmeent adds these to the data set by applying
the Pandas functions diff() and pct_change() tn the columns of the data frame
and concatenating the differences and percentage changes to the dataframe by column.

data = pd.concat([data,
data.diff().add_suffix('diff'),
data.pct_change().add_suffix('pct')],
axis=1).iloc[1:,]

When splitting the data into training and validation set, random shuffling cannot be
used because the data set is time series data. In other words, information from future
observations should not be used in the training set to help predict values of past obser-
vations. The following Python code uses the first 80% of the data set for training and
the remainder for validation:

Split data, no random shuffling for time series
train = data[:math.floor(0.8*data.shape[0])]
valid = data.drop(train.index)

Normalizing the data to zero means and unit standard deviation must again only use
information from the training data set, even if that means the actual validation set stan-
dard deviations are not exactly equal to 1:

Normalize data using only info from training set.
train_mean = train.mean()
train_sd = train.std()
train = (train - train_mean)/train_sd
valid = (valid - train_mean)/train_sd

An easy way to create appropriate sequence batches and targets is to use the Keras
function timeseries_dataset_from_array(). It accepts the features, the

15.7. EXAMPLE – STOCK MARKET PREDICTION 485

targetsm and arguments about the sequence length, batch size, and whether the data
should be shuffled between batches. This first example will use a stateless LSTM so
that the input can be shuffled. This is a regression problem with the target being the
closing price difference to the following day.

dataset_train = keras.preprocessing.timeseries_dataset_from_array(
train.drop('price.closediff', axis=1), train['price.closediff'],
sequence_length=n_steps,
batch_size=32,
shuffle=True)

dataset_valid = keras.preprocessing.timeseries_dataset_from_array(
valid.drop('price.closediff', axis=1), valid['price.closediff'],
sequence_length=n_steps,
batch_size=32,
shuffle=True)

Tensorflow Datasets for Sequence Data
To see how Tensorflow manages time series or sequence data in its datasets, it is in-
structive to work with a simple example. Consider the following Pandas dataframe of
inputs and targets:

test = pd.DataFrame([[0, 0], [1, 1], [2, 2,], [3, 3],
[4, 4], [5, 5], [6, 6], [7, 7]])

inputs = test.iloc[:-1,0]
targets = test.iloc[2:,1]

pd.DataFrame([inputs, targets])

0 1 2 3 4 5 6 7
0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 NaN
1 NaN NaN 2.0 3.0 4.0 5.0 6.0 7.0

The first example illustrates creating a dataset object that provides batches of size 2 for
a sequence length of 2, using a stride of 1 across the input sequences. This example
does not shuffle the data between batches and is therefore suitable for stateful RNNs:

ds = keras.preprocessing.timeseries_dataset_from_array(
inputs, targets,
batch_size=2, sequence_length=2, sequence_stride=1, shuffle=False)

for element in ds.as_numpy_iterator():
print(element)

The following output shows batches of sequences and their targets. Note how the
sequences are continuous across batchs. For example the first sequence of 2 elements

486 CHAPTER 15. RECURRENT NEURAL NETWORKS

of the first batch is [0, 1] and the first sequence of 2 elements of the second batch is
[2, 3], that is, the second batch continues sequences from the first batch, and the hidden
state in the LSTM or GRU cells in the RNN can be carried over to the next batch.

(array([[0, 1],
[1, 2]]), array([2, 3]))

(array([[2, 3],
[3, 4]]), array([4, 5]))

(array([[4, 5],
[5, 6]]), array([6, 7]))

In contrast, the next example shuffles elements between batches and is suitable for
stateless RNNs where state is not maintained between batches:

ds = keras.preprocessing.timeseries_dataset_from_array(
inputs, targets,
batch_size=2, sequence_length=2, sequence_stride=1, shuffle=True)

for element in ds.as_numpy_iterator():
print(element)

The output below clearly shows the differences. The sequences of length 2 are not
continuous across batches. For example, the first sequence of 2 elements in the second
batch is [5, 6] while the first sequence of 2 elements in the third batch is [3, 4].

(array([[4, 5],
[2, 3]]), array([6, 4]))

(array([[5, 6],
[0, 1]]), array([7, 2]))

(array([[3, 4],
[1, 2]]), array([5, 3]))

The next example shows the effect of varying the sequence stride and the batch size.
The batch size is now set to 1, and the sequence stride is 2, that is, after assembling a
series of 2 elements for a batch, the next set of 2 elements is taken from two positions
further in the input.

ds = keras.preprocessing.timeseries_dataset_from_array(
inputs, targets,
batch_size=1, sequence_length=2, sequence_stride=2, shuffle=False)

for element in ds.as_numpy_iterator():
print(element)

(array([[0, 1]]), array([2]))
(array([[2, 3]]), array([4]))
(array([[4, 5]]), array([6]))

15.7. EXAMPLE – STOCK MARKET PREDICTION 487

In this small illustrative example, every step of the feature sequence is a single number,
whereas in the stock market prediction example every step of the feature sequence is
itself a vector of values.

Hands-On Exercise

Using the simple example data from above to:
1. Experiment with different values for batch_size,
2. Experiment with different values for sequence_length,
3. Experiment with different values for sequence_stride.

The stock market prediction example uses a sequential neural network model with an
input layer to specify the shape of the features to be used for training, one LSTM
layer and a dense (fully-connected) layer with a single output for regression. It has the
following characteristics:

• Hidden state and cell memory size: units=16

• ”Seq2Vec” model: return_sequences=False

• Stateless model: stateful=False

Note that the second dimension of the input shape is one less than the total number of
columns in the training data, because the column of target values has been removed.

model = keras.Sequential()
model.add(layers.InputLayer(

input_shape=(n_steps, len(train.columns)-1)))
model.add(layers.LSTM(

units=16,
return_sequences=False,
return_state=False,
stateful=False))

model.add(layers.Dense(1))
model.summary()

The model summary is shown below. It is instructive to verify the number of param-
eters. Weights and biases are shared between time steps; recall that the RNN actually
has a single LSTM cell and unrolling is simply there to make the computation easier.
That is, the total parameter count reported below is for a single LSTM cell. Equa-
tions 15.3 to 15.6 show that the forget, input and output gates as well as the candidate
new memory of the LSTM unit use the same number of parameters, that is, each equa-
tion introduces 1984/4 = 496 parameters. The Equations 15.3 to 15.6 operate on the
concatenation of the hidden state and the input, that is on a vector of 16 + 14 = 30
units. Each equation adds a bias term. Hence, the total number of weights and bias for
each gate as (16 + 14 + 1) ∗ 16 = 496.

488 CHAPTER 15. RECURRENT NEURAL NETWORKS

Model: "sequential_4"

Layer (type) Output Shape Param #
===
lstm_1 (LSTM) (None, 16) 1984
dense_8 (Dense) (None, 1) 17
===
Total params: 2001 (7.82 KB)
Trainable params: 2001 (7.82 KB)
Non-trainable params: 0 (0.00 Byte)

Compile and fit the model:

model.compile(loss='mean_squared_error', optimizer='Adagrad')

model.fit(dataset_train, epochs=n_epochs,
validation_data=dataset_valid)

The training output, shown below, indicates that the training loss after 25 epochs is
≈ 1.00 and the validation is ≈ 7.06. Importantly, neither training nor validation loss
have decreased during training, suggesting that either the neural network model is in-
appropriate or the problem of stock market prediction is quite difficult.

Epoch 1/25
138/138 [==============================] - 2s 6ms/step -
loss: 1.0933 - val_loss: 7.0730

Epoch 25/25
138/138 [==============================] - 1s 5ms/step -
loss: 1.0028 - val_loss: 7.0621

Hands-On Exercise

Download the Python code from here. Then:
1. Predict the percentage change of the closing value (column

price.closepct)
2. Predict the actual closing value (column price.close)
3. Comment on the model performance results. Are these values more or

less predictable than the differenced closing values?

Experiment with different model characteristics:
1. Vary the size of the LSTM hidden state and output (unit=16).
2. Swap the LSTM layer for a GRU layer (layers.GRU). The Keras GRU

layer construction function takes the same arguments as the Keras LSTM
layer construction function.

3. Comment on the model performance results.

https://raw.githubusercontent.com/jevermann/busi4720-ml/main/lstm_example.py

15.7. EXAMPLE – STOCK MARKET PREDICTION 489

Given the poor performance of the single layer LSTM network, it is natural to ask
whether more LSTM layers can make a difference. To illustrate the use of Seq2Seq
models, the following model stacks two LSTM layers. Note that the first LSTM layer
is a Seq2Seq type that returns an output for each step of the sequence. These outputs
form the inputs for the second LSTM layer. That second layer is a Seq2Vec model that
returns a single output. The model also adds a second fully-connected layer and droput
layers to prevent overfitting.

model = keras.Sequential()
model.add(layers.InputLayer(

input_shape=(n_steps, len(train.columns)-1)))
model.add(layers.LSTM(

units=16, return_sequences=True, stateful=False))
model.add(layers.Dropout(rate=0.25))
model.add(layers.LSTM(

units=16, return_sequences=False, stateful=False))
model.add(layers.Dense(32))
model.add(layers.Dropout(rate=0.25))
model.add(layers.Dense(1))
model.summary()

The model summary and the final epoch training output are shown below. Unfortu-
nately, the model performs no better than the simple one.

Layer (type) Output Shape Param #
===
lstm_2 (LSTM) (None, 20, 16) 1984
dropout_3 (Dropout) (None, 20, 16) 0
lstm_3 (LSTM) (None, 16) 2112
dense_9 (Dense) (None, 32) 544
dropout_4 (Dropout) (None, 32) 0
dense_10 (Dense) (None, 1) 33
===
Total params: 4673 (18.25 KB)
Trainable params: 4673 (18.25 KB)
Non-trainable params: 0 (0.00 Byte)

Epoch 25/25
138/138 [==============================] - 2s 17ms/step
- loss: 1.0064 - val_loss: 7.1526

Perhaps more history than the last 20 steps is required for good predictions. The fol-
lowing example illustrates a stateful LSTM. First, change the batch size to 1 for a single
sequence of continuous elements and prohibit shuffling of the data set:

490 CHAPTER 15. RECURRENT NEURAL NETWORKS

dataset_train = keras.preprocessing \
.timeseries_dataset_from_array(
train.drop('price.closediff', axis=1),
train['price.closediff'],
sequence_length=n_steps,
sampling_rate=1, batch_size=1, shuffle=False)

dataset_valid = keras.preprocessing \
.timeseries_dataset_from_array(
valid.drop('price.closediff', axis=1),
valid['price.closediff'],
sequence_length=n_steps,
sampling_rate=1, batch_size=1, shuffle=False)

The neural network architecture is a single LSTM as in the initial example, but this
time the LSTM layer is stateful. Note that the input layer does not specify a sequence
length for the batch input shape.

model = keras.Sequential()
model.add(layers.InputLayer(

batch_input_shape=(1, None, len(train.columns)-1)))
model.add(layers.LSTM(units=16,

return_sequences=False, return_state=False, stateful=True))
model.add(layers.Dense(1))
model.summary()

Again, this model does not perform any better than the previous two models. As a
baseline comparison, a Vec2Vec model is fitted with a single large feature vector that
contains all 20 sequence steps. A Flatten layer is used to re-shape the inputs from
shape [None, 20, 14] to [None, 280] where the first index is the batch size which is
flexible and depends on how the data set is prepared.

model = keras.Sequential()
model.add(layers.InputLayer(

input_shape=(n_steps, len(train.columns)-1)))
model.add(layers.Flatten())
model.add(layers.Dense(256))
model.add(layers.Dropout(rate=0.25))
model.add(layers.Dense(64))
model.add(layers.Dropout(rate=0.25))
model.add(layers.Dense(1))
model.summary()

It turns out this model performs significantly better than any of the three previous
LSTM models. However, the model summary indicates a very large number of model
parameters, almost 50 times the number of the basic LSTM model, making this model
much more flexible and powerful than the earlier LSTM models:

15.8. NEXT ACTIVITY PREDICTION IN BUSINESS PROCESSES 491

Model: "sequential"

Layer (type) Output Shape Param #
===
flatten (Flatten) (None, 280) 0
dense (Dense) (None, 256) 71936
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 64) 16448
dropout_1 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 1) 65
===
Total params: 88449 (345.50 KB)
Trainable params: 88449 (345.50 KB)
Non-trainable params: 0 (0.00 Byte)

15.8 Next Activity Prediction in Business Processes
As another example of a sequence data problem, consider predicting the next activity
in a running instance of a business process. In particular, train a model to predict the
next activity from a prefix sequence of 5 activities that have already occurred. This is
a classification problem, where the class of the next activity is to be predicted.

Complete implementations for this and the other examples in this chapter are available in the
following GitHub repo: https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL: https://github.com/jevermann/
busi4720-ml.git

Download the example event log herea: https://evermann.ca/busi4720/BPI_

Challenge_2012.xes.gz

aThe example log file is taken from the 4TU repository where it has been published under the
4TU general terms of use.

First, import the required libraries and use PM4Py to read the event log:

import numpy
from tensorflow import keras
from keras import layers
import pandas as pd
import pm4py

Length of sequences to predict from
prefix_len= 5

Read the log
log = pm4py.read_xes('BPI_Challenge_2012.xes.gz')

Preprocess the data by fixing data types after the import and filtering the log for activity

https://github.com/jevermann/busi4720-ml
https://github.com/jevermann/busi4720-ml.git
https://github.com/jevermann/busi4720-ml.git
https://evermann.ca/busi4720/BPI_Challenge_2012.xes.gz
https://evermann.ca/busi4720/BPI_Challenge_2012.xes.gz
 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
 https://data.4tu.nl/articles/_/12721292/1

492 CHAPTER 15. RECURRENT NEURAL NETWORKS

completion events:

log['time:timestamp'] = pd.to_datetime(log['time:timestamp'],utc=True)
log['case:REG_DATE'] = pd.to_datetime(log['case:REG_DATE'],utc=True)
log['case:AMOUNT_REQ'] = pd.to_numeric(log['case:AMOUNT_REQ'])
log['org:resource'] = log['org:resource'].astype(str)

Retain only activity completion events
log = log[log['lifecycle:transition'] == 'COMPLETE']

Filter and sort the log for cases that contain 6 or more activities (5 to predict from, plus
one target):

Find the case start time as time of the first event in case
log = log.merge(log.groupby('case:concept:name',as_index=False) \

['time:timestamp'].min() \
.rename(columns={'time:timestamp':'case:start'}), how='left')

Find the number of events for each case
log = log.merge(log.groupby('case:concept:name', as_index=False) \

['time:timestamp'].count(). \
rename(columns={'time:timestamp':'num_events'}), how='left')

Filter log for minimum 6 events (5 input, 1 target)
log = log[log['num_events'] > prefix_len]
Sort log by case start, then by event time
log.sort_values(['case:start', 'time:timestamp'], inplace=True)

Next, specify the feature column:

This is the feature to predict (from)
f_name = 'concept:name'

Next, identify the ”vocabulary”, that is, the set of unique activity names for inputs and
targets. Rather than converting this to integers using a Keras preprocessing layer, the
following code block builds dictionary objects for converting activity names to and
from integers. Note that a special end-of-case marker is added to the set of activity
names.

Vocabulary
vocab = list(log[f_name].unique()) + ['EOC']
v_size = len(vocab)

Dictionaries to convert to/from integers
f2int = dict([(s, vocab.index(s)) for s in vocab])
int2f = dict([(v, k) for (k, v) in f2int.items()])

15.8. NEXT ACTIVITY PREDICTION IN BUSINESS PROCESSES 493

The following code block creates a list of activity for each case. This is done by
grouping the data frame by case ID (”case:concept:name”) and then using the
apply(list) function to the feature columns of the grouped data frame and naming
the resulting column features:

Make sequences of feature names for each case
features = log.groupby(['case:concept:name'])[f_name] \

.apply(list).reset_index(name='features')

The end-of-case marker is added to each list just created and the lists are then converted
to lists of integers using the dictionary built earlier:

sequences=[l+['EOC'] for l in list(features['features'])]
sequences=[[f2int[i] for i in seq] for seq in sequences]

Split sequences into prefix and target using a sliding window over each sequence:

data = pd.DataFrame([(seq[i:i+prefix_len], \
seq[i+prefix_len]) for seq in sequences \
for i in range(len(seq)-prefix_len)])

Then, split the sequence elements into their own data frame columns, that is Pandas
Series:

Split the lists into dataframe columns
data = data.assign(**data[0].apply(pd.Series).add_prefix('index_'))

Treating each prefix as independent, split the data randomly into a training and valida-
tion set.

Divide into train and test set
train = data.sample(frac=0.8)
valid = data.drop(train.index)

Then, separate the features from the targets:

Separate X and Y
train_x = train.iloc[:,2:]
train_y = train.iloc[:,1]
valid_x = valid.iloc[:,2:]
valid_y = valid.iloc[:,1]

494 CHAPTER 15. RECURRENT NEURAL NETWORKS

The neural network model is a single-layer stateless LSTM with a Seq2Vec architec-
ture. The input layer specifies the input shape as 5 sequence steps with an undetermined
feature size. The features, that is, the activity numbers, are passed to a word embedding
layer with 16 output dimensions. That is, each activity number is transformed into a
set of 16 values. Note that this occurs for each of the 5 sequence steps fed into the net-
work. Each embedding output is then provided as the input feature vector to the LSTM
layer. The LSTM output is passed to a fully-connected output layer with as many units
as there are different activity names. The activation function is a softmax function so
that this layer returns class membership probabilities.

model = keras.Sequential()
model.add(layers.InputLayer(input_shape=(5,)))
model.add(layers.Embedding(input_dim=v_size, output_dim=16))
model.add(layers.LSTM(units=32,

return_sequences=False, return_state=False, stateful=False))
model.add(layers.Dense(v_size, activation='softmax'))

Finally, the model is compiled and trained for 25 epochs:

Compile with loss and optimizer
model.compile(loss='sparse_categorical_crossentropy',

optimizer='Adagrad',
metrics=['sparse_categorical_accuracy'])

Train the model and validate on
model.fit(train_x, train_y,

validation_data=(valid_x, valid_y),
epochs=25, shuffle=True)

The model summary is shown below, as well as the training progress information for
the first and last epoch. The prediction accuracy improves significantly from the first
epoch, for both the training and the validation dataset. Additionally, the training and
validation losses are similar, suggesting the model does not overfit.

15.8. NEXT ACTIVITY PREDICTION IN BUSINESS PROCESSES 495

Layer (type) Output Shape Param #
===
embedding (Embedding) (None, 5, 16) 384
lstm (LSTM) (None, 32) 6272
dense (Dense) (None, 24) 792
===
Total params: 7448 (29.09 KB)
Trainable params: 7448 (29.09 KB)
Non-trainable params: 0 (0.00 Byte)

Epoch 1/25
2875/2875 [==============================] - 7s 2ms/step -
loss: 3.0962 - sparse_categorical_accuracy: 0.1984 -
val_loss: 3.0310 - val_sparse_categorical_accuracy: 0.2013

Epoch 25/25
2875/2875 [==============================] - 6s 2ms/step -
loss: 1.4728 - sparse_categorical_accuracy: 0.5886 -
val_loss: 1.4553 - val_sparse_categorical_accuracy: 0.5935

To predict from the trained model, use the Keras predict() function of the fitted
model. The following Python code block takes as input a sequence from the training
data set, and predicts the class membership probabilities, that is the probabilities over
the following process activity. The predicted activity is determined by sampling from
the class membership. Alternatively, the most likely class could be chosen. Both op-
tions can be combined in that a random choice is made between sampling from the
probabilites and choosing the most likely class.

input = train_x.iloc[2:3,:].copy()
print(input)

Take the probabilities of the first entry of the return batch
probs = model.predict(input)[0]

Either deterministically choose the most probable class
pred = probs.argmax()
Better is to randomly sample from the probabilities
pred = numpy.random.choice(a=range(v_size), p=probs)

Print the result
print(int2f[pred])

The chosen activity is added to the end of the input sequence and the prediction is
repeated until the end of the case is predicted.

496 CHAPTER 15. RECURRENT NEURAL NETWORKS

And keep doing this until end-of-case is reached
while int2f[pred] != 'EOC':

for i in range(4):
input.iat[0,i] = input.iat[0, i+1]

input.iat[0,4] = pred
print(input)
probs = model.predict(input)[0]
pred = numpy.random.choice(a=range(v_size),p=probs)
print(int2f[pred])

An example output is shown below. The exact result depends on the specific parameter
values of the trained model and the sampling of the class probabilities.

index_0 index_1 index_2 index_3 index_4
4380 9 10 9 15 13
1/1 [==============================] - 0s 11ms/step
W_Nabellen incomplete dossiers

index_0 index_1 index_2 index_3 index_4
4380 10 9 15 13 21
1/1 [==============================] - 0s 13ms/step
O_ACCEPTED

index_0 index_1 index_2 index_3 index_4
4380 9 15 13 21 13
1/1 [==============================] - 0s 12ms/step
W_Nabellen offertes

index_0 index_1 index_2 index_3 index_4
4380 15 13 21 13 9
1/1 [==============================] - 0s 13ms/step
W_Valideren aanvraag

index_0 index_1 index_2 index_3 index_4
4380 13 21 13 9 15
1/1 [==============================] - 0s 16ms/step
EOC

Hands-On Exercise

Download the complete Python file and the example event log.

Adapt the network architecture to identify the impact on training and validation
performance of the following:

1. Dropouts in the LSTM layer (use the dropout option when defining
the LSTM layer)

2. GRU instead of LSTM layers (use layers.GRU())
3. Embedding size (originally 16, note: vocabulary size is 23+1)
4. Further training epochs (originally 25)

Comment on your findings and identify the best model.

https://github.com/jevermann/busi4720-ml/blob/main/process_prediction.py
https://evermann.ca/busi4720/BPI_Challenge_2012.xes.gz

15.9. REVIEW QUESTIONS 497

15.9 Review Questions
Introduction

1. What are Recurrent Neural Networks (RNNs) and what type of data are they
particularly suited for?

2. Explain how RNNs maintain a ”memory” of previous inputs. What is the role of
the internal state in this process?

3. Describe at least two applications of RNNs in natural language processing and
explain why RNNs are well-suited for these tasks.

4. Discuss the use of RNNs in business processes. How can they predict outcomes
based on previous sequences of actions?

5. Explain the concept of ”vanishing gradients” and how it impacts the training of
traditional RNNs.

6. Compare and contrast the capabilities of RNNs with those of other types of neu-
ral networks, such as convolutional neural networks, in handling sequential data.

7. Analyze how RNNs can be utilized for forecasting in financial markets. What
makes RNNs suitable for this type of prediction?

Sequence Models

8. What does it mean to say that RNNs are ”recurrent”? How does this characteris-
tic affect their architecture and functionality?

9. Define the following terms and explain their significance in the context of RNNs:
Seq2Vec, Vec2Seq, and Seq2Seq.

10. Provide a detailed use case for each of the model types mentioned above (Seq2Vec,
Vec2Seq, Seq2Seq), explaining how each model processes data and the type of
outputs they generate.

11. What challenges might arise when using the Seq2Seq model for machine trans-
lation? Consider both the input and output sequences in your response.

12. How does the architecture of a Seq2Vec model assist in tasks like sentiment
analysis from text sequences? Describe the process from input to output.

13. In the context of an RNN, what is the significance of the initial state, and how
does it affect the outcome of the sequence processing?

14. Discuss the advantages and potential drawbacks of using a Vec2Seq model for
music generation from a fixed-length input vector.

15. What are the challenges associated with training Seq2Seq models, especially
when dealing with very long input sequences?

LSTM Cells

16. What are Long Short-Term Memory (LSTM) cells, and why were they developed
for use in recurrent neural networks?

17. Provide an example scenario where the unique features of LSTM would be par-
ticularly advantageous over standard RNNs.

18. How do LSTMs address the vanishing gradient problem encountered in tradi-
tional RNNs?

498 CHAPTER 15. RECURRENT NEURAL NETWORKS

19. Describe the function of the forget gate in an LSTM cell. How does it affect the
cell memory?

20. What impact does the forget gate have on the long-term memory capabilities of
the LSTM?

21. Explain the roles of the input and output gates within an LSTM cell. How do
they interact with each other to determine the cell’s output?

22. What is the significance of the cell memory ct in LSTMs? How is it different
from the hidden state ht?

23. Detail the process of updating the cell memory in an LSTM. What equations are
involved, and how do they function together to update the memory?

24. Discuss how the output of an LSTM cell is calculated and what role the output
gate plays in this process.

GRU Cells

25. What are Gated Recurrent Units (GRU) and how do they simplify the architec-
ture of traditional LSTMs?

26. Describe the two gates used in GRUs and their functions. How do they compare
to the three gates in LSTMs?

27. Explain how the update and reset gates in a GRU work together to determine the
hidden state of the cell.

28. How do the reset and update gates in a GRU influence the final output of the
cell?

29. How does the GRU model decide how much of the past information to forget
and how much of the new information to add?

30. Explain the concept of a candidate state in GRUs and how it is integrated into
the overall state update.

31. Discuss the potential advantages and limitations of GRUs compared to LSTMs
in terms of training efficiency and performance.

Statefulness in RNNs

32. Explain the difference between stateful and stateless RNNs. How does each
approach handle the internal state during training?

33. What are the advantages of using a stateful RNN? In what scenarios might it be
preferable to a stateless RNN?

34. Give an example of a real-world application where stateful RNNs could provide
significant benefits over stateless configurations.

35. How does batch processing differ in stateful vs. stateless RNNs?

Chapter 16

Intepretable Machine Learning

Learning Goals
After reading this chapter, you should be able to:

• Explain the importance of interpretable machine learning models.

• Differentiate between intrinsic and post-hoc interpretability and the advantages
and disadvantages of each.

• Differentiate between global and local interpretability and identify uses cases
when each one is appropriate.

• Create simple decision tree models as an intrinsically interpretable method, fit
them to data, prevent overfitting and ensure they remain interpretable.

• Explain the relative advantages and disadvantages of different global, model-
agnostic interpretation methods and apply each one to a given classification or
regression model and interpret their results.

• Explain the main principles behind LIME and apply it to a classification or re-
gression model and interpret the results.

• Explain the game-theoretic background of Shapley Values and its application to
interpretable machine learning.

• Apply SHAP to a classification and regression model and interpret its results.

Sources and Further Reading
The material in this chapter is based on the following sources.

499

500 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Molnar, Christoph: Interpretable Machine Learning (2023)

https://christophm.github.io/interpretable-ml-book/

(CC BY-NC-SA License)

Christoph Molnar’s book is a very readable and fairly comprehensive introduction to
interpretable machine learning or explainable artificial intelligence (XAI). It provides
only a few mathematical formulas for illustration and explanation and otherwise relies
on intuitive and easy-to-understand descriptions and explanations. It points to and uses
software for R and Python, but is not focused on code.

SciKit-Learn: https://scikit-learn.org/

SciKit-Learn is a comprehensive machine learning framework for Python that also pro-
vides some interpretable ML functions. It provides many commonly used as well as
advanced functions for classification, regression, and clustering, as well as methods for
data preprocessing and model validation and selection.

PyALE: https://pypi.org/project/PyALE/

PyALE is a Python package to compute Accumulated Local Effects. It is based on
an R package with similar functionality and provides ALE plots for numerical and
categorical features.

LIME: https://github.com/marcotcr/lime

LIME is a Python package to compute Local Interpretable Model Explanations (a local
model-agnostic method). The package was developed by the authors of the original
paper that developed and introduced this method. LIME can be used to explain tabular
predictions as well as text- and image-based predictions.

SHAP: https://shap.readthedocs.io/en/latest/

SHAP is a Python package to compute Shapley Additive Explanations (a local model-
agnostic interpretation method). The package was created by the authors of the paper
that initially developed the method. SHAP can provide explanations for tabular, text
and image predictions.

https://christophm.github.io/interpretable-ml-book/
https://scikit-learn.org/
https://pypi.org/project/PyALE/
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/

16.1. INTRODUCTION 501

16.1 Introduction
Many machine learning models, in particular non-linear, deep neural network models,
are too complex for humans to comprehend or grasp. Such models can have millions
or even billions of trainable parameters in complex architectures that may include con-
volutions, LSTM cells, and other complex elements. These kinds of models are known
as ”black box” models, because their inner workings are essentially inscrutable.

Interpretable machine learning refers to the techniques and models where the processes
and results they produce can be understood by human beings. The aim of interpretable
machine learning is to ensure human understanding of how the machine learning mod-
els work and how they arrive at their results, that is, their decisions or predictions. In
other words, it is about why a decision or prediction is made, in understandable terms.

Motivation
This interpretability is crucial for various aspects from debugging models to compli-
ance with legal standards. Interpretable machine learning is important for a number of
reasons:

• Curiosity: Interpretable models satisfy human curiosity about how decisions are
made, especially in systems affecting our daily lives. Understanding the decision
process can foster deeper insights and innovations.

• Human Learning: By interpreting machine learning models, humans can learn
new patterns and knowledge about the data and the phenomena they model, po-
tentially leading to academic advancements and practical applications.

• Human Sensemaking of Events and Phenomena: Interpretability helps users
make sense of automated decisions and the events or actions that are conse-
quences of such decisions, ensuring that outcomes are understandable in human
terms.

• Knowledge Extraction for Scientific Progress: Interpretable models allow scien-
tists and researchers to extract and verify new knowledge from complex datasets,
advancing scientific understanding.

• Safety and Compliance Assessment: Ensuring that machine learning systems
operate safely and within regulatory frameworks is easier when these systems
are interpretable. Stakeholders can verify compliance through understandable
model outputs.

• Reliability and Robustness Evaluation: Interpretable models facilitate the eval-
uation of system reliability and robustness by making it possible to assess how
decisions are made under various conditions.

• Identify Knowledge Limits: Interpretable models help identify the limits of the
knowledge embedded in the models, including areas where the model may lack
information or where it is unreliable.

502 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

• Auditability: Being able to audit machine learning processes transparently helps
in maintaining accountability, particularly in sectors like finance and healthcare.

• Bias Detection & Ensuring Fairness: Interpretability is key in detecting biases
in model predictions and ensuring that machine learning applications are fair and
do not perpetuate or exacerbate existing inequalities.

• Trust and Acceptance: Users are more likely to trust and accept machine learn-
ing solutions that they can understand and feel confident that they are fair and
effective.

• Debugging & Failure Analysis: When a model’s decisions can be traced and
understood, identifying errors and the reasons for failures becomes feasible, al-
lowing for more effective debugging and correction.

• Legal Obligations (”Right to Explanation”): In many jurisdictions, regulations
such as GDPR mandate that decisions made by automated systems be explain-
able to affected individuals, fulfilling legal obligations.

Intrinsic and Post-Hoc Interpretability
Interpretability in machine learning can be broadly classified into two categories: in-
trinsic interpretability and post-hoc interpretability. These two types represent differ-
ent approaches and philosophies in making machine learning models understandable
to humans.

Intrinsic interpretability refers to the use of machine learning models that are naturally
understandable due to their simple structure and the simplicity of their decision-making
process. These models are known as ”white box” models and are designed to be inter-
pretable from the ground up, with the following important characteristics:

• Simplicity: Models such as linear regression, decision trees, or logistic regression
are considered intrinsically interpretable because their decisions can be easily
traced to their input features and understood without requiring additional tools
or techniques.

• Transparency: The model’s workings are transparent, meaning that each step of
the decision process is visible and comprehensible to users.

• Limited Complexity: These models typically involve fewer parameters and sim-
pler relationships, which aids in direct human comprehension.

Post-hoc interpretability involves techniques and methods applied after model training
to explain or clarify how a model makes decisions. This is often necessary for com-
plex models like neural networks or ensemble methods that combine multiple classi-
fiers, where intrinsic interpretability is not feasible. Methods such as LIME (Local
Interpretable Model-agnostic Explanations), SHAP (SHapley Additive exPlanations),
or feature importance metrics are commonly used to provide insights into model de-
cisions. These methods do not depend on the model type; they can be applied to any
model type. Post-hoc methods are designed to be used externally to the original black

16.1. INTRODUCTION 503

box model, making them versatile in application and providing flexibility in model
choice and deployment.

The choice between intrinsic and post-hoc interpretability depends on the balance be-
tween the need for prediction accuracy and the requirement for transparency or under-
standability. While intrinsic interpretability is preferable for clarity and ease of under-
standing, the simplicity and limited complexity often (but not always) means that these
models have lower predictive performance. Post-hoc interpretability provides critical
insights into complex models, ensuring that even the most sophisticated algorithms
can be scrutinized and understood. However, the understanding is often limited to the
output only, rather than the method by which a model generates output. That is, the
interpreted model remains a somewhat opaque black-box model.

Local and Global Interpretation

Interpretation methods are often categorized into local and global methods. Each type
provides different insights into the functioning of machine learning models, tailored to
specific needs and scenarios.

Local interpretation methods focus on explaining individual predictions made by a
machine learning model. These methods aim to clarify why a model made a specific
classification decision or regression prediction for a particular instance. These meth-
ods provide explanations for individual data points, helping to understand the model’s
behavior at a granular level. Examples include LIME (Local Interpretable Model-
agnostic Explanations) and counterfactual explanations, which explain how changes
in input features could alter the prediction. Local interpretations are particularly use-
ful in applications like healthcare or finance, where understanding specific decisions
is crucial for trust and verification. Typically, local methods focus on the impact of
specific feature values.

Global interpretation methods seek to explain the overall behavior or logic of a model
across all instances. They provide a holistic view of how the model operates in gen-
eral. These methods explain the model’s general decision-making process rather than
focusing on individual predictions. Examples include feature importance and partial
dependence plots, which show the effect of each feature on the model’s predictions
across the entire dataset. Global interpretations are beneficial when stakeholders need
to validate the model’s overall logic and ensure it aligns with domain knowledge and
objectives. In contrast to local methods, global methods focus on the impact of fea-
tures, not the impact of specific feature values.

The choice between local and global interpretation methods depends on the specific
needs for transparency in a given application. Local methods are best suited for cases
requiring detailed explanations of individual decisions, while global methods are ideal
for understanding and validating the overall behavior of a model.

504 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Algorithm Linear Monotone Interaction
Linear regression Yes Yes No
Logistic regression No Yes No
Decision trees No Some Yes
RuleFit Yes No Yes
Naive Bayes No Yes No
k-NN No No No

Source: https://christophm.github.io/interpretable-ml-book/simple.html

Table 16.1: Intrinsically Interpretable Models

16.2 Intrinsically Interpretable Models
Intrinsically interpretable machine learning models often leverage characteristics such
as linearity, monotonicity, and interactions to ensure that their workings are transparent
and understandable.

Linearity in machine learning models means that the output is a linear combination of
the input features. Models like linear regression are classic examples where each pre-
dictor has a constant effect on the outcome. Linear models are straightforward, making
them easy to understand and explain. The impact of each feature on the prediction is
clear and quantifiable. The effects of changes in input features are predictable, aiding
in scenario analysis and planning.

Monotonicity in a model ensures that the relationship between any given input and the
output is either always non-decreasing or always non-increasing. Linear regression
models and decision trees that split based on a single feature at a time can exhibit this
property. Monotonic models are consistent in their behavior, enhancing trust as in-
creases (or decreases) in input variables lead to predictable changes in outputs. These
models are easier to validate against domain knowledge, where certain inputs are ex-
pected to have a direct and consistent influence on the output.

Interactions in machine learning refer to the scenario where the effect of one feature on
the response variable depends on the value of another feature. By modeling the inter-
dependencies between features, interaction-enabled models can often achieve higher
predictive accuracy while still maintaining a degree of interpretability. Many phenom-
ena involve interdependent factors; accurately modeling these interactions can make
the model outputs more applicable and relevant in real-world scenarios.

Linearity, monotonicity, and interactions each play crucial roles in ensuring that intrin-
sically interpretable machine learning models are both effective and transparent. While
linearity and monotonicity contribute to simplicity and predictability, interactions allow
for a nuanced understanding of complex dynamics within the data. Table 16.1 shows a
list of intrinsically interpretable models. This section examines the emphasized entries
in the table, linear regression and decision trees, while others, such as logistic regres-
sion, naive Bayes, and k-NN, have been presented and discussed in previous sections.

https://christophm.github.io/interpretable-ml-book/simple.html

16.2. INTRINSICALLY INTERPRETABLE MODELS 505

16.2.1 Linear Regression
Linear regression is one of the simplest prediction methods available and is intrinsically
interpretable. Consider the following example linear regression model for predicting
bicycle rental count (variable cnt) from the season (season) and the temperature
(cnt) (using R).

Load the bike rental data set
d <- read.csv('https://evermann.ca/busi4720/bike.csv')

Perform the regression and summarize results
summary(lm(cnt~season+temp, data=d))

The abbreviated output below is easy to interpret and demonstrates linearity and mono-
tonicity. For example, the coefficient for temperature of 132.79 means that, all other
variables remaining the same (”ceteris paribus”), a change of one degree of temperature
will change the predicted bicycle rental count by 132.79, no matter what the original
temperature is (linearity) and always in the same direction as the temperature change
(monotonicity).

The coefficients for the categorical season variable are also easy to interpret. They
represent the predicted change in bicycle rental count from the reference category (in
this case, FALL), assuming all other variables remain the same (”ceteris paribus”). For
example, the prediction for the winter is 1342.87 lower than for the fall.

The intercept is easy to interpret as that prediction when all other variables are 0, or
the reference category for categorical variables. In this example, for a temperature of 0
degrees and in the fall season, the model predicts a rental count of 3151.02.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3151.02 169.35 18.606 < 2e-16 ***
seasonSPRING -494.15 163.28 -3.026 0.00256 **
seasonSUMMER -852.68 209.82 -4.064 5.35e-05 ***
seasonWINTER -1342.87 164.59 -8.159 1.49e-15 ***
temp 132.79 11.02 12.046 < 2e-16 ***

Residual standard error: 1433 on 726 degrees of freedom
Multiple R-squared: 0.4558, Adjusted R-squared: 0.4528

The R2 is an easily understood metric to assess the quality of the model. It explains
the proportion of variance in the target variable that is explained by the predictors. A
good model has an R2 close to 1, while an R2 close to 0 indicates a poor model.

Finally, the relative feature importance is given by the t = β̂

SE(β̂)
value. Because it

divides the coefficient estimate by its standard error, the t-value is scale invariant and
can be used to compare the importance of features on different scales. In the above
example, it is clear that temperature is the most important features.

506 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

In summary, it is easy to understand which features are most or least important in
making a prediction and how features interact or do not interact (consider what ”ceteris
paribus” implies for interactions).

Linear regression also has high local interpretability; predictions for individual obser-
vations are also easy to understand. For example, to predict the bicycle rental count in
summer when the temperature is 20 degrees, one uses the following regression equa-
tion, with parameter values from the output above:

ĉ = 3151.02− 852.68 + 20× 132.79 = 4954.14

Finally, the ordinary least squares algorithm that is used to compute the model parame-
ters is simple and well-understood and is proven to produce optimal parameter values.
This means that linear regression has high algorithmic transparency. In other words, it
is clear what the optimization objective is, and how it is achieved.

To further improve the interpretability of linear regression models, one may try to re-
duce the number of features or input dimensions, using methods such as:

• Manual feature selection: The analyst may successively omit less important fea-
tures, or may include features based on the strength of their correlation with the
target variable.

• Automatic feature selection: While an exhaustive search of all possible feature
combinations is typically not feasible, automated heuristics are able to arrive at a
reasonably good subset of features that still provides good prediction capability
with a small number of features.

• Regression with PCA components: PCA produces linear combinations of varaibles
with maximal variance. Retaining a few of such components instead of the full
set of features may make the model more interpretable. However, the compo-
nents themselves must also be interpreted, based on their loadings or correlations
with the original features.

• Penalized regression: The LASSO is a penalized regression that automatically
removes features (sets their coefficient to 0) as a function of the penalty parame-
ter λ.

In general, the analyst must consider the bias and variance implications of these di-
mensionality reduction methods: Simpler models will generally have a higher bias and
lower variance than more complex models.

16.2.2 Decision Trees
Decision trees are another relatively simple and easy to understand predictive machine
learning technique. Decision trees can be used both for regression (”regression trees”)
and for classification (”classification trees”). Decision trees are a popular choice in
interpretable machine learning due to their strengths:

16.2. INTRINSICALLY INTERPRETABLE MODELS 507

• Algorithmic Transparency: The procedure to construct a decision tree and the
optimization criteria are easy to understand and verify. The optimization crite-
rion to derive the decision rules is simple and intuitive.

• Simplicity: The structure of a decision tree is simple and intuitive, which allows
non-experts to understand the model’s reasoning easily. This simplicity also
facilitates easier communication about the model’s decision-making process.

• Visualization: Decision trees offer a clear visualization of how decisions are
made, with each node representing a decision rule and each path a decision pro-
cess. This makes them highly interpretable and easy to follow.

• No Need for Feature Scaling: Unlike some other machine learning models, de-
cision trees do not require input features to be scaled or normalized. This avoids
potential distortions in interpretation due to preprocessing.

• Handling of Non-linear Relationships: Decision trees can handle complex, non-
linear relationships between features without needing any transformation of data,
capturing interactions between the variables naturally.

• Capability to Handle Both Numerical and Categorical Data: Trees can process
datasets that have a mix of numerical and categorical variables without the need
for extensive preprocessing.

However, decision trees have a number of weaknesses that may limit their usefulness
or applicability to certain problems.

• Overfitting: Decision trees are prone to overfitting, especially for very deep trees.
Without aggressive tree ”pruning”, they can create overly complex trees that do
not generalize well.

• Instability: Small changes in the data can result in a completely different tree
being generated. In other words, they have high variance.

• Bias Towards Certain Structures: Decision trees tend to favor splits on features
having a larger number of levels. This can bias the model’s decision-making
process, especially if the feature’s relevance is artificially inflated by its structure.

• Greedy Nature: Standard algorithms for decision tree construction, such as CART
(Classification and Regression Trees, discussed below), are greedy because they
make the best split at a given node without considering future impacts. This
might lead to suboptimal trees.

• Piecewise Constant Predictions: Decision trees make piecewise constant deci-
sions, that is, they predict the same values or classes within small regions of
the feature space. This means that the predictions within these spaces have zero
variance, which may be problematic for subsequent analytics.

Figure 16.1 shows the intuition behind binary decision trees. The top left panel in
the figure shows a feature space spanned by two numerical features, x1 and x2. The
space is subdivided into regions where predictions on the target variable are similar.
Unfortunately, an optimal sub-dividing of the feature space is difficult to achieve when

508 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Source: ISLR2 Figure 8.3

Figure 16.1: Decision tree for two numerical features

the regions are irregularly shaped. Instead, binary decision trees are created by making
a binary split of the feature space along one feature/dimension, yielding two smaller
regions. Each region may then be split again, recursively, until a stopping criterion is
reached.

Consider the top right panel in Figure 16.1 as an example. Here, the feature space is
first split on feature x1 at value t1 creating two rectangular regions, one to the left of t1
where x1 ≤ t1 and the other to the right where x1 > t1. The left region is then split on
feature x2 at value t2 creating the regions labelled R1 where x1 ≤ t1∧x2 ≤ t2 and R2

where x1 ≤ t1 ∧ x2 > t2. These two regions are not split any further, and are called
the ”leafs” or ”leaf nodes” of the tree. The region to the right of t1, that is the region
where x1 > t1, is split again on feature x1 at value t3, yielding the region R3 where
x1 > t1 ∧ x1 ≤ t3 and the region where x1 > t1 ∧ x1 > t3. The latter region is split
on feature x2 at value t4, yielding regions R4 and R5.

The bottom left panel in Figure 16.1 shows how these split or divisions of the feature
space form a (upside down) decision tree with root, decision nodes, and the resulting
leaf nodes. The bottom right panel in Figure 16.1 shows what a prediction of a target
variable (here, a numerical target), might look like. For a regression tree, the predicted
value for each region is simply the average of the observed target values in each region,

16.2. INTRINSICALLY INTERPRETABLE MODELS 509

leading to the flat plateaus shown in the bottom right panel, that is, piece-wise constant
predictions for small regions of the feature space. For a classfication tree, the predicted
class for a leaf node is simply the majority class of observations in each region.

For binary decision trees, the choice on which feature to split on next and which specific
feature value to split on is decided as follows:

1. For every feature j and potential split feature value s define regions

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}

This is simple for binary feature but requires dichotomization or discretization
(for example, using equal interval bins or equal frequency bins) for numerical
features and can potentially result in a large number of possible split points s.

2. Use one of the following criteria to choose j and s:

• Minimize the total variance of the two regions (regression trees):∑
i:xi∈R1(j,s)

(yi − ȳR1
)2 +

∑
i:xi∈R2(j,s)

(yi − ȳR2
)2

The decision tree algorithm will calculate the total variance of both groups
resulting from each potential split and then choose the split that will yield
the lowest variance.

• Maximize information gain (classification trees): Recall that the entropy is
defined as

H(Y) = −
∑
y∈Y

p(y) log p(y)

where p(y) represents the proportion of each class y in a child node. The
information gain obtained by splitting on a feature j at feature value s and
forming regions R1 and R2 is then defined as:

IG(Y, a) = H(Y)− p(R1)H(Y |R1)− p(R2)H(Y |R2)

where p(R1) is the probability of an observation being in region R1, that
is, the proportion of observations in region R1, and H(Y |R1) is the con-
ditional entropy, that is, the entropy of those observations in region R1

(analogous for R2.

Intuitively, the entropy H expresses the uncertainty in the distribution of
Y . Knowing or assuming a value (or range of values) for some feature j
should decrease the uncertainty, that is, lead to a gain in information. The
decision tree algorithm will calculate the information gain resulting from
each split and will choose the split with the highest gain.

510 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

• Minimize Gini index (classification trees): The Gini impurity of a dataset
is defined as:

Gini = 1−
k∑

i=1

p(y)2

where p(y) is the probability of an observation being classified to a particu-
lar class y. The Gini impurity index represents the probability of an obser-
vation being misclassified if it were randomly assigned a label according
to the distribution of classes in the data at that node. A Gini impurity of 0
indicates that all cases in the node fall into a single category, i.e., the node
is completely pure. The decision tree algorithm will calculate the Gini im-
purity for each subgroup that would result from a split and will choose the
split that results in the lowest weighted sum of the group impurities.

The above process is recursively repeated for each region, resulting in a tree that is
growing new leaf nodes and gaining depth. Without any stopping, the tree will grow,
that is, nodes will be split, until every leaf node contains only a single observations. It
is clear that such a fully-grown tree is overfitted to the training data set, and not easily
interpretable.

In practice, to prevent overfitting and ensure the tree remains interpretable, the splitting
process is stopped using one many options for stopping criteria:

• Maximum tree depth: The splitting of the feature space stops when a specified
tree depth is reached. All branches of the tree have the same depth/length.

• Maximum leaf node count: Splitting of the feature space stops when a certain
number of leaf nodes have been created. Not all branches of the tree need to
have the same length/depth. This limits the number of decisions in the decision
tree and the number of unique predicted values for regression trees.

• Minimum Leaf node sample size: Leaf nodes must have a minimum number of
observations. This makes the predictions for each feature space region more
representative as they are based on a minimum sample size.

• Maximum leaf node variance: Splitting continues until the variance of observa-
tions in a regression tree regions is below a certain threshold.

• Minimum leaf node purity: Regions are split while they contain a mixture of tar-
get observations; splitting stops only when a node contains a certain proportion
of a majority class for classification trees or when the entropy is below a certain
threshold. This criterion prevents unnecessary splitting which may result in two
sub-regions yielding the same predicted class.

• Minimum change in node impurity or information gain: Regions are split while
the improvement in purity or reduction of entropy are above a certain threshold.
This criterion prevents unnecessary splits that do not significantly improve the
predictive power of the model.

16.2. INTRINSICALLY INTERPRETABLE MODELS 511

To illustrate decision trees, consider the following Python example, using the
DecisionTreeRegressor class from the SciKit-Learn package. The example
uses the same data set as the linear regression example above and constructs a regres-
sion tree to predict the count of bicycle rentals from the temperature and humidity, two
numerical variables.

The example fits an unpruned tree, that is, there is no stopping criterion and the tree
will have as many leaf nodes as there are observations. Consequently, there will be no
prediction error for the training data and the tree is very much overfitted.

import matplotlib.pyplot as plt
import pandas as pd
Prepare data:
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=d[['temp', 'hum']]
y=d['cnt']
#Fit unpruned tree:
from sklearn.tree import DecisionTreeRegressor
regr = DecisionTreeRegressor()
regr.fit(x, y)
Print the MSE:
from sklearn.metrics import mean_squared_error
mean_squared_error(regr.predict(x), y)

Early stopping can prevent overfitting and maintain interpretability. The following
three examples show how to use the tree depth criterion, the leaf node sample size
criterion and the leaf node count criterion for stopping the tree construction. Each of
those trees will have a non-zero training error.

regr = DecisionTreeRegressor(max_depth=3)
regr.fit(x, y)
regr = DecisionTreeRegressor(min_samples_leaf=10)
regr.fit(x, y)
regr = DecisionTreeRegressor(max_leaf_nodes=8)
regr.fit(x, y)

To demonstrate the interpretability of a decision tree, it is useful to print the tree and to
visualize or plot the tree.

import sklearn
Print the tree:
print (sklearn.tree.export_text(regr, feature_names=x.columns))
Plot the tree:
sklearn.tree.plot_tree(regr, max_depth=2, feature_names=x.columns,

filled=True, fontsize=6)
plt.show()

Printing the fitted tree will show the decision nodes and the predicted value of each

512 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Figure 16.2: Regression tree example

leaf node, which is simply the mean value of the observations for that leaf node. The
output from the Python code above is shown below. Plotting the tree results in the
visualization shown in Figure 16.2. It is clear that decision trees have good local inter-
pretability, that is, for a given observation, it is easy to see how the tree model arrives
at its predictions. However, global interpretability is lacking. For example, it is unclear
whether temperature or humdity is the more important predictor in this example. One
could count the number of splits that are based on a particular variable to gain an idea
of its importance, but this is a pretty rough approximation.

|--- temp <= 12.32
| |--- temp <= 4.92
| | |--- value: [1947.58]
| |--- temp > 4.92
| | |--- hum <= 68.56
| | | |--- value: [3885.62]
| | |--- hum > 68.56
| | | |--- value: [2916.96]
|--- temp > 12.32
| |--- hum <= 84.85
| | |--- hum <= 69.48
| | | |--- temp <= 17.40
| | | | |--- value: [5355.81]
| | | |--- temp > 17.40
| | | | |--- temp <= 23.51
| | | | | |--- value: [6698.34]
| | | | |--- temp > 23.51
| | | | | |--- value: [5716.78]
| | |--- hum > 69.48
| | | |--- value: [5183.22]
| |--- hum > 84.85
| | |--- value: [3381.93]

Finally, to show the piecewise constant predictions across small regions of the feature
space, consider the scatter plot of predicted values in Figure 16.3, created using the
following Python code block. The plot shows the actual target on the horizontal axis

16.2. INTRINSICALLY INTERPRETABLE MODELS 513

Figure 16.3: Predictions of a regression tree

and the predicted target on the vertical axis. Predictions for different actual target
values are the same. From the graph, it is evident that the tree has eight leaf nodes
corresponding to those in the printed output, that is, the tree is able to predict 8 different
values.

Plot fitted versus true values:
import plotly.express as px
px.scatter(pd.DataFrame([y, regr.predict(x)], \

index=['y', 'yhat']).transpose(),x='y', y='yhat').show()

514 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Hands-On Exercise

1. Fit regression trees to the bike dataset in the above examples. Calculate
the MSE, print the decision rules, and plot predicted versus true values
as you vary the following stopping rule criteria:

• max_depth: choose values 1, 3, 5, 7
• min_samples_leaf: choose values 1, 5, 10, 20
• max_leaf_nodes: choose values 2, 8, 16, 32

How does the training MSE change? What can you observe from the
plots of predicted versus true values?

2. Split the data set into a training and test sample. Repeat exercise (1) but
now evaluate the test MSE. What is the optimal stopping criterion?

16.3 Global Model-Agnostic Methods
Global model-agnostic interpretation methods focus on the understanding the overall
impact of features in determining the prediction. They are applicable to different mod-
els and focus only on the input features and predictions, while ignoring the specific
model or algorithm. This section presents a few of the many methods that have been
proposed and developed in recent years.

16.3.1 Partial Dependence Plots (PDP)
Partial Dependence Plots (PDPs) provide insights into the relationship between a fea-
ture and the predicted outcome, averaged over the distribution of values of the other
features in the dataset. By isolating the effect of one or two features, PDPs can show
how changes in these features impact the predicted outcome, irrespective of the values
of other variables, offering a global view of the model’s mechanics.

Formally, a PDP shows the marginal effect of one or a few features XS on the pre-
dicted output, marginalized over all other (”complement”) features XC . Recall that
marginalization is the summing, or integration for continuous features, weighted by
probabilities:

f̂S(XS) = EXC

[
f̂(XS , XC))

]
=

∫
f̂(XS , XC)p(XC)dXc

When estimated from sample data, this becomes:

f̂S(XS) =
1

n

n∑
i=1

f̂(XS , X
(i)
C) (16.1)

16.3. GLOBAL MODEL-AGNOSTIC METHODS 515

where the sum in Equation 16.1 is over all observations and X(
Ci) are the complement

feature values of the i-th observations. The integrals or sums are computed for all pos-
sible values of XS to generate the PDP curves. Essentially, the PDP shows shows how
the average prediction changes when the focal predictor XS is changed. Importantly,
PDPs assume feature independence.

Consider the following example in Python. For ease of illustration, the example ex-
plains a decision tree model, which is of course intrinsically interpretable already. The
example uses the bike rental data set from above and first fits a regression tree.

Read the data set and identify features and target
import pandas as pd
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=d[['temp', 'hum']]
y=d[['cnt']]
Fit a regression tree:
from sklearn.tree import DecisionTreeRegressor
regr = DecisionTreeRegressor(max_depth=5).fit(x, y)

Once the model is fitted, the PartialDependenceDisplay class in the Scikit-
Learn package can be used to generate a PDP. The features argument indicates
which features to use for the PDP. This example Python code below shows individual
PDPs for the first and second feature and a joint feature PDP for those two features
as well. The grid_resolution argument controls the discretization of continuous
features into equal intervals for summing/marginalization. Figure 16.4 shows the re-
sulting PDPs. For example, the left panel shows how the prediction varies when the
temperature value changes. For each value of temperature, the sum in Equation 16.1 is
computed to calculate the average prediction for that temperature value.

import matplotlib.pyplot as plt
from sklearn.inspection import PartialDependenceDisplay
PartialDependenceDisplay.from_estimator(

estimator = regr,
X = x, features = [0, 1, (0,1)], grid_resolution = 20)

plt.show()

Importantly, the PDP removes the ”ceteris paribus” assumption that linear regression
models make. Instead of assuming that all other values remain unchanged, the PDP
marginalizes (”averages”) over the values of other features.

16.3.2 Individual Conditional Expectation (ICE) Curves
Individual Conditional Expectation (ICE) curves extend the idea of PDPs by disaggre-
gating the effects for individual observations. Instead of an average effect over all ob-
servations or feature values, an ICE plot displays one curve per instance in the dataset,
showing how predictions change for that instance if the feature of interest is varied.

516 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Figure 16.4: Example PDP for a regression tree

Figure 16.5: Example ICE plot for a regression tree

This essentially means that no summation in Equation 16.1 takes place; the ICE curves
are simply the individual summands of that sum. Thus, averaging all ICE curves yields
the PDP curve. This allows identification of outlier cases or heterogeneous data.

ICE plots can created in Python using the same way as PDPs. The result of the follow-
ing Python code block is shown in Figure 16.5. While the bike rental data set in this
example has 731 observations, the ICE plot in Figure 16.5 shows fewer lines because
of the piece-wise constant predictions (the fitted tree has 31 leaf nodes), that is, the
predictions for multiple observations are identical and the lines are overlaid on top of
each other in the ICE plot. From Figure 16.5 it is clear that not all observations follow
the same, average pattern and that there is significant heterogeneity in the data set.

PartialDependenceDisplay.from_estimator(regr, x, [0, 1], kind='both')

16.3. GLOBAL MODEL-AGNOSTIC METHODS 517

16.3.3 Accumulated Local Effects (ALE) Plot
Accumulated Local Effects (ALE) plots address some limitations of PDPs by focusing
on local rather than global average effects of features. ALE plots calculate the con-
tributions of features to predictions by accumulating localized average partial effects,
helping to avoid misleading interpretations in the presence of correlated features.

Specifically, ALE plots do not construct unrealistic feature combinations as they aver-
age over the complement feature values. For example, the temperature and humidity
features are mildly correlated in the running example, and not all combinations are re-
alistic. Instead, effects are computed for a grid of intervals, that is, a ”local window”,
instead of the entire domain of a features, as in PDPDs.

Formally, the ALE is defined as:

ˆ̃
fj,ALE(X) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[
f̂(zk,j , x

(i)
j)− f̂(zk−1,j , x

(i)
j)
]

(16.2)

The range of values for feature j is divided into k equal size intervals. Nj(k) is the k-th
such local neighbourhood for a feature j with Zk,j being the lower boundary of that
interval. The summands in the inner sum of Equation 16.2 are differences in prediction
between the lower and upper boundary of a local neighbourhood (specifically, between
the lower bound of interval k−1 and that of the next interval k). The inner sum is taken
over all observations in the neighbourhood. This is termed the ”local effect”. The outer
sum in Equation 16.2 is taken over all local neighbourhoods k, each one weighed by
the number of observations nj(k) in that neighbourhood. In other words, the outer sum
accumulates the local effects, leading to the ALE.

Consider the illustrative example in Figure 16.6. It shows five neighbourhoods defined
for feature x1. The four horizontal lines represent the differences in prediction for four
observations when the value of x1 changes from Z3,1 to Z4,1, The value of x2 is held
constant. The four differences are summed to yield the local effect. Local effects are
calculated in the same way for the other four intervals in Figure 16.6 and then summed.

To illustrate ALEs, consider the following regression tree, again trained on the bicycle
rental count data with the same features and predictors as before.

Train model:
from sklearn.tree import DecisionTreeRegressor
regr=DecisionTreeRegressor(min_samples_leaf=10).fit(x,y)

The PyALE package provides the ale class to calculate the accumulated local effects.
They can be plotted for a single feature or for two features. Figure 16.7 shows the ALE
for the temperature feature on bicycle rental counts. The effect of temperature varies
across the range of temperature. The two-feature ALE plot is shown in Figure 16.8 and

518 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Source: Molnar, Fig. 8.7

Figure 16.6: Illustrative example of ALE computation

this also shows a variable impact of the feature combinations on the predicted bicycle
rental count.

import matplotlib.pyplot as plt
from PyALE import ale
Construct the ALE and plot:
ale_effects = ale(X=x, model=regr, \

feature=['temp'], grid_size=50)
plt.show()
ale_effects = ale(X=x, model=regr,

feature=['temp', 'hum'], grid_size=50)
plt.show()

Notably, ALE plots also remove the ”ceteris paribus” assumption that all other values
remain equal. However, instead of overaging over all values of the complement fea-
tures, as PDPs do, the effects are computed for a local window of complement feature
values. This makes ALE suitable for the use with correlated variables.

16.3. GLOBAL MODEL-AGNOSTIC METHODS 519

Figure 16.7: Example ALE for one feature

Figure 16.8: Example ALE for two features

16.3.4 Permutation Feature Importance

Permutation feature importance assesses the importance of each feature by observing
the effect on predictive accuracy when the values of that feature are randomly shuffled.
This disrupts the relationship between the feature and the outcome, and a significant
drop in model performance indicates that the feature is important for model predictions.
The intuition is simple: A feature that has no effect on the prediction outcome can be
randomly reshuffled without consequence for the predictive performance of the model.

Permutation feature importance begins by estimating the prediction error (loss func-
tion) for the model L on the original data X . Permutation feature importance should
be calculated on test data, not training data.

eorig = L(y, f̂(X))

520 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Next, the feature importance is calculated for each feature j, using K multiple random
shuffles (”permutations”) k of each feature’s values:

• For each feature j:

– For each repetition k in 1 · · ·K:

* Generate permuted data Xperm
j,k by permuting (”shuffling”) values of

feature j

* Estimate prediction error of model L for permuted data:

eperm
j,k = L(y, f̂(Xperm

j,k))

– Calculate permutation feature importance:

ij = eorig − 1

K

K∑
k

eperm
j,k

The following example again uses the bicycle rental data set. The rental count is used
as prediction target, variables other than year and days since 2011 are used as features.
A regression tree is fitted with the following Python code block.

import pandas as pd
Prepare data:
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=pd.get_dummies(d.drop(['yr','days_since_2011'],axis=1))
y=x.pop('cnt')
Train model:
from sklearn.tree import DecisionTreeRegressor
regr=DecisionTreeRegressor(min_samples_leaf=10).fit(x,y)

The SciKit-Learn package provides the permutation_importance class to com-
pute feature importance. The n_repeats parameter specifies the number of permu-
tations to use for each feature. For simplicity of exposition, the permutation feature
importance is calculated here using the training data, but practical applications should
use independent test data for this. The second line in the code below sorts the permu-
tation feature importances by their mean for later plotting.

from sklearn.inspection import permutation_importance
Calculate permutation feature importance and sort them
r = permutation_importance(regr, x, y, n_repeats=30)
r_idx = r.importances_mean.argsort()

The feature importances can be easily visualized using the following Python code. The
resulting graph is shown in Figure 16.9. The graph shows that temperature has the

16.3. GLOBAL MODEL-AGNOSTIC METHODS 521

Figure 16.9: Permutation feature importance plot. Uncertainty represents variation of
multiple permutations

greatest importance, followed by humidity and windspeed. Many features have little
or no impact on the prediction outcome.

import matplotlib.pyplot as plt
Produce a plot of sorted feature importance:
fig, ax = plt.subplots()
ax.boxplot(r.importances[r_idx].T,vert=False,labels=x.columns[r_idx])
ax.axvline(x=0, color="k", linestyle="--")
plt.show()

16.3.5 Global Surrogate Models

Global surrogate interpretation models are interpretable models that are trained to ap-
proximate the predictions of a complex model. By training a simpler model (like a
decision tree or linear regression model) to mimic the behavior of a more complex
model, insights can be gained into how the complex model makes decisions, providing
an interpretable approximation of its decision-making process. Intuitively, the predic-
tions of the complex model are the prediction targets of the simpler surrogate model,
that is, the simple surrogate model should predict the predictions (rather than the orig-
inal target values).

Doing this in practice is simple. For example, the following Python code trains a
neural network regression model with two hidden layers and ReLU activation function
on the bicycle rental data set. The model is then used to predict values for the training
observations.

Example 'black box' model
from sklearn.neural_network import MLPRegressor
regr = MLPRegressor((4, 2,), max_iter=10000)
regr.fit(x, y)
preds = regr.predict(x)

522 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

PDP/ICE
Intuitive Limited number of features
Clear interpretation Assumes feature independence
Easy to implement

ALE
Unbiased for correlated features Local interpretation only
Clear interpretation ALE may differ from linear coefficients
Faster to compute than PDP No ICE curves

Unstable for large number of intervals
PFI

Clear interpretation Linked to model error
Concise, global measure Requires access to true targets
Does not require retraining May be biased for correlated features
Takes into account all interactions

Global Surrogate Models
Flexible Conclusions about model, not data
Intuitive Unclear cut-off for goodness of fit
R-squared measure for fit

Table 16.2: Strengths and weaknesses of different global model-agnostic methods

In the second step, a simpler surrogate model is used to predict the predictions. The
following example uses a linear regression model fitted using ordinary least squares.
As noted above, the absolute value of the t statistic in the fitted OLS model serves as an
indication of feature importance in this surrogate model. The summary results indicate
that the surrogate model has an R2 value of 0.995, that is, it explains the predictions of
the complex model (not the original targets!) very well.

from statsmodels.api import OLS
OLS(preds, x).fit().summary()

Table 16.2 summarizes the strengths and weaknesses of the different global model-
agnostic methods for interpretable machine learning discussed in this section.

16.4 Local Model-Agnostic Interpretation Methods
Local model-agnostic interpretable methods aim to provide explanations for individual
predictions or cases, regardless of the overall model’s complexity or opacity, offering
insights into specific decision points rather than a model’s global behavior. This section
presents two widely-used methods that each address the challenge of interpretability
from a different perspective.

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 523

16.4.1 Local Interpretable Model-agnostic Explanations (LIME)
The intuition behind LIME is that while it may be difficult or impossible to explain an
entire complex model globally, it is possible to approximate and explain its behavior
locally. LIME generates these local explanations by perturbing (”shuffling”) the fea-
ture values of the input observations to create a new dataset consisting of ”synthetic”
observations around an observation of interest. The responses of the complex model
to these synthetic observations are then used to train a simpler, interpretable model,
such as a linear regression or decision tree. This local surrogate model aims to capture
how the original complex model behaves in the vicinity of the specified observation,
providing insights into which features significantly influence the output and how they
do so. LIME can be applied to any model type without any changes to the underlying
algorithms.

LIME follows these steps:

1. Fit the complex model f

2. Choose an instance x of interest for which the prediction is to be explained

3. Transform the instance into a binary vector indicating the presence or absence
of ”interpretable components”. Interpretable components are feature values, not
features themselves.

4. Create a neighbourhood of n observations around x by perturbing interpretable
components (sampling presence or absence of interpretable components ran-
domly from [0,1]).

5. Use the fitted complex model f to create predictions for the generated neigh-
bourhood of observations.

6. Weight the generated observations around x by a weight kernel πg based on their
distance to the instance x.

7. Sample a number of observations according to their weight.

8. Fit a local surrogate, interpretable model g to the sampled observations, using a
set of k features, that minimizes the discrepancy L between g and the complex
original model f .

• The usual local surrogate model is a ridge regression model.

• The k features are identified by forward selection, by LASSO, or simply
by selecting k features with the highest regression weights.

In principle, LIME aims to identify the explanation model as that local surrogate model
g that minimizes the sum of the discrepancy between surrogate and original model plus
a complexity penalty Ω(g) for the surrogate model:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

524 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Source: Molnar Figure 9.5

Figure 16.10: Illustration of LIME

However, in practice, as noted in the LIME procedure steps, the analyst must select the
number of features and the type of local surrogate model. LIME only minimizes the
discrepancy to the complex model; the complexity is determined by the analyst.

Figure 16.10 illustrates the principles behind LIME. The top left panel shows a classi-
fication problem with two predictors x1 and x2 and a somehwat complicated decision
boundary.

The top right panel highlights the target observation x in yellow and shows the obser-
vations created by perturbing the feature values as black dots.

The bottom left panel indicates the weighting of observations in the neighbourhood,
bigger dots indicate higher weights. This weighting is induced by the distance function
and the weight kernel. The distance function specifies how distances in the feature
space are measured, for example Euclidean, Chebyshev or other metrics. The weight
kernel uses the distances to assign weights. For example, a Gaussian kernel will assign
weights according to a normal distribution density function, and an exponential kernel
will assign weights according to the exponential of the distance, with higher weights
for smaller distances and lower weights for larger distances.

The bottom right panel shows the class predictions of the simple surrogate model that
has been fitted to the weighted samples. The white line shows the linear decision

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 525

Source: Molnar Figure 9.6

Figure 16.11: LIME results depend on choice of weight kernel

boundary of the surrogate model, the superimposed plus and minus signs the predic-
tions of the surrogate model. The local surrogate model is quite accurate for values in
the vicinity of the focal observation, but not very good for points far away from it.

Figure 16.11 illustrates the strong dependence of LIME results on the kernel, in partic-
ular the width of the kernel. The ”X” marks the focal observation, and the graph plots
the values predicted by the complex model against the values predicted by the simple
model for different kernel widths. The point that Figure 16.11 makes is that not only
the strength but also the sign or direction of the relationship between the predictions of
the two models can change, depending on the choice of kernel.

The following Phython code block uses LIME to provide an explanation for the pre-
dictions of a decision tree classifier.

import sklearn.tree
Using a deep decision tree as black box model
dt = sklearn.tree.DecisionTreeClassifier(max_depth=8)
dt.fit(x, y)

The lime package provides the LimeTabularExplainer for regular datasets
consisting of rows and columns. LIME can also be applied to other types of data
such as images, see below.

526 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

import lime, lime.lime_tabular
Create the explainer
explainer = lime.lime_tabular.LimeTabularExplainer(

x.to_numpy(),
feature_names=x.columns,
discretize_continuous = True,
mode='regression',
verbose=True)

With the explaining model created, specific data instances can be explained using the
explain_instance() method. The following example code explains the predic-
tion for the 8th instance in the training data set that is generated by the predict()
method of the regression tree object. The local neighbourhood is created with n =
1000 samples, the explanation is limited to k = 5 features, and the distance between
observations for weighting them is determined by the Euclidean distance.

Explain instance number 7
exp = explainer.explain_instance(

x.to_numpy()[7],
dt.predict,
num_features=5,
num_samples=1000,
distance_metric='euclidean')

Show weights as text and visualize
exp.as_list()
exp.as_pyplot_figure().show()
Show complete explanation
exp.save_to_file('lime_explanation.html')

The results indicate the contribution of each feature value to the prediction. Note that
continuous variables like temperature and windspeed have been discretized at various
boundaries to form interpretable components. The visualizations in Figure 16.12 and
Figure 16.13 shows those contributions as well.

[('temp <= 7.84', -1738.6611673589232),
('mnth_MAR <= 0.00', 640.903016649792),
('weekday_THU <= 0.00', -532.3918204920352),
('windspeed > 15.63', 493.90993722141997),
('season_SPRING <= 0.00', -333.38496260796086)]

Figure 16.13 consists of three parts. The left panel shows the prediction for this in-
stance, 959 on the scale between the minimum (431) and maximum (7403). The right
panel shows the actual feature values for the observation in table form. The center
panel (which is identical to Figure 16.12) shows the negative and positive contribution
of each interpretable component. For example, the contribution of temp <= 7.84 is
−1738.66. This means that if the temperature were not equal to or below 7.84 degrees,

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 527

Figure 16.12: Weights of the LIME local surrogate model

Figure 16.13: LIME results for explaining a specific instance

the prediction would be 1738 higher than it is, that is, it would be 2697. Similarly, the
feature mnthMAR <= 0.00 contributes positively to the prediction (640.90). This
means that if the month were March, the prediction would be 640.00 lower than it is.

LIME can also be used on other models such as image or text classification models.
For example, Figure 16.14 shows the contributions of individual pixels of an image to
the classification of that image. The left panel shows the original image, the middle
panel the contributions for the label ”bagel” and the right panel the contributions for
the label ”strawberries”.

Molnar, Figure 9.8

Figure 16.14: LIME explanations for image classification

528 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Further information on LIME, including many examples, can be found at the website
for the Python packagea. More details on the theoretical foundation and principles of
LIME can be found in the original paperb.

ahttps://github.com/marcotcr/lime
bhttps://arxiv.org/abs/1602.04938

16.4.2 Shapley Additive eXplanations (SHAP)
Developed from the Shapley value – a concept from cooperative game theory originally
used to determine the fair distribution of payoffs among players – SHAP applies this
framework to the domain of machine learning, offering a theoretically sound approach
to understanding model behavior. SHAP treats each feature value as a ”player” in a
game where the ”payout” is the prediction itself. The Shapley value calculates the
average contribution of each feature value across all possible combinations of feature
values, providing a detailed view of how features interact and influence the model’s
output. This approach not only yields a measure of global feature importance and
local feature value importance, but also provides a way to understand the direction and
magnitude of each feature’s impact on the prediction. SHAP is model-agnostic and can
be applied to any machine learning model, from simple linear regressors to deep neural
networks.

The main motivation in SHAP is the question of how much does a specific value xj of
feature j contribute to the overall prediction, when compared to the average prediction.
As in LIME, the focus is on values of features, not the features themselves. In co-
operative game theory, players cooperate in a coalition with other players and receive
a certain profit from this cooperation. Shapley values are named after Lloyd Shapley
who developed this concept in 1951 and received the Nobel prize in Economics for his
work in 2012. Shapley values are a method for assigning fair payouts to the coalition’s
players depending on their contribution to the total payout.

Formally, the Shapley value ϕi of player i is defined as:

ϕi(v) =
1

n

∑
S⊆N\{i}

(
n− 1

|S|

)−1

[v(S ∪ {i})− v(S)]

where v(.) is the value function that describes the payout received in a game. The term
v(S ∪ {i}) − v(S) is the marginal contribution of player i to a coalition of players S,
that is, the difference in payout received by the coalition S plus the player i and the
payout received only by the coalition S, without player i.

The binomial coefficient
(
n−1
|S|
)

represents the number of possible ways to form a coali-
tion of size |S| of the setN \{i} of n−1 players (setN without player i). The marginal
contribution is divided by this term.

https://github.com/marcotcr/lime
https://arxiv.org/abs/1602.04938

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 529

The sum is taken over all all possible coalitions of the setN of players minus the player
i. The sum is then divided by the number of players n.

Shapley values have some key theoretical properties that together ensure they describe
a fair allocation of value or contribution to each player:

• Efficiency: The efficiency property states that all gains from cooperation are dis-
tributed among the players. Mathematically, this means the sum of the Shapley
values for all players equals the total value (or payoff) that the coalition of all
players achieves together. This ensures that the Shapley value captures the entire
surplus generated by the group, leaving no residual value unallocated.

• Symmetry: The symmetry property ensures that if two players contribute equally
to any coalition they are both members of, they receive the same proportion of
the payoff. In other words, the Shapley value is identical for symmetric play-
ers, reflecting the principle of fairness in that contributions are rewarded equally
without bias to factors unrelated to the contribution.

• Additivity (or Linearity): Additivity is a property where the Shapley value of a
game can be derived by summing the Shapley values of two separate games if
a player’s value in a combined game is the sum of their values in these separate
games. This property allows for straightforward aggregation of separate contri-
butions, simplifying the analysis and computation in more complex scenarios.

• Dummy (or Null Player): A dummy (or null) player does not contribute to any
coalition, i.e., the addition of this player does not change the value of any coali-
tion. The dummy player property ensures that such a player receives a Shapley
value of zero. This ensures that only contributors to a game’s outcome are re-
warded, maintaining the integrity of the allocation process.

In the context of interpretable machine learning, the players in a coalition are specific
values of features (not the feature themselves). A coalition is a combination of different
feature values. The presence of a feature value in a coalition means that the value of
that feature is known and fixed. When a feature is not present in a coalition with a
specific value, its value is unknown. Determining the payout requires integrating or
marginalizing over all values of those features 1 . . . p that are not in a coalition S.

vx(S) =

∫
· · ·
∫
R
f̂(x1, . . . , xp)dPx ̸∈S − Ex(f̂(X))

This is clearly expensive to compute in practice and is therefore generally approximated
by randomly permuting values (similar to how LIME constructs its local neighbour-
hood of observations) and then sampling the different possible coalitions from these
permuted values.

530 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Shapley Additive eXplanations (SHAP) is a Python package de-
veloped by authors of the paper that introduced Shapley values to
interpretable machine learning1. A thorough documentation, in-
cluding an easy to read introduction and many examples are avail-

able2, as well as the Python code for the implementation and multiple tutorial3. The
remainder of this section illustrates the basic usage of SHAP.

This example uses a data set on California house prices that is part of the SHAP pack-
age. The target variable are house values in various districts, and predictors inlcude
median income, number of rooms, population, and similar variables. To illustrate the
basic use of SHAP, this example fits a simple linear regression model to the data.

import sklearn
import shap
Fit a simple regression model
X, y = shap.datasets.california(n_points=1000)
model = sklearn.linear_model.LinearRegression().fit(X, y)

The SHAP Explainer object is constructed using the fitted model’s prediction func-
tion and the training data set. The explainer object can then be used to explain predic-
tions in the same or another data set, e.g. just a for a single new observation, or for the
test or validation data set. The following Python code block illustrates this usage:

Create the Explainer object:
explainer = shap.Explainer(model.predict, X)
Compute the SHAP values:
shap_values = explainer(X)

The SHAP package provides different ways to visualize individual predictions. The
barplot in Figure 16.15 shows the importance of feature values (not the importance of
features!) for an individual prediction, generated from the running example using the
following Python code:

shap.plots.bar(shap_values[20])

For example, the fact that the house age is 17 contributes negatively to the prediction,
whereas the fact that the avarage number of rooms of houses in the district is 4.815
contributes positively.

By averaging over all instances and their feature values, SHAP values can be aggre-
gated to show the importance of the features themselves, shown in the bar plot in Fig-
ure 16.16, generated from the running example using the following Python code:

1https://arxiv.org/abs/1705.07874
2https://shap.readthedocs.io/en/latest/index.html
3https://github.com/shap/shap

https://arxiv.org/abs/1705.07874
https://shap.readthedocs.io/en/latest/index.html
https://github.com/shap/shap

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 531

Figure 16.15: SHAP barplot for an individual prediction

Figure 16.16: SHAP barplot of mean SHAP values for feature importance

shap.plots.bar(shap_values)

The graph shows that latitude and longitude are the most important features, that is,
their values on average contribute positively to the prediction.

Waterfall plots such as the one in Figure 16.17 explain how feature values combine
to produce an individual prediction. In that figure, latitude being 32.57 contributes
positively to the house price prediction, whereas longitude being −117.07 contributes
negatively, etc. The total sum of contributions is the expected house price, shown at the
very bottom of the waterfall plot. The waterfall plot was generated by the following
Python code:

sha.plots.waterfall(shap_values[20])

532 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Figure 16.17: SHAP waterfall plot for an individual prediction

Figure 16.18: SHAP beeswarm plot

Beeswarm plots, such as the one in Figure 16.18 explain all feature values for all in-
stances (represented by a dot). Each dot is particular feature value that occurs in the
data. Dots are colour-coded to indicate whether that feature value makes a positive or
negative contribution. Figure 16.18 shows that the median district income feature has
a lot of feature values in the data set that contribute negatively, and a few values that
make a highly positive contribution. Figure 16.18 was generated using the following
Python code.

shap.plots.beeswarm(shap_values)

The heatmap plot in Figure 16.19 shows the SHAP values of feature values for all
instances, and shows model prediction and global feature importance in the top and
right rugs of the figure. Observations are ordered left to right. The bar plot in the right
rug is the same as the feature importance bar plot in Figure 16.16. The figure shows

16.4. LOCAL MODEL-AGNOSTIC INTERPRETATION METHODS 533

Figure 16.19: SHAP heatmap plot

clearly how some values of median district income contribute highly positively to pre-
dicted house prices, whereas some values of latitude appear to contribute negatively the
predicted house price. Figure 16.19 was generated using the following Python code:

shap.plots.heatmap(shap_values)

As noted earlier, SHAP is model agnostic and can be applied to problems such as im-
age classification and text classification as well. The SHAP package provides intuitive
visualizations for the SHAP values in these cases. For example, Figure 16.20 shows
the contribution of different image elements (groups of pixels) to classification proba-
bilities for different target classes. In this case, the absence of a feature value is created
by masking a group of pixels. Consider the top image in Figure 16.20. The overlaid
SHAP values show that it is mostly the body or neck shape of the bird that contributes
positively to a classification as an American egret, while the eye contributes negatively.
Figure 16.21 shows SHAP applied to text classification. Each token/word in a text is a
feature that contributes to class membership probabilities.

534 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

Source: https://github.com/shap (MIT License)

Figure 16.20: SHAP for image classification

Source: https://shap.readthedocs.io/en/latest/text_examples.html (MIT License)

Figure 16.21: SHAP for text classification

16.5 Review Questions

Introduction to Interpretable Machine Learning

1. List at least three reasons why interpretable machine learning is crucial in mod-
ern AI applications.

2. What does it mean for a machine learning model to be ”interpretable”? Give
examples of features that contribute to a model’s interpretability.

3. Discuss the trade-offs between model complexity and interpretability. Why might
a more complex model be chosen over a simpler, more interpretable model?

4. Provide examples of how interpretable machine learning can lead to innovations
and improvements in AI systems.

5. Why is the understanding of automated decisions particularly crucial in sectors
like healthcare and finance?

6. Discuss the relationship between interpretable machine learning and the ethical
responsibilities of AI developers.

7. Discuss the role of interpretable machine learning in ensuring safety, compli-
ance, and reliability of AI systems.

8. What is the importance of interpretable machine learning in detecting biases and
ensuring fairness in model predictions?

9. What factors should be considered when deciding between intrinsic and post-hoc

https://github.com/shap
https://shap.readthedocs.io/en/latest/text_examples.html

16.5. REVIEW QUESTIONS 535

interpretability methods in a given application?
10. Compare and contrast local and global interpretation methods in terms of their

applications and benefits.
11. How do local and global interpretation methods complement each other in pro-

viding a comprehensive understanding of machine learning models?
12. How do intrinsic and post-hoc methods affect the user’s trust and acceptance of

machine learning models?

Intrinsically Interpretable Models

13. How do t-values contribute to understanding the relative importance of features
in a linear regression model?

14. What are decision trees, and how are they used in both regression and classifica-
tion contexts in machine learning?

15. Describe the structure of a typical decision tree and explain how decisions are
represented within this structure.

16. Explain why decision trees do not require normalization or scaling of data before
analysis. What advantages does this present in terms of data preprocessing?

17. Discuss the advantages of using decision trees in terms of algorithmic trans-
parency. How does this feature contribute to their interpretability?

18. Explain how decision trees handle non-linear relationships and the significance
of this capability.

19. Discuss how decision trees manage to capture interactions between variables
without explicit programming for these interactions.

20. What is overfitting in the context of decision trees, and why are decision trees
particularly susceptible to it?

21. Explain the process of making binary splits in decision trees, particularly how
regions and leaf nodes are determined.

22. Explain the various stopping criteria used in the construction of decision trees.
Compare them in terms of their impact on tree complexity and performance.

23. Discuss the implications of high variance in decision trees. What techniques can
be used to mitigate this issue?

Global Model-Agnostic Methods

24. What are Partial Dependence Plots (PDPs) and what do they show in a machine
learning model?

25. Explain the assumption of feature independence in PDPs and its implications.
26. Describe a scenario where the assumption of feature independence in PDPs

might lead to incorrect conclusions about feature importance.
27. How can ICE plots help in identifying outlier effects or heterogeneity in data

predictions?
28. Describe how ALE plots differ from PDPs in their approach to understanding

feature effects.
29. Explain the computation process of ALE plots and how it differs fundamentally

from PDPs in handling data within local windows.

536 CHAPTER 16. INTEPRETABLE MACHINE LEARNING

30. Discuss how ALE plots handle correlated features and why this is beneficial.
31. What is Permutation Feature Importance and how is it calculated?
32. Explain global surrogate models in interpretable machine learning.
33. Discuss the potential risks or drawbacks of using global surrogate models as a

tool for interpretability. What should practitioners be wary of?
34. Compare and discuss the strengths and weaknesses of the global model-agnostic

methods covered (PDP, ICE, ALE, PFI, and global surrogate models).

Local Interpretable Model-agnostic Explanations (LIME)

35. What are local model-agnostic interpretative methods, and how do they differ
from global interpretative methods?

36. Outline the step-by-step process of generating a LIME explanation for a given
data instance.

37. Explain the purpose of transforming an instance into a binary vector in the LIME
process. What does this achieve in terms of interpretability?

38. Discuss the role of perturbing input data points in the LIME process. What is the
purpose of creating ”synthetic” samples?

39. How does LIME ensure that the local surrogate model accurately reflects the
behavior of the complex model in the vicinity of a specified data point?

40. Identify potential pitfalls when applying LIME to a dataset with highly corre-
lated features. How does this correlation affect the integrity of the explanations
provided?

41. Provide a critical analysis of how LIME handles cases where the local decision
boundary is highly non-linear. What are the challenges and how might LIME
overcome them?

42. Reflect on the dependency of LIME’s explanations on the kernel function. How
can different kernels alter the interpretation of feature contributions?

Shapley Additive eXplanations (SHAP)

43. Explain the concept of Shapley values in the context of cooperative game theory.
44. Discuss the significance of treating each feature as a ”player” in the context of

SHAP. How does this perspective aid in understanding model predictions?
45. Describe the four key theoretical properties of the Shapley value and explain how

each contributes to fairness and accuracy in SHAP.
46. Outline the steps to compute SHAP values for a machine learning model.
47. Describe how SHAP values are visualized and interpret such a visualization.
48. What insights can be gained from SHAP waterfall and beeswarm plots?
49. How can SHAP be integrated into the model development process to improve

model design and feature engineering?
50. Discuss the potential for SHAP to be used in regulatory compliance, specifically

in industries like finance and healthcare. What advantages does SHAP offer in
explaining model decisions to regulators?

Chapter 17

Analytics at Industrial Scale

Learning Goals
After reading this chapter, you should be able to:

• Explain the characteristics of big data and the need for specialized tools for big
data analytics.

• Explain the operation of a distributed HDFS file system and the functions played
by name nodes and data nodes.

• Use basic file and folder operations to organize data on HDFS.

• Explain the map and reduce functions in a MapReduce algorithm, including their
inputs and outputs.

• Design map and reduce functions for basic big data analytics.

• Explain the lazy execution principles of Apache Spark and the roles of transfor-
mations and actions.

• Perform basic data analytics in Apache Spark, including the use of Spark schemata
to read data sets.

• Explain the purpose of transformers and estimators in Spark ML pipelines.

• Explain the purpose and basic principles of stream analytics, including different
trigger and output modes in Apache Spark.

Sources and Further Reading
The material in this chapter is based on the following sources.

537

538 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Tom White (2012) Hadoop – The Definitive Guide. 3rd edition. O’Reilly Me-
dia. Sebastopol, California, US.

This book introduces in great detail the main concepts of Apache Hadoop and provides
step-by-step introduction to setting up a Hadoop cluster, using the Map-Reduce API,
submitting and managing jobs. The book also provides a chapter on related projects,
such as Hive and Pig. It was written for Hadoop 2.3, which introduced the Map-Reduce
2.0 API and YARN. While older, it can still serve as a comprehensive reference also to
more recent Hadoop versions.

Hrishikesh V. Karambelkar (2018) Apache Hadoop 3 Quick Start Guide. Packt
Publishing. Birmingham, UK.

This quick start guide is more recent and written for Hadoop 3.0. It provides only a
brief overview of the Hadoop system, focusing on cluster installation, configuration,
and management, rather than Map-Reduce or data management.

Bill Chambers and Matei Zaharia (2018) Spark – The Definitive Guide.
O’Reilly Media. Sebastopol, California, US.

This is a very comprehensive book, written for Spark 2.0. Matei Zaharia is the original
designer and lead developer of the Spark project. The book covers all aspects of Spark.
All examples are provided both in Scala and in Python. While a little older at this point,
it is very instructive and easy to follow with many practical points of how to get the
most out of Spark.

Jules Damji et al. (2020) Learning Spark – Lightning-Fast Data Analytics. 2nd
edition. O’Reilly Media. Sebastopol, California, US.

This book, while not quite as comprehensive as the one by Chambers & Zaharia, is
newer and targets Spark 3.0. It also covers all aspects of Spark, from installation and
configuration, to programming the SQL, streaming, and machine learning components
of Spark. The book provides most examples in both Scala and Python.

17.1. INTRODUCTION 539

Resources

Complete implementations of all examples in this chapter are available in the
following GitHub repos.

For the Hadoop MapReduce examples:
https://github.com/jevermann/busi4720-hadoop

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-hadoop.git

For the Spark examples:
https://github.com/jevermann/busi4720-pyspark

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-pyspark.git

17.1 Introduction

Big data analytics refers to the process of examining large and varied data sets – big
data – to uncover hidden patterns, unknown correlations, market trends, customer pref-
erences, and other useful information that can help organizations make better-informed
business decisions. Driven by specialized analytics systems and software, big data ana-
lytics can lead to more effective marketing, new revenue opportunities, better customer
service, improved operational efficiency, competitive advantages over rival organiza-
tions, and other business benefits.

The term ”big data” is typically associated with three key concepts: data volume, data
variety, and data velocity. Together, these three Vs define the challenges and oppor-
tunities that organizations face when managing and analyzing massive data sets. The
emergence of the fourth and fifth Vs, data veracity and data value, reflect the increasing
need to ensure the reliability of data and the importance of deriving meaningful insight
from it.

Volume represents the quantity of data that is generated and stored. It is one of
the primary characteristics of big data. Organizations collect data from a variety of
sources, including business transactions, smart (IoT, Internet-of-Things) devices, in-
dustrial equipment, videos, social media, and more. As data volume increases, the
value and potential insights also increase, but it requires more effective data manage-
ment and processing technologies. The challenge lies not only in the storage but also
in dynamically scaling resources to process this vast amount of data efficiently.

https://github.com/jevermann/busi4720-hadoop
https://github.com/jevermann/busi4720-hadoop.git
https://github.com/jevermann/busi4720-pyspark
https://github.com/jevermann/busi4720-pyspark.git

540 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Variety refers to the different types of data that are available, both structured and un-
structured. Traditional data types were structured and fit neatly in a relational database.
However, with the advent of big data, data comes in new unstructured forms such as
text, images, videos, and social media posts. The variety in data types frequently re-
quires additional preprocessing to derive meaning and supports analytics that can lead
to enhanced business insights.

Velocity is the speed at which the data is generated, collected, and processed. High
velocity of big data comes from connected sensors, smart devices, web page stream-
ing, and other live feeds. Managing the velocity of data entails not only processing
these streams effectively but also ensuring that data analysis and decision making are
conducted in a timely manner.

Veracity refers to the accuracy of data. Big data veracity deals with the assurance of
quality and accuracy of data considering its volume, variety, and velocity. This charac-
teristic is crucial as it affects every decision made based on big data. Poor data quality
can lead to incorrect conclusions. Therefore, organizations must invest in analytic pro-
cesses that validate and cleanse data to ensure accuracy and usefulness.

Value value is about turning big data into business value. This is the most important
V of all, as it determines whether the data collected and analyzed are of any use to the
organization. The main challenge is to sift through vast lakes of data and find what
is relevant and can be turned into actionable insights that can lead to cost reductions,
improved efficiency, or new revenue opportunities.

An example of a big data use case is the Conseil Europeenne pour la Recherche Nu-
cleair (CERN). CERN is the world’s largest physics laboratory, an international coop-
eration that researches high-energy particle physics located in Switzerland and France.
When physics experiments are running, the CERN data center processes about one
petabye (one million gigabyte) of data per day1. Preparations are under way for new
physics experiments that require storage and analysis of 600 petabytes of data. Ta-
ble 17.1 provides an overview over the CERN data centre infrastructure to manage this
volume and this velocity of data.

Figure 17.1 shows images of the CERN data centre infrastructure. Racks are filled
with multiple computer servers, each with their own attached data storage, and multiple
racks are lined up in rows. Computers are networked, first within a rack, then between
racks, and the data center is connected to the larger internet. Network connections are
fastest between computers within the same rack, then between computers in different
racks, and are slowest across the internet.

Clearly, the volume of data being stored, and the velocity with which it is generated
requires analytics techniques and software tools that go beyond those of single-machine
or desktop solutions examined so far, like R, Numpy or Pandas, and that are suitable to

1https://www.home.cern/science/computing/storage, last accessed June 10, 2024

https://www.home.cern/science/computing/storage

17.2. HADOOP 541

Servers ≈ 12000

CPU Cores ≈ 350000

Disks ≈ 220000

Total Disk Space ≈ 950000 TB
DB Transactions per second ≈ 20000

File Transfer Throughput ≈ 100 Gb/s

Table 17.1: Data management infrastructure at CERN2

Source: CERN.org with permission

Figure 17.1: CERN data centre images

efficiently use infrastructure like the one shown in Figure 17.1. The following sections
introduce big data analytics, or data analytics at industrial scales.

17.2 Hadoop

https://commons.wikimedia.
org/wiki/File:

Apache_Hadoop.png

Apache Hadoop is an open-source system for dis-
tributed data storage and distribute computation on
data. Initially released in 2006, it is maintained by the
Apache Foundation. It was originally inspired by the
Google File System (GFS) that Google used to man-
age its web search data3, and the Google MapReduce
technique for computations on distributed data4. Early
successful uses cases at Yahoo in 2009 and at Facebook

in 2012 drove industry adoption and further research interest. Hadoop relies on a dis-
tributed file system called HDFS (”Hadoop Distributed File System”) that distributes
data storage across a cluster of computers. In contrast to other solutions at the time, the

2https://www.home.cern/science/computing/data-centre, last accessed June 10,
2024

3Ghemawat, S., Gobioff, H., & Leung, S. T. (2003, October). The Google file system. In Proceedings of
the nineteenth ACM symposium on Operating systems principles (pp. 29-43).

4Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communi-
cations of the ACM, 51(1), 107-113.

https://copyright.web.cern.ch/
https://commons.wikimedia.org/wiki/File:Apache_Hadoop.png
https://commons.wikimedia.org/wiki/File:Apache_Hadoop.png
https://commons.wikimedia.org/wiki/File:Apache_Hadoop.png
https://www.home.cern/science/computing/data-centre

542 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

clusters did not require specialized hardware or software, which made the system very
attractive to organizations.

The main principle of data procesing with Hadoop is data locality: Instead of moving
data across network connections to the computer where computation takes place, which
is expensive and slow, computation is moved to where the data is stored. In other words,
data is processed where it is stored, in a distributed fashion.

The benefits that make Hadoop attractive are its reliability, scalability, cost effective-
ness and cloud support.

Reliability Hadoop is highly reliable. It stores multiple copies of data across differ-
ent computer nodes in a network, ensuring that the system can tolerate the failure of
any network node without data loss. This redundancy provides fault tolerance, as data
is automatically re-replicated from the remaining copies when a network node fails,
allowing data processing to continue uninterrupted.

Scalability Scalability is one of Hadoop’s core strengths. It can store and distribute
very large data sets across hundreds to thousands of inexpensive servers that operate
in parallel. This distributed computing model allows businesses to scale up or down
efficiently without downtime. As more servers are added, Hadoop continues to increase
its storage capacity, processing power, and throughput performance proportionally.

Cost Effectiveness Hadoop is cost-effective. As open-source software, combined
with the use of commodity hardware, it significantly reduces the cost of a system capa-
ble of storing and processing enormous amounts of data. The cost savings are not just
in terms of hardware but also in scalability. Businesses can start with what they need
and increase their system size as they grow while maintaining a low cost per terabyte.
Hadoop 3 provides support clusters with more than 10,000 computers.

Cloud Support Finally, Hadoop supports cloud-based services, which allows busi-
nesses to deploy Hadoop clusters in cloud environments. This capability means that
organizations can benefit from cloud computing features, such as massive scalability,
on-demand resource allocation, and utility-based cost structures. Most major cloud
vendors, such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and
Microsoft Azure offer Hadoop or equivalent services to their customers.

Hadoop consists of three main components. HDFS is the storage layer of Hadoop. It
is a distributed file system designed to run on commodity hardware. MapReduce is a
programming model and implementation for processing large data sets with a parallel,
distributed algorithm, and YARN is the resource management layer of Hadoop.

17.2.1 HDFS
HDFS is designed and optimized for storing very large datasets, raning from a few
gigabytes to hundreds of terabytes in size. HDFS is designed based on a number of

17.2. HADOOP 543

Source: Apache Foundation (https://hadoop.apache.org/docs/)

Figure 17.2: HDFS architecture

fundamental principles: Data in HDFS is written and read linearly, and must processed
one item at a time. For analytics applications, this means that applications cannot read
arbitrary data or move back and forth in the data set. Once a file is written and closed, it
cannot be changed, other than by appending data or truncating the file. This means that
existing data in the file cannot be overwritten. If necessary, a new file must be created.
HDFS is built around the idea of streaming data access, that means it emphasizes high
throughput over low latency. In other words, accessing the same amount of data from
one continuous file is much faster than accessing the same amount of data from multiple
separate files.

Figure 17.2 shows the architecture of HDFS. An HDFS cluster consists of a single
Namenode (optionally a secondary/backup NameNode for fault tolerance), which is
a server that runs software to manage the file system namespace and regulates ac-
cess to files by client applications. The Namenode keeps the directory of all files in
the file system, and tracks where on the cluster the file data is kept. The Namenode
does not store actual data. Instead, it stores metadata, such as the location of blocks
stored on the Datanodes, access permissions, and other information. It provides file
operations such as opening, closing, renaming of files. Client applications commu-
nicate with the Namenode whenever they wish to locate a file, or when they want to
add/copy/move/delete/. . . a file. The Namenode responds to the requests by returning a
list of relevant DataNode servers where the data lives.

Datanodes manage the storage attached to the computers they run on and serve read/write
requests from the file system’s client applications. HDFS splits large files into blocks
(the default block size is 128MB) and distributes them across nodes in a cluster to en-
able high throughput access to data. The file system also replicates each data block
multiple times (by default 3 times) across different nodes to ensure reliability and fault

https://hadoop.apache.org/docs/

544 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Figure 17.3: HDFS Explorer

tolerance. Datanodes store and retrieve blocks when they are told to (by client applica-
tions or the NameNode), and they report back to the Namenode periodically with a list
of blocks that they are storing.

Working with HDFS is very similar to working with the local file system on a desktop
machine. In other words, the cluster is transparent. HDFS file commands are based on
the standard Unix/Linux file commands to manipulate files and directories. The set of
basic HDFS commands is shown in Table 17.2. Because HDFS emphasizes throughput
over latency, file operations that only involve small amounts of data, tend to be much
slower than on a local file system.

In addition to the command line interface, the Hadoop Namenode also typically pro-
vides web-based access. For example, the Namenode overview can be accessed at
http://localhost:9870 (substitute another URL or host name if necessary)
and will show the status of the datanodes in the cluster as well. This also allows brows-
ing the file system and performing file operations, including uploading and download-
ing of files from and to the local filesystem through the HDFS explorer at http:
//localhost:9870/explorer.html#/ (substitute another host name if nec-
essary). Figure 17.3 shows a screenshot of the HDFS explorer.

The following exercises illustrate the use of the HDFS. Use the hdfs dfs command
to insteract with the distributed file system. The commands are similar to the regular
Linux commands to interact with files.

One a single-machine cluster, the Hadoop Namenode, Datanode, and the YARN soft-
ware applications are all installed on the same computer. Start the Hadoop cluster
Namenode, Datanode, and YARN service as follows:

http://localhost:9870
http://localhost:9870/explorer.html#/
http://localhost:9870/explorer.html#/

17.2. HADOOP 545

hdfs dfs -cat Print a file to standard output

hdfs dfs -cp Copy a file or directory

hdfs dfs -df Display free space

hdfs dfs -du Display disk usage

hdfs dfs -get Copy files to the local file system

hdfs dfs -head Print the first kilobyte of a file

hdfs dfs -ls List files and directories

hdfs dfs -mkdir Make a directory

hdfs dfs -mv Move a file or directory

hdfs dfs -put Copy files from the local file system

hdfs dfs -rm Remove files or directories

hdfs dfs -rmdir Removes a directory

hdfs dfs -tail Print the last kilobyt of a file

hdfs dfs -concat Concatenate existing files into a target file

Table 17.2: Basic HDFS file system commands

sudo systemctl start hadoop.service

Download an event log file to your local file system and then put the event log onto the
Hadoop Distributed File System:

wget https://evermann.ca/busi4720/eventlog.short.log
hdfs dfs -put eventlog.short.log

Display the start and end of the from the HDFS:

hdfs dfs -head eventlog.short.log
hdfs dfs -tail eventlog.short.log

Show disk usage and disk free space:

hdfs dfs -du
hdfs dfs -df

Copy the event log:

hdfs dfs -cp eventlog.short.log eventlog.copy.log

546 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

List all files:

hdfs dfs -ls

Hands-On Exercise

Exercise 1: Accessing HDFS
1. View the list of files on the HDFS file system.
2. Create a new directory in the HDFS named ”testdir”.
3. Verify that ’testdir’ has been created by listing all files.

Exercise 2: Manipulating Files in HDFS
1. Use a text editor to create a text file called ”example.txt” on your local

file system and write ”Hello HDFS” into it.
2. Copy ”example.txt” from your local file system to the directory ”testdir”

in the HDFS.
3. Read the contents of the file from the HDFS.
4. Delete ”example.txt” from the HDFS.

Exercise 3: Understanding HDFS Block Size
1. Create a large text file (e.g., larger than 128MB, the default block size in

many HDFS installations) named ”largefile.txt” on your local file system.
2. Copy ”largefile.txt” to HDFS:
3. Use the hdfs fsck command with the -files -blocks options

to check how HDFS has stored the file in terms of blocks.
4. Observe and note the number of blocks the file is split into and their

locations.

17.2.2 Map-Reduce
MapReduce is a programming model and a software implementation for processing
large data sets with a parallel, distributed algorithm. The main idea is to use the dis-
tributed data storage of HDFS also for compuatation, that is, computation is performed
on the nodes where the data is stored. This means that each block of a file or data set
is initially processed independently of all other blocks.

MapReduce is designed with two main functions: Map and Reduce. Blocks of a file are
independently processed by the Map function in a completely parallel manner, each on
the computer where it is stored. The MapReduce framework then sorts the outputs of
all the Map functions, which are then input to the Reduce function. Typically both the
input and the output of the MapReduce application are stored in HDFS. MapReduce
allows for massive scalability across hundreds or thousands of servers in a Hadoop
cluster.

17.2. HADOOP 547

Not only are input data and results stored on HDFS but intermediate results (between
Map and Reduce) are stored on HDFS as well. For some applications, the size of
this intermediate data may be larger than that of the input data. The lack of in-memory
storage or data streams means that the performance of MapReduce is sometimes limited
by disk performance. Moreover, because data must be read and processed linearly,
the Map and Reduce functions are necessarily stateless, that is, they are limited in
how much of a ”memory” they can maintain. Finally, MapReduce supports only non-
iterative, acyclic data flows. While multiple Map–Reduce phases can be executed in
sequence, it is not possible for data to be processed multiple times, in a cycle.

The basic steps of MapReduce are the following:

1. Map

• The Map function reads key–value pairs of input data5

• For each input key and value, the Map function outputs a list of key–value
pairs:

Map : (key1, value1)→ list(key2, value2)

• Multiple instances of Map operate in parallel, one on each block of data

2. Shuffle

• The shuffle stage distributes the output of the Map function based on keys
produced by Map

• All values for the same key are sent to the same instance of the Reduce
function.

3. Reduce

• The Reduce function processes all values for a given key

• There are as many instances of Reduce as there are unique values for input
key key2

• For each input key and its values, the Reduce function outputs a list of
key–value pairs

Reduce : (key2, list(value2))→ list(key3, value3)

YARN is the resource management layer of Hadoop. YARN consists of a central Re-
source Manager, which manages the use of resources across the cluster, and NodeM-
anager agents, which monitor the processing of operations on individual cluster nodes.

Running a MapReduce application on a Hadoop cluster involves submitting the ap-
plication to the YARN resource manager. The YARN resource manager creates an
application master process for each MapReduce application that is submitted to it. The

5By default, for text input, each line is a key–value pair, separated by the first tab character

548 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_

architecture.gif

Figure 17.4: Executing MapReduce job on YARN cluster manager

application master process tracks the status of the tasks, that is, the Map and Reduce
instances, within an application. The application master requests resources from the
resource manager and then distributes task to nodes in the cluster. The node man-
agers manage the local resources and report their status to the resource manager. They
execute the tasks assigned by the application master in containers on each node. Fig-
ure 17.4 shows the interplay between these components.

For a typical MapReduce application, the user specifies an input directory, possibly
with multiple data files, to be processed. Recall that data files are distributed in blocks
across the cluster node. A separate Map instance is executed for each input data block,
on the node where the input data block is located. This means that any necessary
program files are sent to a node as required. The shuffle phase sorts the output by
key and moves data with the same key to the same node. While every instance of
Reduce ”sees” all values for the same key, a Reduce instance may process the values
for multiple keys, depending on the number of unique key values and the number of
nodes available in the cluster.

Example

While Hadoop MapReduce is natively programmed in Java, Hadoop Streaming allows
Map and Reduce functions as executable programs, for example using Python. This
example shows the basic operation of the Map and Reduce functions. The aim is to
count the number of distinct words in a large text document. Both the Map and Reduce
functions are implemented in Python.

The Map function in the following Python code block reads lines from standard input.
Hadoop Streaming is responsible for feeding those lines from the specified input to the
Map function. After whitespace is stripped from the beginning and end of each line,

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif

17.2. HADOOP 549

the line is split into words. For each word, the Map outputs a key–value pair, separated
by a tab character. The key is the word, the value is the number 1.

#!/usr/bin/env python
import sys

for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:

print ('{}\t{}'.format(word, 1))

Every instance of the Reduce function sees all values for a key, but may be processing
the multiple keys. The following Reduce implementation reads key–value pairs from
the standard input. It splits them on the tab character and maintains a dictionary of
word counts. For each new key–value pair it increments its counter by the value it has
just read. Finally, it outputs its results in the form of key–value pairs.

#!/usr/bin/env python
import sys

word_counts = dict()

for line in sys.stdin:
word, count = line.split('\t', 1)
count = int(count)

if word not in word_counts:
word_counts[word] = count

else:
word_counts[word] = word_counts[word] + count

for word, count in word_counts.items():
print('{}\t{}'.format(word, count))

Before submitting this application as a job to a Hadoop cluster, it is useful to run it on
the local machine and local filesystem. Download the program files and a data file and
make the downloaded files executable:

wget https://evermann.ca/busi4720/map.py
wget https://evermann.ca/busi4720/reduce.py
wget https://evermann.ca/busi4720/hamlet.txt
chmod +x *.py

Then, run the Map function and view its output to understand how it works. The ”|”
symbol in the following bash code is a pipe that pipes the output of one command into
the next command. Here, the output of cat, which simply shows the contents of a file,
are piped into the map function defined above, and its output is redirected with the >

550 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

symbol to a file. The less command shows the contents of that file one line in an
interactive way.

cat hamlet.txt | ./map.py > map.out
less map.out

Next, run the Reduce function and view its output. The sort command sorts the
content of text files. The k2 option tells it that the sort key is the second column (word
count) in the file, the rn option is to reverse the sort order (highest word count first).

cat map.out | ./reduce.py > reduce.out
sort -k2 -rn reduce.out | less

Once the Map and Reduce functions work as expected on the local file system, they
can be run on the Hadoop cluster. To do this, first put the input file(s) into their own
directory on the HDFS:

hdfs dfs -mkdir hamlet
hdfs dfs -put hamlet.txt hamlet
hdfs dfs -ls hamlet

Next, run the MapReduce application on the Hadoop cluster using Hadoop Streaming.
The command arguments are self-explanatory, but note the use of the file arguments
to tell Hadoop to move the program code to the nodes where the data are located. This
illustrates the fundamental Hadoop principle that computation is moved to the data, not
the other way around.

mapred streaming \
-input hamlet -output hamlet.out \
-mapper map.py -reducer reduce.py \
-file map.py -file reduce.py

The Hadoop cluster will now process the application, provide statistics and information
about it as it is executed, and then report successful execution. The output directory,
hamlet.out contains one result file from each instance of Reduce.

Download the results to the local file system and sort and view them:

hdfs dfs -ls hamlet.out
hdfs dfs -get hamlet.out/part-*
cat part-* | sort -k2 -rn | less

17.2. HADOOP 551

Case Study

Source:IEEE

This case study illustrates the scalability of Hadoop in real busi-
ness use case6. One aspect of business process mining is the dis-
covery of process models from event logs. Event logs are gener-
ated by process-aware information systems and can grow to signif-
icant size. Event logs may be stored in a distributed way, either on
those systems where they are generated, or in a dedicated business
analytics Hadoop cluster. This suggests that a distributed imple-
mentation of process discovery algorithms using the MapReduce
framework could provide significant scalability and performance
advantages.

The α miner and the Flexible Heuristics Minder (FHM) were im-
plemented in MapReduce, the α miner requiring 2 Map–Reduce phases, while the
FHM required 5 Map–Reduce phases. Expriments were conducted on a randomly gen-
erated process with 47 different types of activities. From this process, 5 million traces
were simulated, yielding an event log of 80GB. To examine the effect of cluster size
on performance, a single node cluster with 2 CPUs was chosen as a baseline and com-
pared to a 10-node cluster with 2 CPUs on each node, and a 10-node cluster with 10
CPUs on each node.

While the above word count example used simple data types for the keys and values,
the data can be arbitrarily complex, as long as a function to compare keys is provided
so that the shuffle phase can decide when two keys are the same and send values to the
same Reduce instance. For example, the MapReduce implementation of the FHM used
tuples of two elements for some keys and sets of multiple elements for some values:

map1:(Int, Text) → set(CaseID, (Event, T imeStamp))

shuffle1:set(caseID, (Event, T imeStamp)) → (CaseID, set(Event, T imeStamp))

reduce1:(CaseID, set(Event, T imeStamp)) → set((Event, Event), (Int,Bool, Int))

combine2:set((Event, Event), (Int,Bool, Int)) → set((Event, Event, (Int,Bool, Int))

reduce2:((Event, Event), set(Int,Bool, Int)) → set(c, (Event, Event, Int, F loat))

reduce3:set(c, (Event, Event), set(Int, F loat)) → set(c, (Event, Event))

map4:(Int, Text) → set(CaseID, (Event, T imeStamp))

shuffle4:set(CaseID, (Event, T imeStamp)) → (CaseID, set(Event, T imeStamp))

reduce4:(CaseID, set(Event, T imeStamp)) → set((Event, set(Event), Bool), Int)

reduce5:((Event, set(Event), Bool), set(Int)) → ((Event, set(Event), Bool), Int)

The experimental results, shown in Figure 17.5 and Table 17.3, show the performance
advantages delivered by parallel processing using multiple compute nodes with multi-
ple CPUs each. Job completion time was reduced from days to minutes.

6Source: Evermann, J. (2016) Scalable Process Discovery using Map-Reduce. IEEE TSC, 9 (3), 469-481.
https://doi.org/10.1109/TSC.2014.2367525

Source: IEEE
https://doi.org/10.1109/TSC.2014.2367525

552 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Source: Evermann, J. (2016) Scalable Process Discovery using Map-Reduce. IEEE TSC, 9 (3), 469-481.
https://doi.org/10.1109/TSC.2014.2367525

Figure 17.5: Total elapsed time for completion of MapReduce jobs for process discov-
ery

α Algorithm
Single node 25:00 hours
Medium cluster 1:24 hours
Large cluster 0:08 hours

FHM
Single node 22:21 hours
Medium cluster 2:01 hours
Large cluster 0:17 hours

Source: Evermann, J. (2016) Scalable Process Discovery using Map-Reduce. IEEE TSC, 9 (3), 469-481.
https://doi.org/10.1109/TSC.2014.2367525

Table 17.3: Total elapsed time for completion of MapReduce jobs for process discovery

Apache Pig

https://en.wikipedia.org/
wiki/File:

Apache_Pig_Logo.svg

Apache Pig7 is a high-level platform for creating programs that
run on Apache Hadoop. It is designed to simplify the com-
plexities of writing low-level MapReduce programs, providing
a simpler scripting language called Pig Latin, which abstracts
the details of programming from the underlying MapReduce
framework. Apache Pig was originally developed at Yahoo to
allow analysts using Hadoop to focus more on analyzing large

data sets and spend less time having to write Map and Reduce functions. Although it
operates at a higher level of abstraction than MapReduce, under the hood, Pig converts
these scripts into MapReduce jobs.

Pig Latin is designed to handle all kinds of data, particularly semi-structured data or

7https://pig.apache.org/docs/latest/basic.html

https://doi.org/10.1109/TSC.2014.2367525
https://doi.org/10.1109/TSC.2014.2367525
https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://pig.apache.org/docs/latest/basic.html

17.2. HADOOP 553

LOAD STORE DUMP FILTER DISTINCT

FOREACH . . . GENERATE UNION SAMPLE JOIN GROUP

CROSS ORDER LIMIT SPLIT

Table 17.4: Core Pig Latin operations

datasets that do not conform to a fixed schema. Pig Latin supports operations like
join, sort, filter, and combine but is tailored to handle complex nested data structures
typical in big data applications. Users can extend the language with their own func-
tions written in Java, JavaScript, Python, etc., to handle custom processing. Typically,
Pig Latin programs are about 5-20 times shorter than equivalent Java MapReduce pro-
grams. However, Pig Latin remains a procedural language, focusing on how to retrieve
or process data, rather than a declarative langauage like SQL that focuses on what data
to retrieve. Table 17.4 shows the core relational operations available in Pig Latin.

To give an impression of Pig Latin, consider the following script8 that performs the
same word count as the MapReduce example above.

input_lines = LOAD 'hamlet.txt' AS (line:chararray);
-- Extract words from each line and put them into
-- a pig bag datatype, then flatten the bag to get
-- one word on each row
words = FOREACH input_lines \

GENERATE FLATTEN(TOKENIZE(line)) AS word;
-- create a group for each word
word_groups = GROUP words BY word;
-- count the entries in each group
word_count = FOREACH word_groups \

GENERATE COUNT(words) AS count, group AS word;
-- order the records by count
ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO 'hamlet.out';

Apache Hive

https://commons.wikimedia.
org/wiki/File:

Apache_Hive_logo.svg

Apache Hive is a data warehousing software and SQL-like
query language for data stored on Hadoop’s HDFS. Hive is de-
signed to make Hadoop accessible to business analysts famil-
iar with SQL, the standard language for relational databases.
However, Hive is not a full database. The main focus is to
provide data summarization, query, and analysis. While it has
similar properties to a database, such as indexing, transactions,
and queries, it does not offer real-time queries and row-level
updates.

8Source: https://en.wikipedia.org/wiki/Apache_Pig

https://commons.wikimedia.org/wiki/File:Apache_Hive_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Hive_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Hive_logo.svg
https://en.wikipedia.org/wiki/Apache_Pig

554 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

HiveQL9 is the SQL-like language that Hive uses. HiveQL in-
cludes extensions that allow traditional MapReduce program-

mers to plug in their custom Map and Reduce functions when it is inconvenient or
inefficient to express this logic in HiveQL. Hive reduces the complexity of writing
MapReduce jobs by automatically translating HiveSQL queries into MapReduce jobs,
allowing users to focus on query statements rather than the complexities of the under-
lying execution engines.

Consider the following example HiveQL query10. It imeplements the same word count
as the above Pig Latin script and the earlier MapReduce example. Note the similarities
to SQL and the declarative nature. The HiveQL query does not specify what actions to
perform, but simply specifies what result to retrieve or select from the data set.

DROP TABLE IF EXISTS docs;
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'hamlet.txt'
OVERWRITE INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\s'))
AS word FROM docs) temp

GROUP BY word
ORDER BY word;

17.3 Apache Spark

https://commons.wikimedia.

org/wiki/File:

Apache_Spark_logo.svg

Apache Spark is an open-source, unified analytics system for
large-scale data processing. Originally designed at developed
at the University of California at Berkeley in 2009, it was do-
nated as an open-source project to the Apache Foundation in
2013. It provides high-level programming interfaces for Java,
Scala, Python, and R. It is known for its speed and ease of use
in complex analytics across big data. Because of its advantages
over Hadoop and MapReduce, it was quickly adopted.

Spark’s core feature is its in-memory cluster computing that
increases the processing speed of an application significantly over MapReduce, which
is disk limited. Spark stores data in RAM across the cluster, which allows it to access
this data quickly and speed up the computation times, especially for iterative algorithms
common in machine learning and data mining. In contrast to MapReduce, Spark also
supports cyclic data flow.

Spark can run on top of existing Hadoop clusters to leverage Hadoop’s storage systems,
like HDFS or HBase. This allows for easy integration and migration of data-processing

9https://cwiki.apache.org/confluence/display/Hive/LanguageManual
10Source: https://en.wikipedia.org/wiki/Apache_Hive

https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://en.wikipedia.org/wiki/Apache_Hive

17.3. APACHE SPARK 555

https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_d%C3%A9tail_outils_spark.png

Figure 17.6: Apache Spark components

tasks between Hadoop components and Spark. Like Hadoop, Spark is designed to scale
up from a single server to thousands of machines, each offering local computation and
storage. However, Spark can also use cloud-based file storage such as Amazon Web
Services S3 or Microsoft Azure storage solutions, and cluster management software
other than YARN, such as Mesos or Kubernetes.

Spark provides a unified processing engine that can handle different types of work-
loads within the same application that have traditionally required separate distributed
systems, including batch processing, SQL queries, real-time stream processing, ma-
chine learning, and graph processing. This unification reduces management overhead
and streamlines data processing pipelines.

Spark uses a data storage model based on RDDs (Resilient Distributed Datasets), which
are automatically rebuilt on cluster node failure. This design ensures that Spark appli-
cations can handle node failures on large clusters with minimal impact on data process-
ing tasks.

Spark’s easy-to-use programming interface simplify the development of complex, multi-
stage data pipelines and sophisticated analytics and machine learning compared to
MapReduce. Spark also includes Spark SQL, making it easy to transition from tra-
ditional SQL databases to big data processing.

Figure 17.6 shows the components of Spark. Despite its name, Spark SQL also pro-
vides more traditional data frame operations, similar to those one might see in the
Python Pandas or R Tidyverse packages.

The Apache Spark web site provides a wealth of information, both at the in-
troductory, conceptual level and the advanced, detailed level. The following
sections are useful for learning more about Apache Spark:

• Quick Start
• SQL, DataFrames and Datasets
• Structured Streaming
• Machine Learning

https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_d%C3%A9tail_outils_spark.png
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/ml-guide.html

556 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

https://spark.apache.org/docs/latest/img/cluster-overview.png

Figure 17.7: Apache Spark cluster architecture

Cluster Management

Apache Spark provides its own cluster management, shown in Figure 17.7. An an-
alytics application (”driver program”) uses a Spark context to communicate with the
Spark cluster manager. The cluster manager in turn coordinates and controls the worker
nodes. Worker nodes run on each computer in the cluster to manage the local resources
and execute tasks. When a client application requests execution of a Spark job via the
Spark context, the cluster manager assigns worker nodes and their executors to the dif-
ferent tasks in the job. The executors execute the assigned tasks and communicate with
the Spark context of the client application for status updates and results.

17.3.1 Spark SQL
Despite the name ”Spark SQL”, this component of Spark also offers non-SQL based
data management. This section first describes three different kinds of data storage
in Spark, introduces execution of transformations and actions on them, then provides
some basic examples, and finally illustrates the use of SQL in Spark.

Data Storage Architecture

The fundamental data structure of Apache Spark is the Resilient Distributed Dataset
(RDD). RDDs are designed to provide a fault-tolerant, immutable collection of objects
that can be processed in parallel. An RDD can contain any type of Python, Java, or
Scala data objects. RDDs are immutable, that is, once created they cannot be changed.
Data in RDDs is split into logical partitions, which can be processed on different nodes
of the cluster. RDDs achieve resilience, that is, fault tolerance, through a lineage graph
of the input dataset — each RDD ”remembers” how to reconstruct its segments from
other datasets by logging the transformations used to build it from other RDDs.

When Apache Spark is run on a Hadoop cluster, RDDs are created from data stored in
HDFS. Spark builds the RDD partitions directly from the blocks of the corresponding
file stored on the HDFS. This direct alignment allows Spark to leverage HDFS’s loca-

https://spark.apache.org/docs/latest/img/cluster-overview.png

17.3. APACHE SPARK 557

tion model, which places computations near the data. Since RDD partitions correspond
to HDFS blocks, operations on RDDs can be scaled across many nodes, allowing Spark
to leverage the distributed nature of the HDFS architecture to process large datasets in
parallel. The correspondence of Spark RDD partitions and HDFS blocks also means
there are two layers of fault tolerance. First, the HDFS replication ensures that data
can be recovered in case of node failure from another replica. Second, the Spark RDD
lineage information means the RDD can be re-computed from its inputs given its his-
tory. RDDs offer a low-level programming interface that is focused on MapReduce. It
is procedural and offers no optimization of query operations.

Building on RDDs, Spark provides DataFrames and Datasets that provide a high-
level, more abstract programming interface similar to Python Pandas data frames or
R dataframes. A DataFrame in Spark is a distributed collection of data organized into
named columns. Spark DataFrames use a query optimizer to optimize the execution of
DataFrame queries for better performance. DataFrames support various data formats
and data sources, including JSON, CSV, and relational databases. DataFrames are also
integrated with Spark SQL for running SQL queries.

Datasets in Spark are an extension of DataFrames that provide a type-safe, object-
oriented programming interface. Datasets are only available in the Scala and Java
programming languages; the Python and R programming languages do not have the
type information required to use them.

Spark Execution Principles

Apache Spark’s core programming model for DataFrames and Datasets revolves around
transformations and actions. These operations adhere to the principle of lazy execution,
which is fundamental to Spark’s high performance and efficiency in processing large
datasets.

Transformations are operations that create a new DataFrame from an existing one.
They are considered ”lazy”, meaning that they do not compute their results right away.
Instead, Spark maintains a plan (the ”lineage”) of all transformations applied to the
DataFrame. Common transformations on DataFrames are listed in Table 17.5. Trans-
formations are only executed when an action is applied to the DataFrame. This ap-
proach allows Spark to optimize data processing, for example by internally rearranging
or combining operations.

Actions are operations that trigger computation and return results from a DataFrame
to the client application or write results to storage. Examples of actions are shown in
Table 17.6. When an action is called on a DataFrame, Spark evaluates the DataFrame
transformations that have been built up in the lineage. It then optimizes the execution
plan for these transformations and executes the different tasks across the cluster to
compute the final results.

558 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

select() Projects a set of expressions and returns a new
DataFrame.

filter() or where() Filters rows using the given condition and returns a
new DataFrame with only the satisfying rows.

groupBy() Groups the DataFrame using the specified columns,
so that further aggregation can be performed.

join() Joins with another DataFrame, using the given join
expression.

orderBy() or sort() Returns a new DataFrame sorted by the specified
column(s).

drop() Removes a column or columns from a DataFrame.
withColumn() Returns a new DataFrame by adding a column or re-

placing an existing column that has the same name.
withColumnRenamed() Renames a column in the DataFrame.
distinct() Returns a new DataFrame containin the distinct

rows of the source DataFrame.
union() Combines two DataFrames that have the same

schema, appending the rows of one DataFrame to
another.

cov() Covariance of columns in a DataFrame.

Table 17.5: Common Spark DataFrame transformations

show() Displays the contents of the DataFrame in tabular form.
count() Returns the number of rows in the DataFrame.
collect() Retrieves the entire DataFrame and returns it as a collection of

rows on the driver program.
save() Saves the DataFrame to an external storage system, such as

HDFS or a local filesystem.
take(n) Returns an array with the first n rows in the DataFrame.
head() Retrieves the first n rows of a DataFrame.
tail() Retrieves the last n rows of a DataFrame.
toPandas() Converts a Spark DataFrame to a Pandas DataFrame, bringing

the entire data set into memory.
write.csv() Writes the contents of a DataFrame to a CSV file.

Table 17.6: Common Spark DataFrame actions

Basic Examples

The examples in this section are intended to illustrate the basic usage of Spark on a
Hadoop cluster. They assume that Spark is running on a Hadoop cluster with HDFS

17.3. APACHE SPARK 559

storage. They use Python and the PySpark interactive console.

First, start the local Hadoop cluster (if not already running) and the PySpark console.
PySpark is Python with a built-in Spark context object to connect to the cluster man-
ager, as shown in the output below. The Hadoop YARN cluster manager manages
the PySpark application, and has a web interface at localhost:8088. From there,
information about the PySparkShell application can be viewed.

sudo systemctl start hadoop.service
pyspark --master yarn

The result is the PySparkShell, which is a Python shell with a Spark context object that
provides the connection to the cluster manager:

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 3.5.1

/_/

Using Python version 3.10.12 (main, Nov 20 2023 15:14:05)
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = yarn, app id = application_
SparkSession available as 'spark'.

The following Python code block reads a file from HDFS and gathers some statistics.
Note that the textFile is treated as a DataFrame with typical data frame operations
such as count() and filter(). PySpark will provide some information about the
job progress on the cluster as these operations are executed.

textFile = spark.read.text(\
'hdfs://localhost:9000/user/busi4720/hamlet.txt')

Number of lines
textFile.count()
First row
textFile.first()
How many lines contain the word Hamlet?
textFile.filter(textFile.value.contains("Hamlet")).count()

The Python code block below shows another example of Spark DataFrame operations.
It finds the longest line by number of words. It imports a number of useful functions
from the Spark SQL package. The sf.split() function splits a character string
on a regular expression into a list of words, sf.size() returns the length of that
list, sf.col() returns a specified columns, and the sf.max() function returns the

localhost:8088

560 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

maximum of its arguments. The agg() function specifies an aggregation and the final
collect() is an action that triggers execution of the transformation operations.

Import useful functions from Spark SQL:
from pyspark.sql import functions as sf
Split each line and count words as 'numWord',
then aggregate the 'numWords' columns using 'max':
textFile.select(sf.size(sf.split(textFile.value, "\s+")) \

.alias("numWords")) \

.agg(sf.max(sf.col("numWords"))) \

.collect()

The following Python code block implements the word count. It uses two functions
from the Spark SQL library, sf.split() and sf.explode(). The first splits a
line of text (a character string) on a regular expression, here, one or more whitespace
characters. The sf.explode() function converts the list resulting from sf.split()
into a DataFrame column. This column is then called ”word”. The groupBy() and
count() operations then aggregate the information. The final collect() is an
action that triggers actual execution of the transformation operations.

Import useful functions from Spark SQL:
from pyspark.sql import functions as sf

wordCounts = textFile \
.select(sf.explode(sf.split(textFile.value, "\s+")) \
.alias("word")) \
.groupBy("word") \
.count() \
.orderBy("count")

wordCounts.collect()

Spark Schemas

In Apache Spark, a schema is a structured definition of the columns and their data types
in a DataFrame. Schemas serve several important purposes when creating or reading a
DataFrame. First, schemas are used to validate the data, ensuring that the data matches
the expected format and types. Second, knowing the schema avoids the overhead of
inferring data types and enables better optimization techniques.

Spark supports a variety of data types similar to traditional database types, which are
used to define the columns in a DataFrame. Common data types in Spark are ’Inte-
ger’, ’Long’, ’Double’, ’Float’, ’String’, ’Boolean’, ’Timestamp’, ’Date’, ’Smallint’,
’Tinyint’, ’Bigint’, and the complex types ’Struct’, ’Array’ and ’Map’.

A schema in Spark is defined using the Spark schema DDL (data definition language)
which looks superficially like an SQL table definition, as shown in the following PyS-
park example that defines a schema for reading an event log file for process analytics:

17.3. APACHE SPARK 561

Define a schema using Spark schema DDL
logSchema = \

'caseID STRING, \
activity STRING, \
ts TIMESTAMP'

The schema can then be used the reading data into a DataFrame, as shown in the Python
code block below. A CSV file is read from HDFS using specific options for delimiter
and header row and the schema defined above:

fname='hdfs://localhost:9000/user/busi4720/eventlog.short.log'

data = spark.read \
.format('csv') \
.option('delimiter', '\t') \
.option('header', 'false') \
.schema(logSchema) \
.load(fname)

The following PySpark commands provide basic information for the DataFrame:

data.printSchema()
data.count()
data.show(5)
data.summary().show()

Spark SQL

The word count example above used DataFrame operations similar to those in R or
Pandas on Spark DataFrames. Another way to work with DataFrames is to treat them
as a table and use SQL queries.

DataFrames can be turned into temporary tables, called ”views”. These are not physi-
cally recorded and are lost when the PySpark application ends (or the view is explicitly
destroyed).

data.createOrReplaceTempView('log')

Alternatively, a DataFrame can written to a permanent table. This table persists in
Hadoop storage beyond the PySpark application:

data.write.saveAsTable('log_table')

562 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

In either case, the spark.sql() function allows the use of SQL commands on the
temporary or permanent table:

result_df = spark.sql('select * from log limit 5')
result_df.show()

For a more elaborate example, consider the construction of a Directly-Follows-Graph
(DFG), as used in business process analytics. This is relatively easy to do with the
follwing SQL query. It computes the number of times an activity directly follows
another activity, as well as the mean time between two activities following each other.

sql_query = \
'SELECT COUNT(*), l1.activity AS activity1, \
l2.activity AS activity2, AVG(l2.ts - l1.ts) AS dtime \
FROM log AS l1 JOIN log AS l2 ON l1.caseid=l2.caseid \
WHERE l2.ts = (SELECT MIN(ts) FROM log l3 \
WHERE l3.caseid=l1.caseid AND l3.ts > l1.ts) \
GROUP BY GROUPING SETS((l1.activity, l2.activity))'

Query execution may require some time due to the multiple self-joins on the log table.

Run the query, show the results
dfg = spark.sql(sql_query)
dfg.count()
dfg.show()

To illustrate the concept of a query plan and query plan optimization, it may be useful
to examine the optimized query plan that Spark uses for the actual calculations. The
output provides information about the logical query plans, both the initial and the op-
timized one, as well as the physical query plan, the set of tasks that Spark runs on the
cluster nodes to calculate the result.

Explain the query plan:
dfg.explain(mode='formatted')
dfg.explain(True)

So far, the Spark examples have been run interactively from the PySpark console. How-
ever, longer running analytics jobs are typically submitted to the Spark cluster for ex-
ecution as self-contained applications so the analyst does not have to wait for results
to be returned. To do this, one can use the spark-submit command and specify
the PySpark file and its arguments. The following example downloads a Python ap-
plication file (which contains the above code to compute the DFG) and then submits
it to the cluster manager for execution, providing the HDFS file name as its argument.

17.3. APACHE SPARK 563

Result will be written to HDFS. While the job is running, use Hadoop Job Tracker at
https://localhost:8088 to track the status of nodes and the progress of jobs.

Download file
wget https://evermann.ca/busi4720/spark_dfg.py
Submit to Spark/Hadoop cluster
spark-submit --master yarn spark_dfg.py \
hdfs://localhost:9000/user/busi4720/eventlog.short.log

17.3.2 Spark Machine Learning
Apache Spark provides support for machine learning through its MLlib and Spark ML
libraries. Both libraries offer common learning algorithms like classification (logistic
regression, decision trees, support vector machines, random forests, etc.), regression
(generalized linear regression, regression trees, etc.), and clustering (for example, k-
means). Utilities for feature extraction, transformation, dimensionality reduction (for
example, PCA), and feature selection are provided to prepare data for machine learning
models. MLlib and Spark ML support the concept of pipelines, which simplify the
process of transforming data and tuning parameters. Models and algorithms can be
saved to and loaded from storage, facilitating the reuse and application of models across
different applications and frameworks. Spark ML provides a higher-level programming
interface built on DataFrames for constructing ML pipelines, whereas MLlib is the
original machine learning library for Spark and is based on RDDs. Spark ML is the
primary focus of development; while still supported, MLlib receives less attention in
terms of new features or performance improvements.

In Apache Spark ML, the concepts of pipelines, transformers, and estimators are central
to defining data transformations and machine learning workflows in a reusable, man-
ageable way. A pipeline in Spark ML represents a workflow that consists of a sequence
of stages, each of which is either a transformer or an estimator. These stages are exe-
cuted in order and transform the input DataFrame as it passes through each stage. Once
a pipeline is defined, it acts like an estimator. Running the pipeline’s fit() method
on a DataFrame produces a fitted model (”PipelineModel”), which is a Transformer.

Transformers take a DataFrame as input and return a new DataFrame with more fea-
tures or a different arrangement of features as output. Common examples of trans-
formers are the ’Tokenizer’ that splits text into words, the ’StringIndexer’ that converts
a column of labels to a column of integer indices, or the ’VectorAssembler’ that com-
bines multiple columns into a single vector.

An Estimators represents a learning algorithms that fits or trains on data. Estimators
provide a fit() method, which accepts a DataFrame and produces a model, which in
turn is a Transformer. Common examples of Estimators include ’LogisticRegression’,
’DecisionTreeClassifier’ or ”KMeans’.

Figure 17.8 illustrates the use of Spark ML pipelines. The upper panel shows a pipeline
consisting of two transformers (blue), followed by an estimator (red). Once the fit()

https://localhost:8088

564 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Source: https://spark.apache.org/docs/latest/ml-pipeline.html

Figure 17.8: Pipelines in Spark ML

method of the pipeline is called, the estimator (and the entire pipeline) become a trans-
former (blue). The lower panel shows that this fitted/trained transformer pipeline can
then be used to transform input into predictions.

The following example illustrates the use of Spark ML for binary classification. The
example requires some feature transformation to illustrate the use of the pipelines. The
full example is available to run as self-contained application11 using spark-submit
on a Spark cluster. Remember that the Hadoop job tracker12 is available to track the
status of the submitted Spark job. The data set for this example is a public dataset
originally from the UCI mchine learning laboratory13.

Download file
wget https://evermann.ca/busi4720/spark_ml.py

Get the dataset and put on HDFS
wget https://evermann.ca/busi4720/mushrooms.csv
hdfs dfs -put mushrooms.csv

Submit to Spark/Hadoop cluster
spark-submit --master yarn spark_ml.py \

hdfs://localhost:9000/user/busi4720/mushrooms.csv

The remainder of this section illustrates the code in detail. First, the schema is defined
for reading the CSV data set into a Spark DataFrame and to validate the data types:

11https://evermann.ca/busi4720/spark_ml.py
12https://localhost:8080
13Source: https://archive.ics.uci.edu/dataset/848/secondary+mushroom+

dataset, CC-BY 4.0 license

https://spark.apache.org/docs/latest/ml-pipeline.html
https://evermann.ca/busi4720/spark_ml.py
https://localhost:8080
https://archive.ics.uci.edu/dataset/848/secondary+mushroom+dataset
https://archive.ics.uci.edu/dataset/848/secondary+mushroom+dataset

17.3. APACHE SPARK 565

the_schema = 'class STRING, `cap-diameter` DOUBLE, \
`cap-shape` STRING, `cap-surface` STRING, \
`cap-color` STRING, `does-bruise-or-bleed` STRING, \
`gill-attachment` STRING, `gill-spacing` STRING, \
`gill-color` STRING, `stem-height` DOUBLE, \
`stem-width` DOUBLE, `stem-root` STRING, \
`stem-surface` STRING, `stem-color` STRING, \
`veil-type` STRING, `veil-color` STRING, \
`has-ring` STRING, `ring-type` STRING, \
`spore-print-color` STRING, habitat STRING, \
season STRING'

The spark.read() function uses the schema and specific parameters for delimiter
and header rows to read the CSV file into a Spark DataFrame. The ”veil-type” column
is then dropped and missing values are replaced by the character string ’NULL’.

fname='hdfs://localhost:9000/user/busi4720/mushrooms.csv'

data = spark.read \
.format('csv') \
.option('delimiter', ',') \
.option('header', 'true') \
.schema(the_schema) \
.load(fname)

data = data.drop('veil-type')
data = data.fillna('NULL')

Next, import the required packages:

Import all required pieces:
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import StandardScaler, \

StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml import PipelineModel

The numerical feature columns are concatenated (”assembled”) into a single vector
column using the VectorAssembler transformer:

numFeatures = VectorAssembler(
inputCols = ['cap-diameter', 'stem-width', 'stem-height'],
outputCol = 'numFeatures')

The StandardScaler transformer scales and standardizes the numerical features:

566 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

scaler = StandardScaler(inputCol='numFeatures',
outputCol='numFeaturesS')

The categorical variables are one-hot encoded using dummy variables. First, identify
the columns with ’string’ data type, and construct column names for the indexed and
one-hot encoded corresponding columns:

categoricalCols = \
[name for (name, dtype) in data.dtypes if dtype=='string']

indexOutputCols = [x + 'index' for x in categoricalCols]
oheOutputCols = [x + 'ohe' for x in categoricalCols]

A StringIndexer is a transformer that transforms a column or set of columns of
character strings into a column or set of columns of integer indices.

stringIndexer = StringIndexer(
inputCols = categoricalCols,
outputCols = indexOutputCols,
handleInvalid='skip')

The OneHotEncoder takes one or more numerical category index columns and re-
turns the corresponding one-hot encoded columns:

oheEncoder = OneHotEncoder(
inputCols = indexOutputCols,
outputCols = oheOutputCols)

Finally, the numerical and categorical feature columns are combined into a column
with the entire feature vector using another VectorAssembler transformer:

Assemble all features into a feature vector
vecAssembler = VectorAssembler(

inputCols = oheOutputCols+['numFeaturesS'],
outputCol = 'feature_vec')

The targets are also encoded as numerical indices, using the StringIndexer trans-
former:

Encode the target classes as numbers
stringIndexTarget = StringIndexer(

inputCols = ['class'],
outputCols = ['classIndex'],
handleInvalid='skip')

17.3. APACHE SPARK 567

As the last required element, the LogisticRegression estimator is defined, ac-
cepting the feature vector column and the target column:

Create the classification estimator
logReg = LogisticRegression(

featuresCol = 'feature_vec', labelCol = 'classIndex')

All components can be assembled into a pipeline:

Put all components into the pipeline
pipeline = Pipeline(stages=[

numFeatures,
scaler,
stringIndexer,
oheEncoder,
vecAssembler,
stringIndexTarget,
logReg])

To train the model, the data set is split into training and test data, using the randomSplit
transformation on the Spark DataFrame:

Create train/test data split
train_data, test_data = data.randomSplit([.66, .33], seed=1)

Calling the pipeline’s fit method will turn the final estimator, and the entire pipeline
into a fitted model, that is, a transformer:

Fit the model to the training data
pipelineModel = pipeline.fit(train_data)

Performance metrics for the training data can be retrieved from the last stage of the
pipeline, that is, from the LogisticRegression estimator (now a transformer):

Summary of the training data performance
summary = pipelineModel.stages[-1].summary
summary.accuracy
summary.areaUnderROC
summary.fMeasureByThreshold.show()
summary.precisionByLabel
summary.recallByLabel
summary.roc.show()

Fitted estimators, including whole pipelines, become transformers. The transform()
method of a transformer can be used to transform inputs into output predictions:

568 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

trainPred = pipelineModel.transform(train_data)
testPred = pipelineModel.transform(test_data)

Apache Spark ML provides ”evaluators” to evaluate the predictive performance of
models. The BinaryClassificationEvaluator focuses on the AUC. It ac-
cepts the true classes and can then evaluate the predictions created by the pipeline
against the true class indices:

Evaluate the model using AUC
evaluator = BinaryClassificationEvaluator(

labelCol='classIndex')
evaluator.evaluate(trainPred)
evaluator.evaluate(testPred)

To help manage trained models for later reuse, Spark ML provides methods to save and
load fitted models/pipelines:

Save the fitted model for later re-use:
pipelineModel.write().overwrite().save('myFirstModel')

Load a saved model:
savedModel = PipelineModel.load('myFirstModel')

17.4 Stream Analytics
So far, this section has focused on what is known as batch processing or batch analytics.
This involves collecting data over a period of time, working with a finite, but possibly
large data set, and processing it in large batches at a scheduled time, e.g. daily, weekly,
or monthly.

Stream analytics on the other hand focuses on data that cannot be, or does not need
to be stored permanently, typically due to high data volume and high data velocity.
For example, many industrial systems are extensively instrumented with sensors that
provide readings every millisecond. Storing terabytes or petabytes worth of low-level
detailed data every day is infeasible. Moreover, decision making based on the data may
need to happen continuously and in real-time. Stream analytics focuses on processing
such data ”on-the-fly”, as it is flowing through the analytics application, without being
able to store it, and without being able to recall it – once it’s passed through, it’s gone.
Data is continuously processed in real-time and there may be perpetual stream of input
data that needs to be processed.

Example use cases in business analytics are customer click-stream analysis for real-
time pricing on web sites, machine sensor data processing for failure warnings or

17.4. STREAM ANALYTICS 569

alarms, financial transaction fraud monitoring, financial market data and financial news
analysis, or business process compliance monitoring. All these applications have the
same characteristics: Analysis must happen in real time, as the data is ingested; the
flow of incoming data never stops; and there is too much data to be stored for batch
analytics.

Stream analytics applications are often conceptualized as a network of processing
nodes, each node ingests a data stream, performs fast, low-latency processing, and
emits another data stream that is sent or piped to another set of nodes as input.

To illustrate this, consider the use case of continuous business process discovery for
streaming data14. The flexible heuristics miner is implemented for streaming data as
a network of processing nodes. The system ingests activity completion events from
process-aware information systems and, as each event is ingested, continuously up-
dates the discovered business process model in real-time. The system was implemented
on Amazon Web Services Kinesis. It uses multiple data streams between processing
nodes. Each data stream is essentially a queue into which data is put at one end and
read in the same order from the other end, but data is never stored. The data processing
nodes perform the various computations required to construct the process model and,
for They are implemented using multipled threads/executors for performance. Fig-
ure 17.9 shows the system architecture.

Running on 5 compute nodes, the system is able to process over 5 million events per
minute, or over 150,000 complete process traces per minute and continuously updates
the discovered process model. Figure 17.10 shows the data throughput for each of the
data streams in the system during a 3-hour period; the vertical axis is in millions of
records processed.

14Source: Evermann, J., Rehse, J.-R., and Fettke, P. (2016) Process Discovery from Event Stream Data in
the Cloud - A Scalable, Distributed Implementation of the Flexible Heuristics Miner on the Amazon Kinesis
Cloud Infrastructure. CloudBPM Workshop on Business Process Monitoring and Performance Analysis in
the Cloud at the 8th IEEE International Conference on Cloud Computing Technologies and Science (Cloud-
Com 2016)

570 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Source: Evermann, Rehse, Fettke (2016)

Figure 17.9: Flexible Heuristics Miner implemented on AWS Kinesis, system archi-
tecture

Source: Evermann, Rehse, Fettke (2016)

Figure 17.10: Flexible Heuristics Miner implemented on AWS Kinesis, data through-
put

17.5. SPARK STREAMING 571

17.5 Spark Streaming
Apache Spark Streaming enables scalable, high-throughput, fault-tolerant stream pro-
cessing of live data streams. It can ingest data from various sources like Kafka, Flume,
Kinesis, or network sockets, and process it using algorithms expressed with high-level
functions like map, reduce, join, and window. Spark Streaming can provide output to
a number of destinations, such as distributed file systems, databases, and visual dash-
boards (Figure 17.11).

Spark Streaming processes live streams of data in small batches, known as micro-
batches, containing one or a few data records. This allows the framework to achieve
high throughput and low latency. These micro-batches are created at user-defined inter-
vals and processed by the Spark engine to generate the final stream of results in batches
(Figure 17.12).

Spark Streaming represents data streams as unbounded tables (Figure 17.13). With
this representation Spark provides a unified programming model for both batch and
stream processing, using the same Spark DataFrame operations for both modes. Spark
Streaming can be combined with other big data tools supported by Spark, such as Spark
SQL, MLLib for machine learning, and GraphX for graph processing. This integration
allows for seamless data processing pipelines that include streaming data, batch data,
and interactive queries.

Spark Streaming supports stateful computations, allowing it to maintain state across
different batches of data. This is crucial for applications that require tracking session
information or aggregating data over time. Spark Streaming also provides capabili-
ties for windowed computations, where data transformations are applied over a sliding
window of data. This is essential for tasks that need to group and aggregate data over
specific time frames.

Apache Spark Streaming provides various options for controlling the timing of stream-
ing data processing through its trigger modes, and different ways of managing output
data via output modes. Processing triggers in Apache Spark Streaming determine how
often the streaming data should be processed. There are several types of processing
triggers:

https://spark.apache.org/docs/latest/img/streaming-arch.png

Figure 17.11: Spark Streaming input sources and output destimations

https://spark.apache.org/docs/latest/img/streaming-arch.png

572 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

https://spark.apache.org/docs/latest/img/streaming-flow.png

Figure 17.12: Speark Straming batches

https:
//spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png

Figure 17.13: Spark data stream as an unbounded table

• Micro-batch: The next micro-batch is processed as soon as the previous micro-
batch is completed. This mode aims to achieve the highest possible throughput
by keeping the system continuously busy.

• Fixed time interval: This trigger processes micro-batches at user-specified fixed
intervals, such as every 5 seconds. This is useful for scenarios where data should
be processed at regular, predictable intervals.

• Once: A one-time trigger processes a single batch in response to an event or as
a one-off computation. This can be useful for testing or for updating results at
irregular intervals.

• Continuous: In continuous processing mode, Spark processes records immedi-
ately as they arrive, which significantly lowers the end-to-end processing time
(latency). This mode is still experimental and may not support all the features of
structured streaming.

Output modes in Spark Streaming dictate what gets written to the output destination at
the end of each trigger interval. There are several output modes to choose from:

https://spark.apache.org/docs/latest/img/streaming-flow.png
https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png
https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png

17.5. SPARK STREAMING 573

• Complete Mode: In this mode, the entire updated result table is outputted after
every trigger. It is suitable for scenarios where the full snapshot of the table is
needed after each processing interval.

• Append Mode: This mode is used when you only want to output the rows that
were added to the result table since the last trigger. It is commonly used for cases
where only new data is of interest (e.g., new records from a stream).

• Update Mode: The update mode outputs only the rows that were updated in
the result table since the last trigger. It does not output the rows that have not
changed, making it more efficient than complete mode if only changes are nec-
essary.

Spark Streaming is integrated with Spark ML machine learning. It provides streaming
implementations of basic machine learning models (linear regression, logistic regres-
sion, k-means clustering) that can be trained on continuous data streams. Spark Stream-
ing also offers the ability to predict from data stream for models that were trained
off-line, for models created by Spark ML.

Example

To illustrate Spark Streaming, the following PySpark example implements a real-time
word count system that ingests data from a network connection (”socket”)15.

The first Python code block imports all necessary functions:

from pyspark.sql.functions import explode, split, col, desc, \
window, current_timestamp

The next code block creates a stream reader to read from a network socket on the
local machine on port number 9999. The result, lines, is a Spark DStream object
representing the input data stream. Note that the stream reader opens a client socket, i.e.
the socket must already have been opened for writing by the data producer, otherwise
the load() action will fail.

lines = spark.readStream \
.format('socket') \
.option('host', 'localhost') \
.option('port', 9999) \
.load()

Next, processing of individual lines is done, using the same functions as in the earlier
Spark DataFrame examples. In the following block of Python code words is another
DStream that is connected to the lines DStream, as illustrated in Figure 17.14.

15Source: https://spark.apache.org

https://spark.apache.org

574 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

https://spark.apache.org/docs/latest/img/streaming-dstream-ops.png

Figure 17.14: Spark Streaming line and word DStreams

words = lines.select(explode(split(col('value'),'\\s')).alias('word'))

Individual words are then processed, again, in the same way as in the earlier Spark
DataFrame example. The following Python code block creates counts as another
Dstream, connected to the words DStream.

counts = words.groupBy('word') \
.count() \
.sort(desc('count'))

Finally, an output writer is defined with a ”complete” output mode that writes the com-
plete result after each micro-batch, and a 5 second timer interval trigger on processing
– Spark Streaming will read and process a micro-batch every 5 seconds. The check-
point location is where Spark Streaming stores information about the status of the data
streams so it can recover in case processing is interrupted. This ensures fault toler-
ance, and allows Spark Streaming to guarantee that every record is processed and every
record is processed only once. Figure 17.15 illustrates the complete example.

writer = counts.writeStream \
.format('console') \
.outputMode('complete') \
.trigger(processingTime='5 second') \
.option('checkpointLocation', \

'hdfs://localhost:9000/user/busi4720/')

To see this Spark Streaming application in operation, use a Bash command shell to
open a network socket using the nc command:

https://spark.apache.org/docs/latest/img/streaming-dstream-ops.png

17.5. SPARK STREAMING 575

https://spark.apache.org/docs/latest/img/structured-streaming-example-model.png

Figure 17.15: Spark Streaming complete word count example

nc -kl 9999

Then, start the stream data processing by starting the writer. This returns a streaming
query object that provides progress information. The ”start()” method is a non-
blocking operation so that stream processing will occur in the background.

streamingQuery = writer.start()

The query object can be used to get progress information, through its lastProgress
attribute:

print(streamingQuery.lastProgress)

The query object also provides a stop() method to end the processing:

streamingQuery.stop()

This basic example can be extended to illustrate time windowing, illustrated in the
following Python code block. First, the line processing is changed to not only split

https://spark.apache.org/docs/latest/img/structured-streaming-example-model.png

576 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

https://spark.apache.org/docs/latest/img/structured-streaming-window.png

Figure 17.16: Spark Streaming time windowing

lines into words, but also to record the event timestamp. That is, the words DStream
will contain two columns, word and eventTime:

words = lines \
.select(explode(split(col('value'),'\\s')).alias('word')) \
.withColumn('eventTime', current_timestamp())

The following Python code block changes the definition of the counts DStream to
group by words but now for one minute windows of the eventTime column; win-
dows are updated every 30 second, that is, overlapping time windows. Figure 17.16
illustrates the time windowing concept.

counts = words \
.groupBy('word', window('eventTime', '1 minute', '30 second')) \
.count() \
.sort(desc('count'))

17.6 Review Questions
Introduction

1. Define big data analytics and discuss its significance to business practices.
2. What are the three main ”V”s of big data? Explain how they characterize big

data challenges and opportunities.

https://spark.apache.org/docs/latest/img/structured-streaming-window.png

17.6. REVIEW QUESTIONS 577

3. The text mentions two additional Vs, veracity and value. Describe these concepts
and explain their importance in the context of big data.

4. Why is timely data processing important in scenarios involving high-velocity
data? Provide an example where delay in data processing could be detrimental.

5. What are the implications of poor data veracity? How can organizations ensure
the accuracy and reliability of their data?

6. Discuss the concept of value in big data. What steps must organizations take to
transform big data into actionable insights?

7. What are some challenges organizations face when scaling from desktop data
analysis tools to industrial-scale big data analytics platforms?

Apache Hadoop

8. Describe the primary function of Apache Hadoop and its origins.
9. Explain the concept of ’data locality’ in the context of Hadoop. Why is it bene-

ficial to process data where it is stored?
10. What are the three main components of Hadoop? Briefly describe the role of

each component.
11. Discuss the reliability features of Hadoop. How does Hadoop ensure data is not

lost in case of a node failure?
12. Describe the process of data replication in HDFS. Why is data replicated across

different nodes, and how does this impact system performance?
13. Explain the architecture of HDFS. What are the roles of the NameNode and

DataNodes?
14. What are the limitations of the Hadoop ecosystem, and how have new develop-

ments or additional tools addressed these challenges?
15. Reflect on how the principles of Hadoop (for example, data locality and redun-

dancy) apply to practical scenarios such as disaster recovery and data processing
efficiency.

16. Discuss the impact of Hadoop’s ’write once, read many times’ model on data
analysis tasks. What types of applications are best suited for this model?

MapReduce

17. Define the MapReduce programming model and explain its primary purpose in
handling large data sets.

18. Describe the roles of the Map and Reduce functions in a MapReduce job. What
types of operations might each perform?

19. Explain the process of data flow from input to output in a MapReduce job, in-
cluding the stages of Map, Shuffle, and Reduce.

20. Discuss how MapReduce utilizes the distributed storage provided by HDFS for
both computation and storage of intermediate results.

21. What are the limitations of the MapReduce model regarding the types of data
flows it supports? Why does it struggle with iterative or cyclic data flows?

22. Describe the roles of the Resource Manager and NodeManager in the YARN
architecture. How do they interact during the execution of a MapReduce job?

578 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

23. What happens during the shuffle phase of a MapReduce job? Explain how data
is distributed and prepared for the Reduce phase.

24. Explain the role of the Application Master in a MapReduce job executed on a
YARN cluster. How does it manage job execution and resource allocation?

25. How does the number of Reduce instances relate to the number of unique key
values in the input data? What determines the number of Reduce tasks in a job?

26. What is the purpose of the Map function in the MapReduce model? Provide an
example of a simple Map function.

27. Explain the concept of key-value pairs in the context of MapReduce. How are
these used throughout the MapReduce process?

28. Discuss how the Reduce function aggregates the outputs from the Map func-
tion. Provide an example where this aggregation is critical to the outcome of the
MapReduce job.

29. Why might intermediate data in a MapReduce job be larger than the input data?
What challenges does this present?

Apache Pig

30. What is Apache Pig?
31. Explain the main features of Pig Latin and how it simplifies writing data analysis

programs compared to MapReduce.
32. What are some of the core operations in Pig Latin? Provide examples of how

two of these operations can be used in data processing.
33. Compare and contrast the procedural nature of Pig Latin with the declarative

nature of SQL. What are the implications of each approach for data analysis?

Apache Hive

34. What is Apache Hive and what need does it fill within the Hadoop ecosystem?
35. What are the benefits of Hive transforming HiveQL queries into MapReduce

jobs?
36. How do Hive and Pig differ in terms of their approach to handling data on

Hadoop? Consider aspects such as ease of use, flexibility, and the type of ab-
straction they provide.

Apache Spark

37. What is Apache Spark and why is it considered a unified analytics system?
38. What is the primary reason for Apache Spark’s fast adoption in the industry

compared to Hadoop’s MapReduce?
39. Explain the concept of in-memory cluster computing in Spark. How does this

improve processing speed compared to disk-based systems like MapReduce?
40. How does Spark integrate with existing Hadoop clusters and why is this benefi-

cial for users already using Hadoop?
41. Describe the various types of workloads that Spark’s unified engine can handle.

How does this versatility affect system management and efficiency?

17.6. REVIEW QUESTIONS 579

42. What are Resilient Distributed Datasets (RDDs)? Discuss their importance in
Spark’s architecture, including how they handle failures.

43. Describe the concept of data lineage in Spark’s architecture. How does it assist
in the re-computation of RDDs if part of the data or process is lost?

44. Explain the role of Spark SQL within the Apache Spark ecosystem. How does it
integrate traditional SQL database functionality with big data processing?

45. Discuss the execution principles of Apache Spark, focusing on transformations
and actions. What does lazy execution mean and why is it beneficial?

46. How does Apache Spark manage large-scale data processing across a cluster?
Explain the roles of the driver program, cluster manager, and worker nodes.

47. What is a schema in the context of Apache Spark, and what purposes does it
serve?

48. Describe a scenario where using SQL to operate on a DataFrame could be more
advantageous than using DataFrame API methods directly.

Apache Spark Machine Learning

49. Explain the concept of a machine learning pipeline in Spark ML. How does it
enhance the workflow of machine learning models?

50. What is a Transformer in Spark ML, and what role does it play in a machine
learning pipeline? Provide examples.

51. Describe what an Estimator is and its function within the Spark ML framework.
Include examples of common estimators.

52. How does Spark ML leverage the concept of lazy execution in its machine learn-
ing pipelines?

53. Detail how a fitted machine learning pipeline acts as a transformer. What does
this imply for new input data?

Apache Spark Streaming

54. Define stream analytics and contrast it with batch processing. What are the key
characteristics that differentiate the two?

55. Explain why stream analytics is essential for data with high volume and velocity.
Provide examples of scenarios where stream analytics is preferable.

56. Explain the importance of real-time decision-making in stream analytics. How
does this impact the design of stream processing systems?

57. Describe the unified programming model of Spark Streaming. How does it en-
able seamless transition between batch and stream processing?

58. Explain the concept of micro-batching in Spark Streaming. How does it con-
tribute to achieving high throughput and low latency?

59. Discuss the different trigger modes available in Spark Streaming. What are the
use cases for each mode?

60. What are the output modes available in Spark Streaming and how do they differ?
Provide scenarios in which each would be used.

61. Analyze the benefits and limitations of using continuous processing mode in
Spark Streaming. What types of applications benefit most from this mode?

580 CHAPTER 17. ANALYTICS AT INDUSTRIAL SCALE

Chapter 18

Reinforcement Learning –
Tabular Methods

Learning Goals

After reading this chapter, you should be able to:

• Define and explain basic concepts of reinforcement learning, including policy,
environment, action, state, reward, return, value functions and model.

• Build a basic k-armed bandit agent and environment in pseudocode or in Python.

• Explain the trade-off between exploration and exploitation and how an ϵ-greedy
or ϵ-soft policy can be used in this context.

• Explain the principles behind iterative policy evaluation and policy improvement
for solving Markov decision processes using dynamic programming.

• Explain the principles behind MC control, including random starts.

• Explain the principles behind TD control as a bootstrapping method and the
differences to MC control.

• Differentiate off-policy learning from on-policy learning.

Sources and Further Reading

The material in this chapter is based on the following sources.

581

582 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Richard S. Sutton and Andrew G. Barto (2018) Reinforcement Learning – An
Introduction. 2nd edition, The MIT Press, Cambridge, MA. (SB)
http://incompleteideas.net/book/the-book.html

Chapters 2–7

(CC BY-NC-ND License)

The Sutton & Barto book is a standard introductory textbook on reinforcement learn-
ing and widely used. It is very approachable, but at the same time also detailed and
thorough in its exposition. Its focus is on RL prior to the use of neural networks for
function approximation, so up to about 2015. While it does not provide Python code
itself, the pseudo-code in the book is easily implemented.

Resources

Complete implementations of all examples in this chapter are available in the
following GitHub repo:
https://github.com/jevermann/busi4720-rl

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-rl.git

18.1 Introduction
Reinforcement learning (RL) is a type of machine learning in which learning agents
operate in an environment by taking actions and receiving rewards. The aim is to learn
optimal policies, that is, those actions for each state that will maximize the sum of
future rewards. The agent discovers which actions to take and how useful or valuable
they are in each state by trying them and observing the reward and the new state.

Initially, agents have little or no knowledge of their environment, so most of the actions
will be random exploratory actions. As agents learn more about their environment, they
will want to exploit this knowledge by taking the valuable actions, rather than exploring
randomly. On the other hand, less exploration may also mean that better actions will not
be discovered. In other words, an agent is faced with a trade-off between exploration
and exploitation.

What makes RL challenging is both the incomplete knowledge of the environment as
well as the stochastic nature of the environment. Taking the same action in the same
state will not always yield the same reward, and will not alway put the agent in the same
new state. The lack of complete knowledge of the environment also means that typical
RL problems cannot be solved by optimization; optimization requires full knowledge
of the environment, which for stochastic environments, includes knowledge of any
probability distributions. This requirement is not fulfilled in RL problem settings.

http://incompleteideas.net/book/the-book.html
https://github.com/jevermann/busi4720-rl
https://github.com/jevermann/busi4720-rl.git

18.1. INTRODUCTION 583

The core elements of an RL problem are the following:

• Policy π: A deterministic policy π specifies for each state s the action to take,
whereas a stochastic policy π specifies for each state s a probability distribution
over the possible actions a in state s.

• Reward R: The reward is received from the environment after each action. The
reward may be positive, negative, or zero. In designing RL problems, the reward
function is critical to inducing the correct learning behaviour and having the RL
agent solve the right problem.

• Return G: The return is the possibly discounted sum of future rewards. The
discount factor 0 < γ ≤ 1 expresses the fact that immediate rewards are worth
more than future rewards. This is due to the uncertain nature of future rewards.
In a stochastic environment of which the agent has incomplete knowledge, future
rewards may or may not accrue as expected.

• State value function v: This function expresses how valuable it is for an agent
to be in any particular state s. It is defined as the expected return for each state.

• Action value function q: This function expresses how valuable it is for an agent
in a particular state s to take a specific action a. It is defined as the expected
return for each state and action taken in that state.

• Model p: This is a set of probability distributions over rewards and new states for
every pair of current state s and action a. It expresses the stochastic behaviour of
the environment. If an RL agent had such a model of the environment, an optimal
policy can be found using dynamic programming, a type of optimization. RL
agents typically do not try to build such a model, but instead focus on learning
the state value function, the action value function, or the policy directly.

Introductory Example

Consider an RL agent learning the game of Tic-Tac-Toe (”naughts-and-crosses”), as
shown in Figure 18.1. A state is defined as the position of all the X and O on the board;
the possible actions in each state are to place an X in a free space (assume the agent
plays X). The reward at each step is 0 except it is +1 when the game is won. Clearly,
the value of any state with a row of X-X-X is 1 because the reward in this case is 1. The
value of any state with a row of O-O-O or a full board is 0 because no future reward
can occur.

Figure 18.2 indicates a sequence of moves by the RL agent and the opponent where
a starred state (e.g. c∗) indicates an optimal state. Beginning from state a, the oppo-
nent makes the first move and brings the agent to state b. The agent then exploits the
knowledge about the environment that is reflected in its policy or state value function
and chooses the optimal action to move to state c∗. The opponent’s move leads to state
d. Now the agent makes an exploratory move and rather than moving to optimal state
e∗ it moves to state e. The opponent moves the state to f and the following action of
the agent is exploiting behaviour again.

584 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg

Figure 18.1: The game of Tic-Tac-Toe

Source: SB Figure 1.1

Figure 18.2: Exploration and exploitation in an RL environment

Behaviour that exploits knowledge about the environment, that is, the current action
value function and policy, is called greedy behaviour as it seeks to maximize the value
of the next state. In contrast, exploratory behaviour is typically random behaviour.

After each greedy action from state st, the RL agent updates its value function for the
state st based on the value of the new state st+1. The intuition is that if the optimal
action from an initial state of low value results in a new state of high value then the
value of the initial state should reflect this. In other words, the updated value of the
initial state should be closer to that of the final state. This leads to the central update
rule in temporal-difference learning:

https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg

18.2. K-ARMED BANDITS 585

V (St)← V (St) + α [V (St+1)− V (St)] (18.1)

Here, V is the value function, and α is a step size that determines the rate of update or
learning. The term V (St+1)−V (St) is called the error and the term V (St+1) is called
the update target.

Applications in Business and Management

There are many applications for reinforcement learning in business and management.
Consider the following examples:

• Dynamic Pricing: Dynamic pricing involves setting flexible prices for products
or services based on current market demands. RL algorithms can help businesses
optimize pricing strategies in real-time by learning from consumer behavior and
competitor actions, maximizing revenue or market share.

• Supply Chain Optimization: In supply chain management, RL can optimize in-
ventory levels, improve logistics, and manage the supply chain network’s dy-
namic environment. By learning from historical data and ongoing operations,
RL algorithms can make adjustments to inventory and shipping strategies, re-
ducing costs and improving service levels.

• Customer Interaction Management: Reinforcement learning can enhance cus-
tomer relationship management systems by learning to tailor interactions based
on customer behavior. This includes optimizing marketing strategies, personal-
izing recommendations, and improving customer service, all aimed at enhancing
customer satisfaction and loyalty.

• Financial Portfolio Management: In finance, RL can be used for portfolio man-
agement, where the goal is to optimize the allocation of assets in a portfolio
over time. RL algorithms can adapt to changes in market conditions, learning to
maximize returns or minimize risk based on the investment strategy.

• Manufacturing Process Optimization: RL algorithms can be applied to control
and optimize manufacturing processes by continuously learning and adapting to
new data. This can include adjustments to machine settings, production sched-
ules, and maintenance plans to optimize efficiency and reduce operational costs.

18.2 K-Armed Bandits
To introduce RL learning, consider the k-armed bandit problem. It is named after the
nickname of early slot machines (Figure 18.3). The RL agent is faced with k such slot
machines that give different stochastic rewards. The rewards given by each of the k
bandits are initially unknown to the agent. The goal of the agent is to find a policy of
which bandit to play in order to maximize the return, that is, the sum of future rewards.

586 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg

Figure 18.3: An ”one-armed bandit” slot machine

The k-armed bandit problem is a very simple RL problem because it is stateless. That
is, the agent is only ever in one state and the state does not change. This means that the
action value function depends only on the action, not the state-action pair.

Formally, there are k possible actions At at time t with stochastic reward Rt. The
action value for each action can be defined as the average reward for that action:

Qt(a) =

∑t−1
i=1 Ri × 1a∑t−1

i=1 1a

(average reward)

Here 1a is 1 when action a has been taken and 0 when another action has been taken.

A suitable policy that balances exploitation of existing knowledge and exploration for
gathering new knowledge is the ϵ-greedy policy. An ϵ-greedy policy is one that with
probability ϵ takes a random action and with probability 1− ϵ takes the optimal action:

At = argmax
a

Qt(a)

An incremental implementation of the action value function simply updates the running
average when a new reward is received, as follows:

Qt+1(a) = Qt(a) +
1

t
[Rt(a)−Qt(a)] (18.2)

Note how the form of Equations 18.1 and 18.2 is similar. They represent different cases
of the general update rule for estimates:

https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg

18.2. K-ARMED BANDITS 587

Initialize, for a = 1 to k:
Q(a)← 0

N(a)← 0

Loop forever:

A←
{
argmaxaQ(a) with probability 1− ϵ
a random action with probability ϵ

R← bandit(A)

N(A)← N(A) + 1

Q(A)← Q(A) +
1

N(A)
[R−Q(A)]

Figure 18.4: A simple bandit algorithm (Source: SB)

NewEstimate← OldEstimate+ StepSize [Target−OldEstimate]

Where [Target−OldEstimate] is the error in the estimate.

A complete k-armed bandit algorithm is shown in peusdocode in Figure 18.4. The
corresponding implementation in Python is straightforward1. The following code block
defines a class k_bandit_agent that represents an agent. Initialization specifies the
number of bandits k in the environment, the parameter ϵ for the ϵ-greedy policy and
the initial value of the action value function, which may be 0 as in the pseudocode in
Figure 18.4. The method determine_action is simply the ϵ-greedy policy. The
train method for each step determines the action to take, then takes that action in the
environment and receives a reward. The agent then updates the action value function
as in Equation 18.2.

1Complete implementation is available at https://github.com/jevermann/busi4720-rl/
blob/main/bandits.py

https://github.com/jevermann/busi4720-rl/blob/main/bandits.py
https://github.com/jevermann/busi4720-rl/blob/main/bandits.py

588 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

class k_bandit_agent:
def __init__(self, k, epsilon, initial_value):

self.k = k
self.epsilon = epsilon
self.env = k_bandit_env(k)

self.Q = [initial_value] * self.k
self.N = [.0] * self.k

def determine_action(self):
if random.uniform(0,1) < self.epsilon:

explore
action = random.randint(0, self.k-1)

else:
exploit
action = self.Q.index(max(self.Q))

return action

def train(self, steps):
rewards = []
for step in range(steps):

action = self.determine_action()
reward = self.env.step(action)
self.N[action] += 1
self.Q[action] = (reward-self.Q[action])/self.N[action]
rewards.append(reward)

return rewards

A corresponding environment for the agent to act in is also readily implemented in
Python and shown in the following code block. The initialization of the environment
randomly sets the mean rewards of each of the k bandits. Each time a bandit is played,
the step() method randomly determines a reward from a standard normal distribu-
tion with the mean of the k-th bandit.

class k_bandit_env:
def __init__(self, k):

self.k = k
self.mean_rewards = []

for i in range(self.k):
self.mean_rewards.append(random.normalvariate(0, 1))

def step(self, action):
mean = self.mean_rewards[action]
reward = random.normalvariate(mean, 1)
return reward

Figure 18.5 shows a comparison of learning behaviour for agents with different pa-
rameters ϵ. The horizontal axis shows the index of 1000 steps in the environment and
the vertical axis shows the reward received at each step (mean over 1000 runs of the
algorithm). The agent with ϵ = 0 (blue line) shows the worst learning behaviour. That

18.3. MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 589

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

1.2 agent
eps0
eps01
eps001
eps0opt

index

re
su

lts

Figure 18.5: Learning performance for k-armed bandit agents for different ϵ and initial
action-values

agent only exploits and never explores. In other words, it never finds any better or
more valuable actions to take, once it has found a good action. In contrast, the agent
with ϵ = 0.01 (red line) learns slower in the beginning as it explores more but after
1000 steps has achieved a better mean reward. Finally, the purple line represents an
agent with ϵ = 0 but whose action value function has been ”optimistically” initialized
with values of 5 instead of 0, that is, above the expected reward. This prevents it from
assuming the first good action is the best one, which leads to high initial learning. How-
ever, with an ϵ of 0, that agent is not capable of further learning later in the sequence
of actions taken.

18.3 Markov Decision Processes and Dynamic Program-
ming

This section introduces the concept of Markov decision processes, that is, a sequence
of decisions or actions and states that has the Markov property: the reward and next
state depend only on the current state and action, not on the state history.

One can think of RL learning as a Markov decision process. Figure 18.6 shows the
RL agent and the environment it is situated in. The environment is at time t in state
St. The agent takes action At in the environment and receives reward Rt. As a result,
the environment’s state changes to the new state St+1. This leads to the concept of a
trajectory as a sequence of states, actions, and rewards:

S0, A0, R1, S1, A1, R2, . . .

590 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Source: SB Figure 3.1

Figure 18.6: RL agent and environment

18.3.1 Definitions
The behaviour of the environment is stochastic and can be described through the ”p-
function” which expresses the state transition and reward probabilities. This is known
as the dynamics of the environment:

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (18.3)

The return is formally defined as the possibly discounted sum of future rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

= Rt+1 + γGt+1 (18.4)

The state value function of state s under a policy π is defined as the expected value of
the return in that state where Eπ is the expection when acting according to policy π:

vπ(s) = Eπ[Gt|St = s] (18.5)

= Eπ

[∞∑
k=0

γkRt+k+1|St = s

]

Similarly, the action value function of state s and action a for policy π is defined as the
expected return of being in state s and taking action a:

qπ(s, a) = Eπ[Gt|St = s,At = a] (18.6)

= Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a

]

18.3. MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 591

18.3.2 Bellman Equations and Iterative Policy Evaluation
Starting with Equation 18.5 and substituting Equation 18.4 into it yields:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

An expectation is the sum of values weighted by their probability. Summing over all
possible combinations of action a, next state s′ and rewards r and using the dynamics
of the environment (Equation 18.3) and the stochastic policy π(a|s) for probabilities
of taking action a in state s, then yields:

vπ(s) =
∑
a

∑
s′

∑
r

[r + γEπ[Gt+1|St+1 = s′]] p(s′, r|s, a)π(a|s)

Note that the expectation of Gt+1 is not replaced by this sum and remains an expecta-
tion. Rearringing this slightly:

vπ(s) =
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

Recognizing that the expectation in the final term on the right is just the state value
function (Equation 18.5) for state s′ yields:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] for all s ∈ S (18.7)

Equation 18.7 is called the Bellman equation for the state value function. A similar
equation can be derived for the action value function, beginning with Equation 18.6
and following the same steps.

To illustrate the concept of the state value function, consider the gridworld example in
Figure 18.7. An agent is placed on the grid in the left panel of the figure. The agent can
take four possible actions; it can move up, down, left or right. Moving off the grid, for
example taking action ”up” when in the top row, results in a reward of−1 and the state
is unchanged. All other actions yield a reward of 0 with state changes as indicated by
the action, except when states A or B are reached. When reaching state A, the agent
receives a reward of +10 and the next state is A′. When reaching state B, the agent
receives a reward of +5 and the next state is B′.

The policy π in this example is a random policy; independent of its state, the agent
takes each action with equal probability. The discount rate is set at γ = 0.9, favouring
immediate rewards over future ones.

The state values for this problem under the random policy are shown in the right panel
of Figure 18.7. It is clear that being in statesA andB is most valuable, as the immediate

592 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Source: SB Figure 3.2

Figure 18.7: Gridworld example and optimal state value function

Loop:

∆← 0

Loop for each s ∈ S :

v ← V (s)

V (s)←
∑

a
π(a|s)

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

∆← max(∆, |v − V (s)|)
until∆ < θ

Figure 18.8: Iterative Policy Evaluation (Source: SB)

reward is great. However, the state values are not +10 or +5 because the agent is likely
to incur some negative future rewards. In particular, the state values of the edge states
are low or negative because of the probability of falling off the world and incurring a
reward of −1.

The Bellman equation (Equation 18.7 and its equivalent for the action value function)
express the fact that the value of a state (or state-action pair) is a function of the values
of all other states (or state-action pairs). This suggests an intuitive way to compute the
state values iteratively. Beginning with random values for each state, calculate updated
values for all states using Equation 18.7. Then, consider the updated values as the
current values, and calculate updated values based on these2. Iterate like this until the
values do not change any more. It can be proven that this procedure converges to the
correct solution and terminates.

This process is called iterative policy evaluation. Figure 18.8 shows this in pseudocode
and the following Python code block shows the straightforward implementation, begin-
ning with initial values of 0 for each state.

2In fact, it is not even necessary to wait until all states have been iterated over and updated before using
updated state values as current ones.

18.3. MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 593

Define actions for gridworld
A = list(range(0,4))
Initialize value function V
V = dict()
for state in States:

V[state] = 0
Initialize random policy pi
pi = dict()
for state in States:

pi[state] = random.choice(A)

def evaluate_policy():
while True:

Delta = 0
for s in States:

v = V[s]
V[s] = exp_reward(s, pi[s])
Delta = max(Delta, abs(v - V[s]))

print(Delta)
if Delta < theta:

break

18.3.3 Bellman Optimality and Iterative Policy Improvement
Maximizing the state value function v or action value function q is finding an optimal
policy π, that is, that policy that when following it yields the maximum state value or
action value:

v∗(s) = max
π

vπ(s)

q∗(s, a) = max
π

qπ(s, a)

Intuitively, the value of a state under an optimal policy π∗ is equal to the expected
return for the the best action from that state:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

Substituting the definition of the action value function (Equation 18.6):

= max
a

Eπ∗ [Gt|St = s,At = a]

Substituting the recursive definition of the return (Equation 18.4):

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

Noting that the expected future return is just the value of the next state, that is, using
Equation 18.5:

= max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a]

594 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Loop:

stable← true

For each s ∈ S :

old_action← π(s)

π(s)← argmaxa

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

If old_action ̸= π(s) then stable← false

If stable then

returnV ≈ v∗ andπ ≈ π∗

else

go to policy evaluation

Figure 18.9: Iterative Policy Improvement (Source: SB)

The expectation is the sum over all following states s′ and rewards r weighted by their
probabilities. Using the dynamics of the environment (Equation 18.3) that describe the
probabilities yields:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

Similarly, the action value under an optimal policy π∗ can be derived as:

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a
]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]

These final expressions are known as the Bellman optimality equations for the state and
action value functions.

A simple, intuitive way of finding the optimal policy is to find the optimal state value
function. The optimal policy is then to take that action that will yield the best following
state. However, changing the policy will change the state value function. This intuitive
procedure shows that state value function calculation and policy updates should happen
alternatingly, until the policy no longer changes.

Because the state value computation was already demonstrated using iterative policy
evaluation above, the procedure for iterative policy improvement is simple, expressed
in Figure 18.9. The following Python code block illustrates the straightforward imple-
mentation:

18.3. MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 595

def improve_policy():
stable = True
for s in States:

old_action = pi[s]
max_r = -math.inf
max_a = None
for action in Actions:

r = exp_reward(s, action)
if r > max_r:

max_r = r
max_a = action

pi[s] = max_a
if old_action != pi[s]:

stable = False
return stable

Putting both functions, evaluate_policy() and improve_policy(), together
in an iteration will yield the optimal policy:

stable = False
while not stable:

evaluate_policy()
stable = improve_policy()

print("Optimal Policy:")
print(pi)

The procedures of iterative policy evaluation and iterative policy improvement are an
example of the more general approach to optimization called dynamic programming.

Consider the example of ”Jack’s Car Rental” (example 4.2 in SB). Jack rents cars at
2 locations. Each location can store 20 cars. The number of daily rental requests and
rental returns are Poisson distributed. Jack can move a maximum of 5 cars between
the two locations overnight. Each move incurs a reward (cost) of −2 and each satisfied
rental request receives a reward of +10. Jack is looking for the optimal policy that
specifies how many cars to move from location 1 to location 2 every night.

The states in this problem are defined as the number of cars in location 1 and 2, for a
total of 20 × 20 = 400 possible states and 2 actions, defined in the following Python
code block3:

3Complete implementation available at https://github.com/jevermann/busi4720-rl/
blob/main/jacks.py

https://github.com/jevermann/busi4720-rl/blob/main/jacks.py
https://github.com/jevermann/busi4720-rl/blob/main/jacks.py

596 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Figure 18.10: Iterative policy improvement example (exercise 4.2 in SB). Policies and
final state value function.

States = []
for cars1 in range(21):

for cars2 in range(21):
States.append((cars1, cars2))

Actions = range(-5, 5+1)

Figure 18.10 shows the policies after each iteration of the iterative policy improvement
algorithm in Figure 18.9, beginning with the random policy in the top left panel of
Figure 18.10. Positive values for the policy indicate cars to move from location 2 to
location 1, negative values indicate cars to move from location 1 to location 2. The
policy improvement converges to the optimal policy after 4 iterations, with the final
state value function shown in the bottom right panel of Figure 18.10.

18.4 Monte Carlo (MC) Learning
The previous section illustrates how optimal policies and their state value and action
value function can be computed under the assumption that the dynamics of the en-
vironment, that is Equation 18.3, are known. In practice, this is not the case — the
p(s′, r|s, a) are unknown, there is no model of the environment. The RL agent must
learn V and Q from experience, that is, it must act in an environment and generate
trajectories (sequences of states, actions, and rewards).

This section assumes episodic tasks, that is, problems with a terminal state, a finite
trajectory, and finite returns. The agent acts in an environment according to a policy π
until it arrives in a terminal state and the episode ends. At that point, the entire sequence
of states, actions, and rewards is known and state value functions can be estimated or

18.4. MONTE CARLO (MC) LEARNING 597

Input: a policy π to be evaluated

Initialize:

V (s) ∈ R, arbitrarily, for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

Loop forever (for each episode):

Generate an episode followingπ : S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

G← 0

Loop for each step of episode, t = T − 1, T − 2, . . . , 0 :

G← γG+Rt+1

Unless St appears in S0, S1, . . . , St−1 :

Append G to Returns(St)

V (St)← average(Returns(St))

Figure 18.11: First-visit MC prediction (Source: SB)

approximated. Recall that the value of a state is the expected return, that is the expected
sum of discounted future rewards. State values can then be approximated as the average
of the returns in that state.

A problem arises because the agent can be in the same state multiple times before the
episode terminates. Different assumptions can be made. For example, one can assume
that it is the first visit of a state that is most influential in determining the outcome of
the episode and therefore the state value should be updated with the return at the time
of the first visit of a state. Alternatively, one could assume that the last visit of a state is
most important, and the value function is updated with the returns at the last time that
the state is visited. Yet another alternative is to update the value function for all visits
of a state. Figure 18.11 shows the pseudocode for this process when the state value
function is updated only for the first visit of a state, known as First-Visit Monte Carlo
Prediction.

Note the computation of the return G backwards from the end of the episode. The line
”unless St appears in So, S1, . . . , St−1” ensures the first-visit property and the final
two lines approximate the state value by the average of the returns for that state.

Monte Carlo Control

While Monte Carlo prediction is useful in approximating the state value function, ob-
taining the optimal policy is done with Monte Carlo control. Instead of approximating
V (S) from the returns of an episode, MC control approximates Q(S,A). Figure 18.12
shows the first-visit MC control algorithm as pseudocode. It is very similar to the first-
visit MC prediction algorithm in Figure 18.11. Consider the final three lines: The main
change is that returns are assigned not to states, but to pairs of states and actions. The
action value function for a state-action pair is approximated as the average over all the

598 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Initialize for all s ∈ S, a ∈ A
π(s) ∈ A(s) (arbitrarily)

Q(s, a) ∈ R (arbitrarily)

Returns(s, a)← empty list

Loop forever (for each episode):

Choose S0 ∈ S, A0 ∈ A(S0) randomly

Generate an episode followingπ : S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

G← 0

Loop for each step of episode, t = T − 1, T − 2, . . . , 0 :

G← γG+Rt+1

Unless the pair St, At appears in S0, A0, S1, A1, . . . , St−1, At−1 :

Append G to Returns(St, At)

Q(St, At)← average(Returns(St, At))

π(St)← argmax
a

Q(St, a)

Figure 18.12: First visit MC control with exploring starts (Source: SB)

returns assigned to it. The optimal policy in some state is that action for wich the action
value is maximal.

There is one additional difference between Figures 18.11 and 18.12 in that the initial
states and actions of each episode are chosen randomly. This is necessary because the
policy π in Figure 18.12 is deterministic and greedy. Without any random influence,
there would be no exploration. Forcing episodes to begin with random states and ac-
tions is called exploring starts and it ensures that every state-action pair is visited at
least once (assuming sufficiently many episodes are generated).

As an example of an episodic RL problem that can be usefully learned with MC meth-
ods, consider the game of Blackjack (example 5.3 in SB)4. In this game, cards have
values A, 2, 3, . . . , 10 where A is the ace and 10 includes face cards. An ace can count
as 1 point or 11 points. An ace that is counted as 11 is called a ”usable ace”. The
dealer’s initial card is shown. The player can take two possible actions: take another
card (”hit”) or do not take a card (”stick”). Once the player sticks, the dealer takes
cards. The dealer sticks on a sum of 17 or more. When the player’s or the dealer’s sum
of cards is over 21 they are ”bust”, that is, they lose the game. The dealer’s policy is
deterministic, they stick on 17 points or more.

For Blackjack, the states are defined as a combination of the player’s current sum of
cards, the initial card the dealer is showing, and whether the player has a usable ace
(one that can be converted from an 11 to a 1). Actions are to hit or stick. The following

4A complete implementation is available at https://github.com/jevermann/
busi4720-rl/blob/main/blackjack_es.py

https://github.com/jevermann/busi4720-rl/blob/main/blackjack_es.py
https://github.com/jevermann/busi4720-rl/blob/main/blackjack_es.py

18.4. MONTE CARLO (MC) LEARNING 599

Python code block shows how this can be readily implemented:

gamma = 1.0
Define states
States = []
for ace in [0,1]:

for dealer_showing in range(1,11):
for hand_sum in range(12, 22):

States.append((ace,dealer_showing,hand_sum))

Define actions
Actions = (0, 1)

Initially, the policy is a random policy, action value functions are 0 for all state-action
pairs, and the list of returns for each state-action pair is empty:

Initialize policy
pi = dict()
for s in States:

pi[s] = random.randint(0,1)

Initialize action value function
Q = dict()
for s in States:

for a in Actions:
Q[(s, a)] = 0

Initialize returns
Returns = dict()
for s in States:

for a in Actions:
Returns[(s, a)] = []

The following code block shows the generation of an episode under policy pi from
initial state s0 and with initial action a0. The function step() calls the environment.
It includes the dealer drawing cards after the player uses the ”stick” action in a state.

600 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

def generate_episode(pi, s0, a0):
terminal = False
s = s0
a = a0
states = [s0]
actions = [a0]
rewards = [math.nan]
while terminal is False:

sprime, r, terminal = step(s, a)
rewards.append(r)
if not terminal:

aprime = pi[sprime]
states.append(sprime)
actions.append(aprime)
s = sprime
a = aprime

return states, actions, rewards, len(rewards)

The core of MC control is implemented in the following Python code block, which
is very much analogous to the pseudocode in Figure 18.12. Every episode begins in
a random state and with a random action. An episode is generated and the sequence
of states, actions, returns, and the length of the episode T are returned. Returns are
computed from the end of the episode and assigned to the first-visit of a state-action
pair. The policy is updated based on the new approximate value of the Q function.

Learn the Q function
for e in range(0, 1000000+1):

s0 = random.choice(States)
pi0 = random.choice(Actions)
S, A, R, T = generate_episode(pi, s0, pi0)
G = 0
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
if (t == 0) or ((S[t], A[t]) not in zip(S[0:t-1], A[0:t-1])):

Returns[(S[t], A[t])].append(G)
Q[(S[t], A[t])] = mean(Returns[(S[t], A[t])])
if Q[(S[t], 1)] > Q[(S[t], 0)]:

pi[S[t]] = 1
else:

pi[S[t]] = 0

Figure 18.13 shows the resulting policy (left panels) and state value function (right
panels) after 1,000,000 learning episodes. The top two plots in Figure 18.13 are with a
usable ace, the bottom two plots without a usable ace. An action of 1 means to hit, and
action 0 is to stand.

For the game of Blackjack, exploring starts with a deterministic policy is a good way
to ensure exploration. However, exploring starts are not always possible or realistic.
Instead of using a greedy policy, in those cases an ϵ-soft policy can be used to ensure

18.4. MONTE CARLO (MC) LEARNING 601

Figure 18.13: Policies and state value function for the Blackjack example after
1,000,000 episodes. Usable ace on top, no usable ace at bottom

exploration. The policy π now represents not the action to be taken (greedily, determin-
istically) but the probability with which each action should be chosen. Consequently, π
is updated with ϵ-soft probabilities, as shown in the following Python code fragment5:

Q[(S[t], A[t])] = mean(Returns[(S[t], A[t])])
Optimal policy (for two actions)
A_star = 1 if Q[(S[t], 1)] > Q[(S[t], 0)] else 0

for a in Actions:
if a == A_star:

pi[(S[t],a)] = 1-epsilon+epsilon/len(Actions)
else:

pi[(S[t],a)] = epsilon/len(Actions)

An example where exploring starts are not realistic is the Racetrack problem (exercise
5.12 in SB). Cars have to follow the right curve of a racetrack, from the starting line to
the finish line, as shown in two examples in Figure 18.14.

The states are defined by the car’s position and velocity on the race track, each in two
dimensions, horizontally and vertically. The possible actions are to accelerate, coast, or
brake in each direction. The rewards are -1 for each step taken and +1 for crossing the
finish line, when the episode terminates. When a car moves off the racetrack, it is reset
to a random position on the starting line and the episode continues. The environment is

5An implementation of the Blackjack problem with an ϵ-soft policy is available at https://github.
com/jevermann/busi4720-rl/blob/main/blackjack_eps.py.

https://github.com/jevermann/busi4720-rl/blob/main/blackjack_eps.py
https://github.com/jevermann/busi4720-rl/blob/main/blackjack_eps.py

602 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Source: SB Figure 5.5

Figure 18.14: Racetrack example

stochastic: With a small probability, the actions of the agents are ignored, that is, they
have no effect.

The following Python code block defines the actions, the action value function and the
ϵ-soft policy that samples from the probability distribution over actions in a state6 .

Actions = []
for y in range(-1, 2):

for x in range(-1, 2):
Actions.append((y,x))

Q = dict()
def getQ(s, a):

if (s, a) not in Q:
return 0

else:
return Q[(s, a)]

pi = dict()
def get_action(s):

weights = []
for a in Actions:

if (s, a) in pi:
weights.append(pi[(s, a)])

return random.choices(Actions, weights=weights)[0]

The following two Python functions manage the returns for each state-action pair:

6Complete implementation is available at https://github.com/jevermann/busi4720-rl/
blob/main/racetrack.py.

https://github.com/jevermann/busi4720-rl/blob/main/racetrack.py
https://github.com/jevermann/busi4720-rl/blob/main/racetrack.py

18.5. OFF-POLICY MC LEARNING 603

Returns = dict()
def getReturns(s, a):

if (s, a) not in Returns:
return []

else:
return Returns[(s, a)]

def appendReturn(s, a, r):
if (s, a) not in Returns:

Returns[(s, a)] = [r]
else:

Returns[(s, a)].append(r)

The following Python code block represents the core MC control algorithm. Note that
the policy pi now represents the probabilities of taking an action in a state and is up-
dated accordingly. The remainder of the code is largely unchanged from the Blackjack
example, except that the Racetrack example does not need to use exploring starts, that
is, random starting states and actions.

for e in range(0, 10000+1):
S, A, R, T = env.generate_episode()
G = 0
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
if (t == 0) or ((S[t], A[t]) not in zip(S[0:t-1], A[0:t-1])):

appendReturn(S[t], A[t], G)
Q[(S[t],A[t])] = mean(getReturns(S[t],A[t]))
A_star = argmaxQ(S[t])
for a in Actions:

if a == A_star:
pi[(S[t],a)]=1-eps+eps/len(Actions)

else:
pi[(S[t],a)]=eps/len(Actions)

Figure 18.15 shows visualizations of the trajectory of a car (green line) on the racetrack
after 0, 100, 200, and 10,000 episodes. It is clear from these trajectories that the number
of steps is reduced as training progresses.

18.5 Off-Policy MC Learning
In the MC methods described above, the policy used to generate behaviour (”behaviour
policy”), and the policy that is learned (”target policy”) are the same. However, the
need to keep exploring, that is, to behave sub-optimally, when a better, greedy policy
could be available, means that the agent’s performance is reduced. Off-policy learning
is motivated by the need for efficiency and flexibility in learning optimal policies. The
main motivation is the ability to learn about the optimal policy independently of the
agent’s actions. This is useful in environments where exploring all actions is either
potentially damaging or costly.

604 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Figure 18.15: Racetrack trajectory after 0, 100, 200, and 10000 learning episodes:

In on-policy methods, the agent learns from the actions it evaluates and takes, meaning
the behaviour policy is the same as the target policy. In contrast, off-policy methods
allow the agent to learn a policy different from the one it follows. This is beneficial
as it permits the use of historical data from other policies, or data generated from ex-
ploratory or less optimal policies, to improve a potentially different and more optimal
target policy.

One important requirement in off-policy learning is that the behaviour policy must
cover the target policy. That is, all behaviour possible under the target policy must be
(eventually) generated by the behaviour policy. This requirement is intuitive, as the
target policy cannot learn about behaviour, that is, the effects of actions in states, that
is never encountered in a generated episode.

Figure 18.16 shows pseudocode for off-policy MC control. In this learning method,
the behaviour policy b is typically an ϵ-soft policy, as presented above, that allows
exploratory behaviour. The target policy π is a deterministic, greedy policy, as can be
seen in the third-to-last line of Figure 18.16.

The following Python code blocks show how off-policy MC control can be imple-
mented. The first block defines the two policies, the ϵ-soft behaviour policy b and the
greedy deterministic policy pi.

18.5. OFF-POLICY MC LEARNING 605

Initialize for all s ∈ S, a ∈ A(s) :
Q(s, a) ∈ R (arbitrarily)

C(s, a)← 0

π(s)← argmaxa Q(s, a)

Loop forever (for each episode):

Generate an episode following b : S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

G← 0;W ← 1

Loop for each step of episode, t = T − 1, T − 2, . . . , 0 :

G← γG+Rt+1

C(St, At)← C(St, At) +W

Q(St, At)← Q(St, At) +
W

C(St, At)
[G−Q(St, At)]

π(St)← argmax
a

Q(St, a)

If At ̸= π(St) then proceed to next episode

W ←W/b(At|St)

Figure 18.16: Off-Policy MC Control (Source: SB)

def b(s):
weights = []
for a in Actions:

if (s, a) in Q:
weights.append(math.exp(Q[(s, a)]))

else:
weights.append(0)

if len(weights) == 0 or sum(weights) == 0:
return random.choice(Actions)

else:
return random.choices(Actions, weights)[0]

def pi(s):
a = argmaxQ(s)
if a is None:

return random.choice(Actions)
else:

return a

Note that the last line of Figure 18.16 makes reference to the probabilities of action At

in state St under the behaviour policy b. This probability is computed by the following
Python code block:

606 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

def bprob(a, s):
if (s, a) not in Q:

return 1
weights = []
for aa in Actions:

if (s, aa) in Q:
weights.append(math.exp(Q[(s, aa)]))

if len(weights) == 0 or sum(weights) == 0:
return 1

else:
return math.exp(Q[(s, a)]) / sum(weights)

With these definitions, the learning algorithm is a straightforward implementation of
the pseudocode in Figure 18.167:

for e in range(0, 10000+1):
S, A, R, T = env.generate_episode_b()
G = 0
W = 1
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
C[(S[t], A[t])] = getC(S[t], A[t]) + W
Q[(S[t], A[t])] = getQ(S[t], A[t]) + \

W/getC(S[t], A[t]) * (G-getQ(S[t],A[t]))
if A[t] != pi(S[t]):

break
else:

W = W * 1/bprob(A[t], S[t])

18.6 Temporal-Difference (TD) Learning
Temporal Difference (TD) learning is an RL approach that combines ideas from both
Monte Carlo (MC) methods and dynamic programming. The primary motivation for
temporal difference learning stems from its ability to learn predictions based on other
learned predictions, a concept referred to as bootstrapping. Unlike Monte Carlo meth-
ods, which wait until the completion of an episode to update the value estimates based
on actual returns, TD learning updates estimates based on estimate returns, thus not
requiring the episode to terminate before updates can be made. This allows TD learn-
ing to make more frequent updates, which can accelerate learning, and to be applied in
continuing (non-episodic) environments.

Recall that in MC control, the updates to the action value function use the actual return
Gt at time t as the target, which can only be computed at the end of an episode:

7Complete implementation using the Racetrack example is available at https://github.com/
jevermann/busi4720-rl/blob/main/racetrack_off_policy.py.

https://github.com/jevermann/busi4720-rl/blob/main/racetrack_off_policy.py
https://github.com/jevermann/busi4720-rl/blob/main/racetrack_off_policy.py

18.6. TEMPORAL-DIFFERENCE (TD) LEARNING 607

Initialize Q(s, a) for all s ∈ S+ , arbitrarily

Loop for each episode:

Initialize S

ChooseA fromS using policy derived fromQ

Loop for each step of episode:

Take actionA, observeR,S′

ChooseA′ fromS′ using policy derived fromQ

Q(S,A)← Q(S,A) + α
[
R+ γQ(S′, A′)−Q(S,A)

]
S ← S′;A← A′

untilS is terminal

Figure 18.17: TD-control with the SARSA method (Source: SB)

Q(St, a)← Q(St, a) + α [Gt −Q(St, a)]

Substituting the recursive definition of the return (Equation 18.4) yields:

Q(St, a)← Q(St, a) + α [Rt+1 + γGt+1 −Q(St, a)]

Recognizing that the expected value of Gt+1 is approximated by the Q value of the
optimal action in the next state (Equation 18.6) yields the TD update:

Q(St, a)← Q(St, a) + α
[
Rt+1 + γQ(St+1, a

∗
t+1)−Q(St, a)

]
(18.8)

In other words, there is no need to wait until the actual return Gt is known at the end
of an episode, as TD learning uses the current approximation or estimate of Gt as the
update target. This idea of using estimates to update or compute better estimates is
called bootstrapping.

Figure 18.17 shows the pseudocode of a method called ”SARSA”, so-called because it
uses information of the current state S, current action A, reward R, next state S′ and
next actionA′ in its update. SARSA uses the update function defined in Equation 18.8.
SARSA is an on-policy method, typically using an ϵ-greedy policy based on Q to
generate behaviour and ensure exploration.

To illustrate the use of SARSA, consider the ”Windyworld” example environment (ex-
ample 6.5 in SB), shown in Figure 18.18. An agent has to move from start state S to
terminal goal state G in this gridworld. However, there is a wind on some columns
of the grid that pushes the agent towards the top (indicated below the columns in Fig-
ure 18.18). Rewards are−1 for every step until termination, so that the agent is encour-
aged to find the path requiring the least number of actions. There are no penalties for

608 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Source: SB Chapter 6

Figure 18.18: Windyworld example

moving off the world (the action is simply ignored) and the problem is not discounted
(γ = 1).

The following python code blocks define the states, actions, and an ϵ-greedy policy pi:

Define states
States = []
for i in range(nrow):

for j in range(ncol):
States.append((i, j))

Define actions
Actions = range(0, 4)
Initialize Q
Q = dict()
for s in States:

for a in Actions:
Q[(s, a)] = random.random()

Define pi
def pi(s):

if random.random() < epsilon:
return random.choice(Actions)

else:
return argmaxQ(s)

With these definitions, the implementation of SARSA is straightforward from the pseu-
docode in Figure 18.178 and shown in the following Python code block.

8A complete implementation of the Windyworld example is available at https://github.com/
jevermann/busi4720-rl/blob/main/windyworld_sarsa.py.

https://github.com/jevermann/busi4720-rl/blob/main/windyworld_sarsa.py
https://github.com/jevermann/busi4720-rl/blob/main/windyworld_sarsa.py

18.6. TEMPORAL-DIFFERENCE (TD) LEARNING 609

for e in range(0, 100):
terminal = False
S = windy.reset()
A = pi(S)
step = 0
while terminal is False:

Sprime, R, terminal = windy.step(A)
Aprime = pi(Sprime)
Q[(S,A)] = Q[(S,A)] + alpha*(R + \

gamma * Q[(Sprime, Aprime)] - Q[(S, A)])
S = Sprime
A = Aprime

In summary, Temporal Difference learning and Monte Carlo methods differ primarily
in when and how the updates to value estimates are made:

• Update Timing: TD learning updates values at every time step using current
estimates, which means it can start learning from incomplete sequences, making
it suitable for non-episodic environments. Monte Carlo methods update only at
the end of each episode, using the total accumulated return from the episode.

• Sampling vs. Bootstrapping: Monte Carlo methods rely solely on actual returns
(full sampling), and do not bootstrap. In contrast, TD methods bootstrap, using
existing value estimates to update new estimates.

• Convergence Properties: Due to its incremental nature and frequent updates, TD
learning can converge faster in practical applications than Monte Carlo methods,
which require longer trajectories and may suffer from higher variance in their
estimates due to the complete reliance on actual returns.

Generalizing TD Learning to N Steps

In developing the SARSA method (Equation 18.8), the recursive definition of the re-
turn (Equation 18.4) and the definition of the action value as the expected return (Equa-
tion 18.6) were applied once. Hence the SARSA update target Rt+1 +Q(St+1, at+1)
”looks ahead” by one step to the next reward Rt=1 and then approximates the remain-
ing portion of Gt+1 by Q(St+1, at+1). This is therefore called the ”1-step” target, and
the update error δ is called the ”1-step error”:

δTD1 = Rt+1 +Q(St+1, at+1)−Q(St, a)

This can be extended by applying Equations 18.4 and 18.6 a second time. This yields
the ”2-step error” that looks ahead at the next two rewards, and then approximates the
remainder by Q(St+2, at+2):

δTD2 = Rt+1 + γRt+2 + γ2Q(St+2, at+2)−Q(St, a)

610 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Source: SB Figure 7.4

Figure 18.19: SARSA versus n-Step TD Learning (n-step SARSA)

Calculating the 2-step error requires knowledge of two actual rewards, so the 2-step
update can be performed only after two steps. Or, viewed from a different perspective,
the 2-step update updates not only the value of the most recent state-action pair but the
values of the two most recent state-action pairs.

This can be generalized by applying Equations 18.4 and 18.6 n-times, yielding the
’’n-Step TD error”:

δTDn = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQ(St+n, at+1)−Q(St, a)

The n-step update can only be performend after n steps have passed so that n actual
rewards are available, with the remainder of Gt+1 being approximated. As an alterna-
tive interpretation, the n-step update changes the values of the last n state-action pairs
in the trajectory. Figure 18.19 shows an illustration of this for 10-step SARSA.

18.7 Off-Policy TD Learning

Temporal Difference learning can be combined with off-policy learning as well. A
popular method for this is Q-learning. Q-learning updates the action values in a greedy
way, that is, of a greedy policy, regardless of the action taken by the policy being
followed (the behavior policy). The differences between SARSA and Q-learning are
minor. Importantly, it is not necessary to explicitly encode the behaviour and target
policies.

Consider the following aspects of SARSA. The next action A′ that is carried out is
determined using a (behaviour) policy based on Q and Q is being learned (updated)
based on the actually taken action A′ (target policy). This makes SARSA an on-policy
method.

18.7. OFF-POLICY TD LEARNING 611

SARSA (on-policy):

Take actionA, observeR,S′

ChooseA′ fromS′ using policy derived fromQ

Q(S,A)← Q(S,A) + α [R+ γQ(S′, A′)−Q(S,A)]

S ← S′;A← A′

A minor change is sufficient to change on-policy SARSA to off-policy Q-learning,
shown in the box below. Here, the next action A that is carried out is also determined
using a (behaviour) policy based onQ, butQ is updated not based on the actually taken
action A, but based on the optimal action A′, that is, the action with the maximum Q
value in the following state S′. This difference means that the policy that governs
behaviour (”behaviour policy”) is different than the policy that is updated or learned
(”target policy”), making Q-learning an off-policy method.

Q-learning (off-policy):

ChooseA fromS using policy derived fromQ

Take actionA, observeR,S′

Q(S,A)← Q(S,A) + α
[
R+ γmax

a
Q(S′, A′)−Q(S,A)

]
S ← S′

The corresponding Python implementation for the Windyworld example is also straight-
forward from the above box9:

for e in range(0, 1000):
terminal = False
S = windy.reset()
step = 0
while terminal is False:

A = pi(S)
Sprime, R, terminal = windy.step(A)
Q[(S,A)] = Q[(S,A)] + alpha*(R + \

gamma * maxQ(Sprime) - Q[(S, A)])
S = Sprime

Figure 18.20 shows the difference in learning behaviour between SARSA and Q-
learning on the Windyworld problem. It plots the the number of required actions to
achieving the goal against the number of episodes generated; off-policy Q-learning
shows faster learning than SARSA.

9A complete implementation is available at https://github.com/jevermann/
busi4720-rl/blob/main/windyworld_q_learning.py.

https://github.com/jevermann/busi4720-rl/blob/main/windyworld_q_learning.py
https://github.com/jevermann/busi4720-rl/blob/main/windyworld_q_learning.py

612 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

SARSA Q-Learning

Figure 18.20: SARSA and Q-Learning Results on Windyworld

18.8 Review Questions
Introduction

1. What is reinforcement learning and how does it differ from other types of ma-
chine learning?

2. What is meant by the term ”model” in the context of reinforcement learning?
3. Discuss the challenges associated with the stochastic nature of the environment

in reinforcement learning.
4. Define the following terms and explain their significance in reinforcement learn-

ing:
• Policy (π)
• Reward (R)
• Return (G)
• State value function (v)
• Action value function (q)
• Model (p)

5. Explain the difference between a deterministic policy and a stochastic policy.
Provide an example of each from any real-world scenario.

6. Describe the general process of updating the value function. Include the update
rule equation and explain each component.

7. Explain the significance of the action value function in the reinforcement learn-
ing framework. How does it differ from the state value function in terms of utility
and information provided to the agent?

8. Discuss how reinforcement learning can be applied to customer interaction man-
agement and financial portfolio management. What are the potential benefits and
challenges?

9. Consider the manufacturing process optimization application of reinforcement
learning. Describe how an RL algorithm could continuously improve the process
and what metrics it might focus on.

10. Discuss the implications of the exploration-exploitation trade-off in a non-gaming
business scenario. How might a company balance these two aspects effectively?

18.8. REVIEW QUESTIONS 613

11. Reflect on the potential impacts of reinforcement learning on customer satisfac-
tion in a service-oriented business. What are the risks and rewards?

12. What role does the discount factor γ play in calculating the return in a reinforce-
ment learning problem? Why might one use a smaller or larger value of γ?

Questions on K-Armed Bandits

13. Why is the k-armed bandit problem considered to be a "stateless" problem in
reinforcement learning?

14. Describe the action value function Qt(a) in the k-armed bandit problem. What
does it represent?

15. Explain the concept of the ϵ-greedy policy. How does it balance the exploration-
exploitation trade-off?

16. Consider the incremental update formula used in the k-armed bandit problem
and explain each term: Qt+1(a) = Qt(a) +

1
t [Rt(a) − Qt(a)]. How does this

formula ensure that the estimate becomes more accurate over time?
17. What are the implications of setting a higher or lower ϵ value in terms of long-

term gains vs. short-term exploration?
18. Discuss the rationale behind using an "optimistic" initial value for the action-

value estimates. How does this approach influence the agent’s behavior?

Questions on Markov Decision Processes and Dynamic Programming

19. Define a Markov Decision Process (MDP) and explain the Markov property in
this context.

20. Draw a figure of an RL agent and environment interaction; describe the roles of
St, At, and Rt.

21. Explain what is meant by a trajectory in the context of reinforcement learning.
22. Define the environment’s dynamics using the p-function and discuss its impor-

tance in MDPs.
23. Define the state value function vπ(s) and explain how it is used to evaluate a

policy π.
24. Similarly, define the action value function qπ(s, a) and explain its relevance in

policy evaluation.
25. Detail how the Bellman equation provides a recursive way to compute the value

of a state under a specific policy.
26. Describe how iterative policy evaluation can be used to approximate the state

value function before performing policy improvement.
27. Explain the process of iterative policy improvement and how it leads to finding

an optimal policy.

Questions on Monte Carlo (MC) Learning

28. Explain the fundamental concept of Monte Carlo (MC) learning in the context
of reinforcement learning.

29. Define and distinguish between episodic tasks and continuous tasks in reinforce-
ment learning.

614 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

30. Explain the difference between first-visit and every-visit MC methods. What are
the implications of each approach on the learning process?

31. Describe the process of First-Visit Monte Carlo prediction as pseudocode. How
does it update the state value function?

32. What is the purpose of the backward computation of the returnG in the first-visit
MC prediction algorithm?

33. Explain the concept of ”exploring starts” in the context of MC control and why
it is necessary.

34. How do Monte Carlo methods handle the trade-off between exploration and ex-
ploitation, especially in environments where exploring starts are not feasible?

35. How does the game of Blackjack illustrate the application of Monte Carlo meth-
ods in episodic RL problems?

36. Analyze the potential impact of episodic task length on the effectiveness of
Monte Carlo methods. What happens as the length of episodes increases?

37. How do Monte Carlo methods adapt when the environment’s dynamics change
over time?

38. Reflect on how Monte Carlo methods might perform in real-world scenarios such
as financial markets or automated driving systems.

Questions on Off-Policy Monte Carlo (MC) Learning

39. Explain the difference between on-policy and off-policy learning methods in the
context of Monte Carlo (MC) methods.

40. How does off-policy learning address the exploration-exploitation dilemma dif-
ferently than on-policy learning?

41. Discuss why it is important for the behavior policy to cover the target policy in
off-policy MC learning.

42. How does the update formula in off-policy MC control differ from the one used
in on-policy MC control?

43. In the pseudocode for off-policy MC control, why is the episode terminated early
if the action taken does not match the action recommended by the target policy?

44. Explain the potential impacts of the choice of behavior policy on the efficiency
and effectiveness of off-policy learning.

45. Discuss how off-policy learning can be applied to complex environments where
safety or cost constraints limit exploration.

46. Describe a scenario in which off-policy learning would be particularly advanta-
geous over on-policy learning.

47. How can off-policy MC control be adapted to environments where the behavior
policy cannot sufficiently cover the target policy?

Questions on Temporal-Difference (TD) Learning

48. What is temporal-difference (TD) learning and how does it differ from Monte
Carlo methods?

49. Explain the concept of bootstrapping in the context of TD learning.

18.8. REVIEW QUESTIONS 615

50. Discuss the advantages of TD learning in terms of update frequency and appli-
cability to different types of environments.

51. Describe the SARSA algorithm and explain how it uses the TD update formula.
52. How can the SARSA algorithm be adjusted to improve its performance in highly

dynamic environments?
53. Discuss how TD learning methods can be adapted to continuous (non-episodic)

environments. What are the implications for learning in such environments?
54. Compare the convergence properties of TD learning and Monte Carlo methods.

Why might TD learning converge faster in practical applications?
55. Explain the concept of "n-step TD learning." How does it extend the basic idea

of TD learning?
56. What are the implications of using different "n" values in n-step TD learning on

the performance and speed of learning?
57. Explain how n-step TD learning might provide a more stable learning update

compared to one-step TD updates.
58. Provide an example scenario where TD learning might significantly outperform

Monte Carlo methods in terms of learning efficiency and accuracy.

Questions on Off-Policy Temporal-Difference (TD) Learning

59. Describe the main difference between the update rules of SARSA and Q-learning.
How does this difference define each as either on-policy or off-policy?

60. Explain how the Q-learning update rule ensures that the learning is directed to-
wards the optimal policy.

61. What are the implications of using the maxaQ(S′, A′) term in the Q-learning
update rule? Discuss how this term influences the policy improvement process.

62. How does Q-learning handle the exploration-exploitation trade-off differently
compared to SARSA?

63. How does the initial setting of Q-values influence the learning process and even-
tual performance in Q-learning? Discuss the impact of optimistic versus pes-
simistic initialization.

616 CHAPTER 18. REINFORCEMENT LEARNING – TABULAR METHODS

Chapter 19

Reinforcement Learning –
Function Approximation

Learning Goals
After reading this chapter, you should be able to:

• Explain the advantages of functional methods over tabular methods for reinforce-
ment learning.

• Explain the purpose of experience replay and the problems it addresses.

• Explain the concept of a DQN and the purpose of separating target and main
models in a DQN.

• Explain the motivation behind a dueling DQN and the advantage function.

• Explain the motivation and principles behind policy gradient methods.

Sources and Further Reading
The material in this chapter is based on the following sources.

Richard S. Sutton and Andrew G. Barto (2018) Reinforcement Learning – An
Introduction. 2nd edition, The MIT Press, Cambridge, MA. (SB)
http://incompleteideas.net/book/the-book.html

Chapters 9–13

(CC BY-NC-ND License)

617

http://incompleteideas.net/book/the-book.html

618CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

The Sutton & Barto book is a standard introductory textbook on reinforcement learn-
ing and widely used. It is very approachable, but at the same time also detailed and
thorough in its exposition. Its focus is on RL prior to the use of neural networks for
function approximation, so up to about 2015. While it does not provide Python code
itself, the pseudo-code in the book is easily implemented.

Sudharsan Ravichandiran (2020) Deep Reinforcement Learning with Python.
2nd edition. Packt Publishing, Birmingham, UK.
Chapters 9–11

The book by Ravichandiran is practically oriented with plenty of Python code. It dis-
cusses some of the theoretical background, but does not go into depth. It should be used
after reading the Sutton & Barto chapters on function approximation and policy-based
methods.

Resources

Complete implementations of all examples in this chapter are available on the
following GitHub repo:
https://github.com/jevermann/busi4720-rl

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-rl.git

19.1 Introduction
In tabular RL methods the value of each state or state-action pair is represented explic-
itly in a table. However, as the complexity of environments grows, particularly with a
high number of states or continuous state spaces, tabular methods become infeasible
due to their extensive memory requirements.

To address these scalability issues, function approximation methods are employed.
Function approximation techniques involve using a parameterized function to repre-
sent the value functions or the policy, rather than storing them explicitly for each state
or state–action pair. In addition to addressing the scalability problem, this approach
also facilitates generalization across states, thereby improving learning efficiency and
enabling RL to be applied to more complex and realistic problems. The types of func-
tion approximators commonly used in RL are linear functions, because they can be
theoretically analyzed, and neural networks, because they are powerful and flexible.

Function approximation can be applied to the state values v, the action values q and
directly to the policy π:

• Approximate the state value v(s) by a parameterized function v̂(s) with a pa-
rameter vector θ:

https://github.com/jevermann/busi4720-rl
https://github.com/jevermann/busi4720-rl.git

19.2. VALUE-BASED METHODS AND STOCHASTIC GRADIENT DESCENT619

v̂(s) = v̂(s, θ) ≈ vπ(s)

• Approximate the action-value function q(s, a) by a parameterized function q̂(s, a)
with a parameter vector θ:

q̂(s, a) = q̂(s, a, θ) ≈ qπ(s, a)

• Approximate the policy π(a, s) by a parameterized function π̂(a, s) with a pa-
rameter vector θ:

π̂(a|s) = π̂(a|s, θ) ≈ π(a|s)

Function approximation methods offer several advantages over traditional tabular ap-
proaches:

• Scalability: They can handle large or continuous state spaces efficiently.

• Generalization: Because changes to the parameter vector θ affect the values of
multiple states or actions, function approximation methods can generalize from
seen to unseen states, which is particularly useful in environments where experi-
encing all possible states is impractical.

• Flexibility: They can be adapted to different problems by chosing appropriate
functions, such as linear functions or neural networks. This makes them suitable
for a wide variety of problems.

• Efficiency: Because updates to θ affect multiple states, function approximation
methods may experience improved learning and faster convergence.

• Observability: They can be applied to partially observable problems, as the state
function need not depend on the complete state information.

Despite their advantages, function approximation methods introduce new challenges:

• Stability and Convergence: The use of approximators can lead to instability and
divergence in some cases, particularly when combined with off-policy learning.

• Complexity of Design: Choosing the right features, architecture, or kernel func-
tions requires domain knowledge and careful engineering.

• Overfitting: There is a risk of overfitting to the peculiarities of the sampled data,
especially with highly flexible models like deep neural networks.

19.2 Value-Based Methods and Stochastic Gradient De-
scent

Function approximation aims to minimize the differences between the true state or
action value function and the approximated function. Assuming a MSE loss, the value
error VE can be expressed as follows:

620CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

VE =
∑
s∈S

µ(s) [qπ(s, a)− q̂(s, a, θ)]2

Stochastic gradient descent (SGD) is used to minimize this loss function, similar to the
use of SGD in neural network machine learning. Refer to that chapter for a discussion
of problems that can arise with SGD and different optimization methods that address
these problems.

The parameters θ are iteratively updated using the gradient of the loss function. Intu-
itively, this process follows the steepest slope (”gradient,” vector of partial derivatives)
of the function to update the parameters:

θt+1 = θt −
1

2
α∇ [qπ(St, At)− q̂(St, At, θt)]

2

= θt + α [qπ(St, At)− q̂(St, At, θt)]∇q̂(St, At, θt)

Unfortunately, the true values qπ(St, At) are unknown. However, using the idea of
bootstrapping and the definition of the action value function as an estimate of the return
means that the following expression Ut can be used as an estimate of the true value
qπ(St, At):

Ut = Rt + γq̂(St+1, At+1, θt) ≈ qπ(St, At)

Then the parameter update becomes:

θt+1 = θt + α [Ut − q̂(St, At, θt)]∇q̂(St, At, θt) (19.1)
= θt + α [Rt + γq̂(St+1, At+1, θt)− q̂(St, At, θt)]∇q̂(St, At, θt)

While tabular methods update the value of Q for a state–action pair directly,
function approximation methods replace the update to Q with an update to θ.
This updates the values of Q for many state–action pairs indirectly, as Q is
approximated by a parameterized function.

Figure 19.1 shows how the tabular SARSA method can be readily adapted to function
approxmation using SGD. The only change to the tabular SARSA algorithm is the up-
date step. Whereas tabular SARSA updates q(s, a), semi-gradient SARSA updates the
parameters θ of q̂.

19.3. DEEP Q NETWORK (DQN) 621

Initialize θ ∈ Rd arbitrarily

Loop for each episode:

Initialize S0

Choose A as a function of q̂(S0, ., θ) e.g., ϵ-greedy

Loop for each step of episode:

Take action A, observe R,S′

Choose A′ as a function of q̂(S′, ., θ) e.g., ϵ-greedy

θ ← θ + α[R+ γq̂(S′, A′, θ)− q̂(S,A, θ)]∇q̂(S,A, θ)

S ← S′;A← A′

until S is terminal

Figure 19.1: Semi-gradient SARSA (Source: SB)

19.3 Deep Q Network (DQN)

While conceptually sound, simple function approximation implementations like SARSA
in Figure 19.1 have some problems in practice. In particular, instability and divergence
of learning arise when combining the following three elements in an RL method. These
are colloquially known as the ”deadly triad” of reinforcement learning.

• Function approximation: Generalizing from a state space using linear functions
or neural networks.

• Bootstrapping: Targets include existing estimates (e.g. SARSA) rather than ac-
tual rewards only (e.g. MC methods).

• Off-policy training: Training on a distribution of state transitions other than that
produced by the target policy.

To address these problems, RL implementations use experience replay and separate
target parameters (or target networks when functions are neural networks).

Experience replay

Experience replay is a technique to break the auto-correlation between the q values
of successive training batches by smoothing changes in the data distribution between
mini-batches, thus making training more stable. Rather than using the generated tuple
of (S,A,R, S′, A′) immediately in an update as in Figure 19.1, these tuples are stored
in a replay buffer. The replay buffer is a FIFO (first-in, first-out) queue of fixed size;
when it is full, older elements are removed from the front of the queue as new elements
are added to the back of the queue. For every parameter update step, a sample is
randomly taken from the replay buffer to fill a training batch for the SGD update step.

622CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

Initialize replay buffer D

Initialize main action-value function approximation q̂M with random parameters θM
Initialize target action-value function approximation q̂T with paramaters θT = θM

Loop for each episode:

Initialize S

For each step of the episode:

Select action A using an ϵ-greedy policy based on ˆqM

Take action A and observe R,St+1

Store transition (St, At, Rt, St+1) in D

Sample minibatch (Sj , Aj , Rj , Sj+1) from D

Target yj ←

{
rj if Sj+1 is terminal
rj + γmaxA′ q̂T (Sj+1, A

′; θ−) otherwise

θ ← θ + α[yj − q̂M (Sj , Aj , θM)]∇q̂M (Sj , Aj , θM)

Every C steps, update q̂T ← q̂M by setting θT ← θM

Figure 19.2: DQN Algorithm (adapted from SB)

Target network

Working with two different sets of parameters θT and θM , one for computing the update
targets R + γq̂(S′, A′, θT), called the ”target parameters” and one for computing the
current estimates q̂(S,A, θM), called the ”main parameters”, has the advantage that
stable update targets are provided for multiple SGD update steps. This also stabilizes
training. Periodically, the target parameters are updated with the main parameters.

Because the approximation functions are typically neural networks, target parameters
and main parameters are the weights and biases of two neural networks with identical
architecture. Hence, one uses the terms ”target network” and ”main network”.

Taking the two ideas of experience replay and target networks and adapting the gra-
dient SARSA algorithm in Figure 19.1 leads directly to the DQN algorithm shown in
Figure 19.2.

In practice, the state S is a function ϕ(X) of some raw inputs X through feature-
extraction and pre-processing. To further stabilize learning, in practice the update [yj−
q̂M (Sj , Aj , θM)] in Figure 19.2 is clipped to [−1, 1].

Example

To illustrate a simple DQN example, consider the ”Cart Pole” problem, shown in Fig-
ure 19.3. The goal is to balance an upright pole on a cart that can move left or right
(but not remain still). The pole obeys a simplified physics and can tip over to the left
or right.

19.3. DEEP Q NETWORK (DQN) 623

Figure 19.3: CartPole environment

In this particular version of the problem, the action space is binary, 0 pushes the cart
to the left, 1 pushes the cart to the right. Every state is characterized by four features
x1 . . . x4, the cart position (−4.8 ≤ x1 ≤ 4.8), the cart velocity (−∞ ≤ x2 ≤ ∞),
the pole angle (−24° ≤ x3 ≤ 24°), and the pole angular velocity (−∞ ≤ x4∞). The
rewards are +1 for every step taken. This means the agent has to try to prevent the pole
from tipping over to get the greatest return. Termination of the episode occurs when
the cart is moving out of range (cart position |x1| > 2.4), the pole is tipping over (pole
angle |x3| > 12°), or the episode length is greater than 200.

The DQN can be implemented using the ”CartPole” environment1. First, the required
packages are loaded, the environment is created and the number of actions and number
of features of a state are determined:

import math
import random
import keras
from keras import layers
import gymnasium as gym
import tensorflow as tf
import numpy as np
import pygame

env = gym.make("CartPole-v1", render_mode="human")

Actions = range(0, env.action_space.n)
Ssize = env.observation_space.shape[0]

1https://gymnasium.farama.org. The Farama gymnasium provides a number of reference en-
vironments for reinforcement learning.

https://gymnasium.farama.org

624CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

The next Python code block defines hyperparameters for the neural network and for
reinforcement learning:

Neural net parameters
batch_size = 20
dropout = 0.25
activation = 'relu'

Reinforcement learning parameters
epsilon = 0.05 # epsilon
gamma = 0.9 # discount factor
C = 5*batch_size # When to update weights

Replay buffer D
D = collections.deque(maxlen=5000)

The functions q̂M and q̂T are sequential, fully-connected neural networks with a single
output unit, defined in Keras. The output represents the value of q̂ computed by the
network from its inputs. The inputs are state–action pairs, which is why
input_shape=(Ssize+1) in the Python code block below which defines the main
neural network:

Main network, used to select actions
Q_m = keras.Sequential([

layers.InputLayer(input_shape=(Ssize+1),
batch_size=batch_size,
dtype=tf.float32),

layers.Dense(Ssize*4, activation=activation),
layers.Dropout(rate=dropout),
layers.Dense(Ssize*2, activation=activation),
layers.Dropout(rate=dropout),
layers.Dense(1, activation='linear')

])
Q_m.compile(loss='huber', optimizer='adam')

Keras provides functions that make cloning a network and getting and setting weights
easy. The following Python code block creates the target network as a copy of the main
network and sets its weights to those of the main network:

Target network, used to compute targets
Q_t = keras.models.clone_model(Q_m)
Q_t.compile(loss='huber', optimizer='adam')
Q_t.set_weights(Q_m.get_weights())

Getting a value of q̂ for some input state-action pair is prediction from the network.
The following function prepares the inputs (state features and action) as a Numpy ar-
ray, adding the minibatch dimension, then selects the first prediction of the first return
batch:

19.3. DEEP Q NETWORK (DQN) 625

def getQ(Q, s, a):
return Q.predict(\

np.expand_dims(np.array(s.tolist()+[a]), axis=0), \
verbose=0)[0][0]

The following Python code block implements a convenient max and argmax function
over all actions for the q̂ values of the main or target network:

def maxQ(Q, s, arg):
maxq = -np.inf
maxa = None
for a in Actions:

q = getQ(Q, s, a)
if q > maxq:

maxq = q
maxa = a

return maxa if arg else maxq

The policy π is an ϵ-greedy policy, defined in Python in the following code block. This
uses the main network Q_m.

def pi(s, epsilon):
if random.random() < epsilon:

return random.choice(Actions)
else:

return maxQ(Q_m, s, True)

The update target for the DQN uses the target network Q_t and the target expression
from Figure 19.2.

def target_DQN(Q_t, r, sprime):
return r + gamma * maxQ(Q_t, sprime, False)

The following function takes a batch of entries of the experience replay buffer and
creates training batches of inputs x (state features and action) and target y:

def training_xy(batch):
x = np.zeros((batch_size, Ssize+1))
y = np.zeros(batch_size)
for i, (s, a, r, t, sprime) in enumerate(batch):

x[i] = list(s) + [a]
if t == 1:

y[i] = r
else:

y[i]=target_DQN(Q_t, r, sprime)
return x, y

626CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

The final block of Python code is the DQN algorithm, a straightforward implementation
of Figure 19.22. The SGD update step is done using the Keras function train_on_batch
that trains the network on a single batch of data.

t = 0
for episode in range(max_episodes):

s = env.reset()[0]
terminal = False
while not terminal:

a = pi(s, epsilon)
sprime, r, terminal, _, _ = env.step(a)
t += 1
D.append((s, a, r, int(terminal), sprime))
s = sprime
if t >= batch_size:

batch = random.sample(D, batch_size)
x, y = training_xy(batch, ddqn=False)
loss = Q_m.train_on_batch(x=x, y=y)

if t % C == 0:
Q_t.set_weights(Q_m.get_weights())

Double DQN

An extension to the DQN algorithm is the Double DQN (DDQN) . It is based on the
idea of Double-Q learning for tabular methods and uses the the target network q̂T as
a second Q function. This removes the upward bias from using the max() function as
target estimator. The only change to be made is in the definition of the target, which,
for a DDQN is:

Target yj ←
{
rj if Sj+1 is terminal
rj + γq̂T (Sj+1, argmaxA′ q̂M (Sj+1, A

′)) otherwise

In Python, this is a also a simple change:

def target_DDQN(Q_m, Q_t, a, r, sprime):
return r + gamma * getQ(Q_t, sprime, maxQ(Q_m, sprime, False))

Prioritized Replay

Another extension to the basic DQN algorithm is the use of prioritized replay. In the
DQN algorithm above, sampling from the experience replay buffer was done with uni-
form probability for all elements in the buffer. However, there are some some elements

2A complete implementation is available at https://github.com/jevermann/
busi4720-rl/blob/main/DDQN_tuples.py.

https://github.com/jevermann/busi4720-rl/blob/main/DDQN_tuples.py
https://github.com/jevermann/busi4720-rl/blob/main/DDQN_tuples.py

19.4. POLICY GRADIENT METHODS 627

that are more informative than others, that is, more can be learned from them than from
others. In particular, these are the elements that have a large absolute TD error, that
is, the elements for which |yj − q̂M (Sj , Aj , θM)| is large, where yj is either the DQN
or DDQN target. Intuitively, elements that have a small prediction error are not very
informative, as not much can be learned from them. When using prioritized experience
replay, the TD errors are calculated when experience tuples are added to the replay
buffer. Sampling from the buffer takes the priorities into account.

Dueling DQN

The Dueling DQN is another extension of the basic DQN algorithm. It is based on the
advantage function, which is the difference between the action value function and the
state value function:

A(s, a) = Q(s, a)− V (s)

In other words, the advantage function expresses the advantage of taking action a in
state s over the average action in state s that is represented by the state value function.
The advantage function can be rewritten as follows:

Q(s, a) = V (s) +A(s, a)

This formulation of the advantage function suggests that the action value function can
be composed of two functions. In practice, that means the computation of the action
value function is done by two different neural networks, the ”value stream” and the
”advantage stream”. Both use the same state features x as input. The advantage stream
additionally receives the action a as input. In practice, the value stream and advantage
stream use one or more common neural network layers, e.g. dense layers, and then
separate to end in two different output nodes, one for the value function and one for
the advantage function. The two outputs are then added to calculate the action value
function q as follows:

Q(s, a, θ, α, β) = V (s, θ, β) +

(
A(s, a, θ, α)− a

|A|A(s, a
′, θ, α)

)
Here, θ are shared neural-network parameters, β are parameters only for the ”value-
stream” neural network, and α are parameters only for the ”advantage-stream” neural
network.

19.4 Policy Gradient Methods
Policy gradient methods optimize the policy directly. Unlike value-based methods,
which first estimate the action value function and derive a policy based on these esti-
mates, policy gradient methods adjust the policy parameters θ directly in response to

628CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

the received reward. This direct approach enables more nuanced strategies and behav-
iors, particularly in environments with high-dimensional or continuous action spaces.

Policy gradient methods rely on optimizing parameterized policies with respect to the
expected return by gradient ascent. The policy is typically represented as

π(s, a) = π(s, a, θ) = Pr(At = a|St = s, θt = θ)

which defines the probability of selecting action a in state s, parameterized by θ.

The objective function in policy gradient methods is defined as:

J(θ) = Eτ∼πθ
[R(τ)]

where τ denotes a trajectory of states and actions, and R(τ) is the cumulative reward
of the trajectory. The expectation is over all trajectories possible under policy πθ.

Policy gradient methods have a number of advantages over value-based methods such
as DQN or DDQN:

• They are particularly effective in environments with continuous, high-dimensional
action spaces.

• Policy gradient methods can converge to a stable policy due to their gradient-
based optimization approach.

• Unlike value-based methods, they can learn stochastic policies with arbitrary
probabilities, which are crucial in environments where randomness plays a role
in optimal decision making. They are more flexible than ϵ-greedy policies over
action values in approaching deterministic policies.

On the other hand, policy gradient methods also have disadvantages, such as:

• The estimates of the gradient can have high variance, leading to inefficient learn-
ing and the need for variance reduction techniques.

• They often require a large number of samples to converge, making them ineffi-
cient.

• The performance of the policy can be heavily dependent on the initial parameter
settings.

A simple policy gradient method is REINFORCE. The REINFORCE method uses the
following parameter update method. The update is proportional to the return Gt and
inversely proportional to the action probability π.

θt+1 = θt + αGt
∇π(At|St, θ)

π(At|St, θt)
(19.2)

19.4. POLICY GRADIENT METHODS 629

Input: A differentiable policy π(a|s, θ); step size α > 0

Initialize policy parameters θ ∈ Rd arbitrarily

Loop forever (for each episode):

Generate an episode S0, A0, R1, . . . ST−1, AT−1, RT ,

Loop for each step of the episode t = 0, 1, . . . , T − 1 :

G←
∑T

k=t+1
γk−t−1Rk

θ ← θ + αG∇ lnπ(At|St, θ)

Figure 19.4: REINFORCE: Monte-Carlo Control (episodic) (Source: SB)

A complete Monte Carlo based REINFORCE algorithm is shown in Figure 19.4. The
basic structure is similar to the tabular MC control introduced in the previous chap-
ter. Complete episodes are generated and the updates are based on the actual return
G at each step. There is no bootstrapping of estimates using other estimates. The pri-
mary difference to tabular MC is in the update step that uses the REINFORCE update
formula Equation 19.2.

REINFORCE with Baseline

An extension to the basic REINFORCE method is to use ”baselines”, values relative to
which the returnGt is evaluated. This reduces the variance of the updates but leaves the
expected values unchanged, that is, it is unbiased. Additionally, this has been shown to
improve the speed of learning.

The main idea is to use the following update that includes a ”baseline” return b(St) for
state St:

θt+1 = θt + α(Gt − b(St))
∇π(At|St, θ)

π(At|St, θt)

One can choose b(St) = v̂(St), that is to use the state value function as baseline. This
yields the following update:

θt+1 = θt + α(Gt − v̂(St))
∇π(At|St, θ)

π(At|St, θt)

A complete implementation is shown in Figure 19.5. Note that the state value function
is also a parameterized function, with parameter vector w. The update step must not
only update the policy parameters θ but also the value function parameters w. The
parameters w are updated using an update step analogous to that of the DQN (Equa-
tion 19.1) but for the state value function, rather than the action value function.

630CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

Input: A policy π(a|s, θ); step size αθ > 0

Input: A state-value function v̂(s, w); step size αw > 0

Initialize parameters θ ∈ Rd, w ∈ Rd arbitrarily

Loop forever (for each episode):

Generate an episode S0, A0, R1, . . . ST−1, AT−1, RT ,

Loop for each step of the episode t = 0, 1, . . . , T − 1 :

G←
∑T

k=t+1
γk−t−1Rk

δ ← G− v̂(St, w)

w ← w + αwδ∇v̂(St, w)

θ ← θ + αθG∇ lnπ(At|St, θ)

Figure 19.5: REINFORCE with Baseline (Source: SB)

Actor-Critic Methods

The policy gradient methods in Figures 19.4 and 19.5 are both Monte Carlo methods.
Recall that moving from Monte Carlo method to TD methods involved recognizing
that Gt+1 = Rt + γGt and that the expected values of Gt is the state value of state St.
Starting with the REINFORCE with baseline update function, the same considerations
apply to policy gradient methods.

θt+1 = θt + α(Gt − v̂(St))
∇π(At|St, θ)

π(At|St, θt)

= θt + α(Rt+1 + γv̂(St+1, w)− v̂(St, w))
∇π(At|St, θ)

π(At|St, θt)

= θt + αδt
∇π(At|St, θ)

π(At|St, θt)

Here, δt is the TD error. The resulting ”One-Step Actor-Critic” method uses bootstrap-
ping to estimate the state value function, that is, it uses estimated values rather than
actual returns. Just like TD, SARSA and Q-learning for tabular methods, actor-critic
methods can improve on the slow learning of Monte Carlo methods and are also useful
for non-episodic, continuous problems. Figure 19.6 shows the complete algorithm for
the one-step actor-critic method.

19.5. ADDITIONAL INFORMATION 631

Input: A policy π(a|s, θ); step size αθ > 0

Input: A state-value function v̂(s, w); step size αw > 0

Initialize parameters θ ∈ Rd, w ∈ Rd arbitrarily

Loop forever (for each episode):

Initialize S (first state of episode); I ← 1

Loop while S not terminal (for each time step):

Sample A from π(.|S, θ)
Take action A, observe S′, R

δ ← R+ γv̂(S′, w)− v̂(S,w)

w ← w + αwδ∇v̂(St, w)

θ ← θ + αθG∇ lnπ(At|St, θ)

S ← S′; I ← γI

Figure 19.6: One-Step Actor-Critic algorithm (Source: SB)

19.5 Additional Information
Stable Baselines

OpenAI Stable Baselines is a collection of RL algorithm implementations. It provides
a set of high-quality, efficient, and easy-to-use Python implementations of several state-
of-the-art reinforcement learning algorithms. The primary goal of Stable Baselines is
to make it simpler for the research community and industry practitioners to replicate,
refine, and deploy RL solutions. Stable Baselines has several features that are designed
to enhance the usability and performance of RL algorithms:

• Unified Structure: Each algorithm adheres to a consistent structure, making it
easy to understand, modify, and experiment with different algorithms.

• Pre-configured Hyperparameters: It comes with expert-selected hyperparame-
ters that work well out of the box for many problems, reducing the need for
extensive tuning.

• Extensive Documentation and Examples: Comprehensive documentation and a
variety of examples are provided, facilitating quick learning and implementation.

Stable Baselines includes a wide array of RL algorithms, each tailored for different
kinds of RL problems. Some of the notable included algorithms are:

• Proximal Policy Optimization (PPO): A policy gradient method that balances
the benefits of on-policy and off-policy learning, offering both robustness and
stability in performance across a variety of environments.

• Deep Q-Network (DQN): An off-policy algorithm that uses a deep neural net-
work to approximate the Q-value function, suitable for discrete action spaces.

632CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

• Soft Actor-Critic (SAC): An actor-critic method that optimizes a stochastic policy
and aims for maximizing expected return while also maximizing entropy, making
it effective for continuous action spaces.

• A2C and A3C: Synchronous (A2C) and Asynchronous (A3C) Advantage Actor-
Critic methods that use multiple workers to explore the environment and learn
more efficiently.

https://stable-baselines.readthedocs.io/en/master/

Gymnasium

Farama Gymnasium extends the OpenAI Gym framework, providing a suite of RL en-
vironments designed for research and education. The Gymnasium environments range
from simple toy problems to complex simulations that mimic real-world scenarios.
Farama Gymnasium offers several features that make it a useful resource:

• Wide Range of Environments: Includes classic control tasks, algorithmic tasks,
Atari games, and physical simulations.

• Standardized APIs: Maintains consistent APIs across different environments,
facilitating easy integration and experimentation with various RL algorithms.

• Customization and Extensibility: Allows for customization of environments and
easy addition of new ones, enabling researchers to test algorithms on tailor-made
scenarios.

• Community-Driven: Open-source and community-driven, which encourages con-
tributions and continuous improvement.

The environments in Farama Gymnasium can be categorized into several types, each
suited for specific aspects of reinforcement learning:

• Classic Control: Simple mechanics and dynamics, such as CartPole, Mountain-
Car, and Pendulum, which are excellent for initial algorithm testing and teaching
fundamentals.

• Atari Games: Emulated Atari 2600 video games, providing a range of chal-
lenges from simple to complex decision-making and control in pixel-based envi-
ronments.

• Algorithmic Tasks: Environments that require the agent to learn underlying al-
gorithms to perform tasks like sorting numbers and simple arithmetic.

• 2D and 3D Robots: Simulations of robotic tasks including walking, picking,
and moving objects, which are more complex and require continuous control
strategies.

https://gymnasium.farama.org/index.html

https://stable-baselines.readthedocs.io/en/master/
https://gymnasium.farama.org/index.html

19.5. ADDITIONAL INFORMATION 633

https://www.alphagomovie.com

Figure 19.7: AlphaGo – The Documentary

AlphaGo

AlphaGo is a significant achievement in the field of artificial intelligence, developed by
Google DeepMind. It was designed to play the ancient board game Go, which is known
for its deep strategic complexity. AlphaGo’s architecture showcases the potential of
deep learning and reinforcement learning techniques. AlphaGo combines advanced
machine learning techniques, including deep neural networks and Monte Carlo tree
search (MCTS). Its design consists of several key components:

• Policy Networks: These networks were used to predict the next move during a
game. AlphaGo was trained on both human expert games and games it played
against itself.

• Value Networks: This network predicted the winner of the game from the current
position, assisting AlphaGo in evaluating board positions.

• Monte Carlo Tree Search: MCTS was utilized to simulate various possible fu-
ture game scenarios, guiding the policy and value networks to explore the most
promising moves further.

The award-winning full-length documentary ”AlphaGo” (Figure 19.7) chronicles the
journey of the AI program from its initial development through its historic 2016 match

https://www.alphagomovie.com

634CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

against Lee Sedol, one of the world’s top Go players. It provides an in-depth look at the
human and technical narratives behind AlphaGo’s development. The film highlights
several key aspects of RL.

https://www.alphagomovie.com

https://www.youtube.com/watch?v=WXuK6gekU1Y

The introductory paper on AlphaGo by David Silver and others in the journal Nature
should be easy to understand: ”Mastering the game of Go without human knowledge”.
Nature. 550 (7676): 354–359

19.6 Additional Learning Materials
Many well-known and well-published researchers and many companies are actively
providing learning materials that can be used to supplement this chapter. They range
from introductory materials to full courses on reinforcement learning and are freely
available. These researchers and organizations are at the forefront of RL research and
the following materials are immensely helpful in understanding this topic.

David Silver Dr. David Silver of University College London is also a lead re-
searchers with Google DeepMind and contributed extensively to the AlphaGo team.
He has an excellent introductory course on reinforcement learning with class materi-
als (from 2015) and lectures in a YouTube playlist. Updated courses (2018, 2021) are
available on the DeepMind YouTube channel. The 2021 course include topics on deep
reinforcement learning.

https://www.davidsilver.uk/

https://www.davidsilver.uk/teaching/

https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ.

https://www.youtube.com/@Google_DeepMind/playlists.

UC Berkeley UC Berkeley hosted a Deep RL Bootcamp in 2017 with slides and
lecture videos available online. Additionally, UC Berkeley’s course on Deep RL is
available online, with lecture slides and videos of past years.

https://sites.google.com/view/deep-rl-bootcamp/lectures

https://rail.eecs.berkeley.edu/deeprlcourse/

https://www.alphagomovie.com
https://www.youtube.com/watch?v=WXuK6gekU1Y
https://www.nature.com/articles/nature24270
https://www.davidsilver.uk/
https://www.davidsilver.uk/teaching/
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://www.youtube.com/@Google_DeepMind/playlists
https://sites.google.com/view/deep-rl-bootcamp/lectures
https://rail.eecs.berkeley.edu/deeprlcourse/

19.6. ADDITIONAL LEARNING MATERIALS 635

Denny Britz Formerly at the Google AI team, Denny Britz applied RL algorithms to
financial markets and trading. He has a interesting blog, and a GitHub repository with
resources and algorithm implementations of popular RL algorithms.

https://dennybritz.com/

https://github.com/dennybritz/reinforcement-learning

Massimiliano Patacchiola Dr. Patacchiola is a postdoc at Cambridge University. He
has written a series of excellent blog posts on reinforcement based on the book ”Ar-
tificial Intelligence – A Modern Approach” by Russell and Norvig. There are lots of
illustrations and pointers to implementation and code in multiple languages.

https://github.com/mpatacchiola/dissecting-reinforcement-learning

Pascal Poupart Dr. Poupart of the University of Waterloo has made available videos
and all course materials for all lectures for a course on reinforcement learning at UWa-
terloo.

https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc

https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring18/
schedule.html

Andrew Ng Dr. Ng of Stanford University was the former head of Google Brain and
chief scientist at Baidu. He has taught an introductory class on reinforcement learning,
as part of a broader course on machine learning.

https://www.andrewng.org/

https://www.youtube.com/watch?v=RtxI449ZjSc

https://www.youtube.com/playlist?list=PLA89DCFA6ADACE599

Andrej Karpathy Andrej Karpathy was a founding member of OpenAI (makers of
ChatGPT and Dall-E) and later became the Tesla lead for their Autopilot autonomous
driving program. An early blog post by Andrei Karpathy on RL is at the introductory
level.

https://dennybritz.com/
https://github.com/dennybritz/reinforcement-learning
https://github.com/mpatacchiola/dissecting-reinforcement-learning
https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring18/schedule.html
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring18/schedule.html
https://www.andrewng.org/
https://www.youtube.com/watch?v=RtxI449ZjSc
https://www.youtube.com/playlist?list=PLA89DCFA6ADACE599

636CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

https://karpathy.ai/

https://karpathy.github.io/2016/05/31/rl/

Lilian Weng Dr. Weng is a lead researchers at OpenAI (makers of ChatGPT and
Dall-E). She has written an early blog post on RL and another one on policy gradient
algorithms.

https://lilianweng.github.io/

https://lilianweng.github.io/posts/2018-02-19-rl-overview/

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

OpenAI OpenAI (makers of ChatGPT and Dall-E) post regularly on their blog, on
all things deep learning and also reinforcement learning. The blog posts are easy intro-
duction to a variety of analytics topics.

https://openai.com/blog/openai-baselines-ppo/

https://openai.com/blog/evolved-policy-gradients/

https://openai.com/blog/evolution-strategies/

19.7 Review Questions
Introduction

1. Explain the concept of function approximation in the context of reinforcement
learning. How does it address the scalability issues faced by tabular methods?

2. How does function approximation help in generalizing from seen to unseen
states?

3. Can decision trees be used as function approximators in RL? Discuss their po-
tential advantages and limitations if used.

4. Describe how function approximation can be applied to state values, action val-
ues, and policies. Provide the mathematical representation used for each.

5. How does function approximation contribute to the flexibility and efficiency of
reinforcement learning models?

6. Provide an example scenario in reinforcement learning where generalization
from seen to unseen states would be crucial.

7. Discuss the issues of stability and convergence in function approximation meth-
ods, especially when combined with off-policy learning.

https://karpathy.ai/
https://karpathy.github.io/2016/05/31/rl/
https://lilianweng.github.io/
https://lilianweng.github.io/posts/2018-02-19-rl-overview/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/evolved-policy-gradients/
https://openai.com/blog/evolution-strategies/

19.7. REVIEW QUESTIONS 637

8. What measures can be taken to prevent overfitting in function approximation
models, particularly those using deep neural networks?

9. Given the advantages and challenges of function approximation, in what types
of reinforcement learning problems would you recommend its use?

10. Imagine you are designing a function approximation model for an RL problem
in a financial trading environment. What factors would you consider in choosing
the type of function approximator?

Value-Based Methods and Stochastic Gradient Descent

11. What is the formula for the value error (VE) in the context of action values and
how is it computed?

12. Derive the gradient of the MSE loss function used in the context of function
approximation for reinforcement learning.

13. Describe the parameter update rule in stochastic gradient methods for function
approximation. What does each term in the update equation represent?

14. What is bootstrapping in the context of reinforcement learning? How is it imple-
mented in SGD updates?

15. Describe the concept of experience replay and its significance in stabilizing the
SGD updates in reinforcement learning.

16. Discuss the role of the target network in the Double Q Network (DQN) algo-
rithm. How does it contribute to the stability of the learning process?

17. Compare the update steps in tabular SARSA and semi-gradient SARSA using
function approximation. What is the key difference?

18. Explain how the stochastic gradient SARSA algorithm is adapted to utilize a
replay buffer and target network in the context of the DQN algorithm.

19. What are the components of the "deadly triad" in reinforcement learning? De-
scribe how each component contributes to instability and divergence.

20. Provide examples of how modern reinforcement learning algorithms address the
challenges posed by the deadly triad.

21. Explain the impact of periodic updates from the main network to the target net-
work. How does this timing affect the algorithm’s performance?

22. In the context of function approximation, how is the learning process affected
when using non-linear function approximators like neural networks compared to
linear approximators?

Policy Gradient Methods

23. Describe how policy gradient methods optimize the policy parameters directly.
What is the significance of this approach in environments with continuous action
spaces?

24. Explain the typical representation of a policy in policy gradient methods and how
it relates to the probability of selecting actions.

25. Define the objective function J(θ) used in policy gradient methods. What does
this function represent?

638CHAPTER 19. REINFORCEMENT LEARNING – FUNCTION APPROXIMATION

26. List and describe the main advantages of using policy gradient methods over
value-based methods in reinforcement learning.

27. Explain the principle behind the REINFORCE algorithm. How does it update
the policy parameters?

28. Describe the update rule of the REINFORCE method. How does the inclusion
of the logarithm of the policy’s probability function influence the update?

29. Explain why the REINFORCE algorithm updates parameters only at the end of
each episode. What are the limitations of this approach?

30. What is the purpose of using a baseline in the REINFORCE algorithm? How
does it affect the variance of the updates?

31. Explain the update formula used in REINFORCE with baseline. How does the
inclusion of the baseline value b(St) change the update mechanism?

32. Compare the REINFORCE algorithm to Actor-Critic methods. How do Actor-
Critic methods improve upon the basic policy gradient approach?

33. How does the One-Step Actor-Critic algorithm use the current and next state
values to update the policy and value function parameters?

34. Explain how the Actor-Critic method combines the benefits of policy gradient
and value function approximation methods. What are the specific roles of the
"actor" and the "critic"?

Chapter 20

Managing Machine Learning
Operations (MLOps)

Learning Goals
After reading this chapter, you should be able to:

• Explain the MLOps lifecycle and its different phases.

• Identify the different roles in MLOps and their requirements.

• Describe different types of software tools to support MLOPs.

• Manage the lifecycle phases of model development, preparing for production,
deployment, and monitoring and feedback, including identifying the required
roles and tools, and appropriate policies for each phase.

• Identify, evaluate, and mitigate potential risks throughout the MLOps lifecycle,
including model and data risks, as well as infrastructure risks.

• Select an appropriate runtime environment and deployment strategy for a model.

• Identify the need for retraining a deployed model.

• Create policies to govern the MLOps lifecycle and manage and mitigate risk.

Sources and Further Reading
The material in this chapter is based on the following sources.

Treveil, M. and the Dataiku Team (2020) Introducing MLOps, O’Reilly Media,
Sebastopol, CA (T)

639

640CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

The book by Mark Treveil and others is a good, short introduction to the principles
and ideas of machine learning operations. It provides guidance on the process, the
management, and the governance of MLOps. Given its focus on high-level introduc-
tion, it provides few technical details, but this also means that this book will likely stay
relevant longer.

Gift, N. and Deza, Al. (2021) Practical MLOps, O’Reilly Media, Sebastopol,
CA (GD)

The book by Noah Gift and Alfredo Deza provides a more ”hands-on” introduction
to machine learning operations. While also touching on the principles and processes,
it goes in-depth and offers specific technical illustrations of good MLOps practices.
The book uses both on-premises technology and cloud-based technologies, but focuses
most heavily on MLOps on the AWS cloud.

Resources

Complete implementations of all examples in this chapter are available on the
following GitHub repo:
https://github.com/jevermann/busi4720-mlops

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-mlops.git

20.1 Introduction
Many introductions to machine learning, and to predictive models in particular, focus
on the different types of statistical models, their properties and relative advantages, and
challenges and best-practices for feature engineering and model training. Using the R
or Python environment, the focus is often on the business analytics team that identifies
features and creates the model. A frequent implicit assumption is that this happens
in isolation, on relatively small data sets, and on desktop computers. Often, such an
introduction fails to examine not only infrastructure challenges but, more importantly,
also neglects to examine how the created models are managed and used productively.
The latter is arguably most important from a business perspective.

As an example, consider a dynamic pricing model that predicts what customers are
willing to spend on a particular product based on their previous purchase history and
other features. It is relatively easy to collect a small data set and train a few different
models. However, ultimately, the chosen model must be integrated with the web-based
store front of the organization and will be used to show different prices to different
customers. It is a long way from a small model on the desktop to a model that is in
production use within an organization’s larger set of software applications. Besides
problems of efficiently moving models to production, that is, ”deploying” them, mod-

https://github.com/jevermann/busi4720-mlops
https://github.com/jevermann/busi4720-mlops.git

20.1. INTRODUCTION 641

els in production also pose certain risks to an organization and these risks must be
managed.

Purpose

Machine Learning Operations, or MLOps, therefore has three main purposes. First, it
seeks to improve operational efficiency in model management and deployment. It does
this through formalized and automated processes to achieve reliability and repeatability
in deployment.

The second purpose is to manage and mitigate risk. Different types of risks arise, such
as availability of service. What happens when the dynamic pricing model in the ex-
ample becomes unavailable due to a computer outage or a software misconfiguration?
Will the organization lose money? Will it lose customers? Another type of risk stems
from the model quality and the impacts of model predictions. For example, how large
are the prediction errors of the dynamic pricing model, and how much potential rev-
enue could the organization lose by overpricing items and causing the customers not to
purchase something? How much potential revenue remains unrealized because items
are offered at a lower price than a customer would be willing to pay? A third type of
risk arises from prediction fairness. For example if the pricing model includes features
such as gender so that different prices are offered to men and women, would customers
consider this to be fair (and is it even legally allowed)? If this were to become widely
known to customers, would customers defect from the business? Finally, there is the
risk of skill loss. What happens when the business analysts who developed the model
leave the organization? Does the organization have sufficient documentation for au-
ditability and risk management? Can the model be recreated by a new team? How
easily can a replacement team member become familiar with a model and its history,
rationale, and current uses?

The third purpose of MLOps is to establish accountability, auditability, and traceabil-
ity. Accountability is concerned with decisions made about models, their acceptance,
and their deployment into production. It requires formalized testing and acceptance
procedures for the model as it moves from data extraction to deployment. This begins
with questions whether there is legal or ethical clearance to use a particular data set,
to the decision as to when a new model replaces an existing model in a production
environment, e.g. in the web-based store front of the dynamic pricing example. Au-
ditability and traceability have two aspects. First, they refer to internal processes and
procedures and concern the ability to answer questions about the origins of the training
data, of the model parameters, the production environment, and related decisions, for
example about feature inclusion or risk assessment. A second aspect is the auditability
and traceability of model output and/or decisions made based on the model output. In
the dynamic pricing model example, the organization must maintain a record of why a
certain price was offered to a particular customer, what the relevant features were that
led to the decision, and be able to trace these features back through the model all the
way to the training data.

642CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Challenges
As business analytics, machine learning, and predictive models have become popular,
organizations face a number of challenges. First, the popularity and the competitive
necessity for organizations to engage in this area often leads to a proliferation of sepa-
rate business analytics teams in different organizational units that produce a multitude
of models from a wide variety of data for a large number of potential use cases. In
many organizations, machine learning is not well organized and managed, leading to
conflicting goals, unanticipated model interactions, lack of traceability and auditability,
lack of compliance, lack of knowledge of model performance, lack of accountability
and, in the worst case, customer-facing problems where the organization’s customers
that are affected by a predictive model’s decisions become aware of its poor quality.

A second challenge is the fact that data is constantly changing. After a model has been
trained, the organization continues to receive or collect data that can and should be used
for model training. If nothing else, additional training data can reduce the prediction
error of the model. However, the main challenge is that data may change over time. For
example, the business may attract customers with different characteristics and needs, or
the industry competitive position of a business may change so that customers have dif-
ferent preferences, or the macro-economic conditions may change to make customers
more risk averse or less willing to spend money. These challenges can lead to models
that perform poorly, and require a systematic approach to model performance moni-
toring, model retraining, and tracking the relative performance of different models and
different model versions.

As a third challenge, the needs of the business or organization can change over time,
making predictive models irrelevant or ill-suited for their purpose. Organizations may
shift their strategies, enter or exit specific markets, adapt their marketing strategies
and tactics, change their business processes and operations and many other aspects.
Such changes will affect the usefulness of predictive models that are deployed in the
organization and may require replacing or retraining models, perhaps with new input
features, different targets, and with trained with loss functions more appropriate to the
changed business goals and objectives.

A fourth challenge is the mixed composition of business analytics teams. Such teams
are often comprised of business professionals as subject matter experts, data scien-
tists that focus on data quality, data provenance, and model development, software
engineers that must take a trained model and embed it into an organization’s software
applications, for example, into their web-based sales tool or their mobile app. Finally,
IT staff participate on teams to provision appropriate infrastructure and manage IT re-
lated risk. The problem with such interdisciplinary teams is often that people may be
unaware of the roles or the importance of others on the team, they may be focused on
optimizing their particular aspect of model development to the detriment of the overall
effort, they may use different terminology (for example, what precisely does the term
”model” mean to each of them?), and they may not have developed effective manage-
ment processes or means of communication.

Finally, data scientists tend to have little expertise in software engineering and software

20.1. INTRODUCTION 643

deployment. Traditionally, this role has focused on the specific details of the statistical
models without any reference to established practices that makes software products re-
liable, robust, scalable, easily maintainable, auditable, fault and failure tolerant, safe,
or a variety of other desirable properties. However, when machine learning models
or predictive or prescriptive models and algorithms are to be deployed within an or-
ganization or even facing an organization’s customers, the models become part of an
organization’s software and therefore such software properties become very important,
possibly more important than the predictive accuracy of a machine learning model.

Principles
MLOps is a set of practices based on a few main principles. The first principle is that
of reliability and reproducibility of operations. This requires standardized and struc-
tured processes that are made explicit, either in the form of documentation or, if they
are automated, in the form of programming code. Such a process typically includes the
steps beginning with data extraction from operational systems, data preprocessing and
cleaning, feature extraction and feature engineering, training and evaluation of multiple
models, hyper-parameter search, automated model testing, automated software build-
ing, and ending with automated deployment. Each process step must be documented
and the results archived for auditability purposes.

It is clear that describing the process with executable code, e.g. in the form of Python
scripts or using a variety of open-source or cloud-based MLOps products, is preferable
to simply writing out a procedure manual. This preference for code illustrates the
second main principle of MLOps, that of robust automation. Together, the first two
principles ensure that every model in production can be easily re-created in identical
form when needed. More importantly, for audit purposes, these principles ensure that
the model and data provenance are captured and documented, that decisions and actions
as to which model to move into production are documented, and that the organization
knows which models are currently in production and what their properties (e.g. error
rate, cost, resource consumption, risk assessment results, etc.) are.

A frequently used term related to robust automation is that of ”infrastructure as code”.
Modern development, testing, and production environments are often provisioned auto-
matically. That is, computer servers, software, databases, and file storage are provided
automatically as needed. To enable this, the requirements for a particular model and
how to provide or create them must be described. To take one example, building and
deploying a predictive model as a micro-service requires instructions on how to build
the software that serves the model predictions (e.g. a Makefile1), instructions on how
to build the container that the software will run in (e.g. a Dockerfile2), instructions on

1A Makefile contains computer readable instructions in a standardized format that allows the ”make”
software tool to automatically build and test a software application. For more details, see this page: https:
//en.wikipedia.org/wiki/Make_(software).

2Containers are ”light-weight” virtual machines with their own operating system, databases, and other
software installed in them. Docker is one particular container technology. A Dockerfile defines how to
build a docker container, that is, what operating system to use, which software packages to install and how
to configure the software in the container for use. For details on containerization see this page: https:

https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Containerization_(computing)

644CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

what type of machine to run the container on, etc. These instructions are themselves
computer code and they must be managed, versioned and tested as computer code.

The third principle is that all versions of both the training data and the models must
be maintained and managed. Models in this context mean more than just the final
parameter values but includes evaluation results, hyper-parameter settings, training and
testing history, model explainability results, model rationale, versions of all software
packages that were used, and any other documentation. A variety of open-source and
commercial on-premises and cloud-based tools are available for this, ranging from
software code versioning tools like git and GitHub to model registries on Amazon Web
Services or Microsoft Azure. Versioning of the training data is more problematic, as
training data sets can be very large. It is often simply not feasible to keep copies of
different versions and more intelligent approaches are being developed. Managing and
versioning data and models are useful both for automating model deployment and for
ensuring auditability and through this, for ensuring compliance with internal or external
requirements. For example, model versioning and management allows an organization
to say precisely what features and input data was used to train a model, and what
features and their relative importance are being used to make decisions.

The fourth principle of MLOps is continuous delivery to production. The idea is that
rather than treating model development and deployment as a single or one-off project,
models should be continuously improved and the improved models should be continu-
ously moved into production. That is, as new training data becomes available, model
training continues or the existing model can be fine-tuned with the new data. Of course,
continuous delivery does not mean to do this whenever a single new training observa-
tion becomes available, but to have an established frequency, depending on model size
and required training time, of doing continuous delivery daily, weekly, monthly, quar-
terly or annually. Importantly, training or fine-tuning the model is just the initial step
that kicks off the delivery process. Activities like testing, risk assessment, documenta-
tion, performance comparison, software integration, etc. need to follow for each newly
created model.

Finally, to ensure traceability, auditability, risk management and to identify when mod-
els should be replaced, retrained or fine-tuned, continuous monitoring of a model in
production is required. This means that all inputs and all outputs to the model must be
logged and analyzed. In the dynamic pricing model example, this means that whenever
a customer is offered a price for an item that is determined by the predictive model, all
relevant input features and the model prediction must be logged, as well as the actual
purchase decision or other resulting action by the customer. It is obvious that such
log data can grow quickly in size and appropriate infrastructure needs to be in place to
store and manage the data. More importantly, procedures and processes need to be in
place to actively monitor and analyze this data to detect changes in customer features
over time or changes in model accuracy over time.

//en.wikipedia.org/wiki/Containerization_(computing) and for detail on Docker, see
this page: https://en.wikipedia.org/wiki/Docker_(software).

https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Containerization_(computing)
https://en.wikipedia.org/wiki/Docker_(software)

20.2. MLOPS LIFECYCLE OVERVIEW 645

Source: Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine learning operations (mlops): Overview, definition, and
architecture. IEEE access, 11, 31866-31879.

Figure 20.1: MLOps – Relationship to other disciplines

Relationship to Other Disciplines

Machine learning operations (MLOps) is at the intersection of a number of related dis-
ciplines, as shown in Figure 20.1. It overlaps with machine learning where model build-
ing, training, evaluation, etc. are located (”ML Model” in Figure 20.1. Specifically,
MLOps focuses on that part of machine learning that is sometimes called ”CD4ML”
(continuous delivery for machine learning), that is, the software engineering princi-
ples of continuous delivery as applied to machine learning models. MLOps overlaps
with software engineering, which focuses on continuous integration and continuous
delivery (”CI/CD” in Figure 20.1, ”DevOps” (unified or integrated development and
operations), and automation of software delivery pipelines. Finally, MLOps overlaps
with data engineering, which focuses on collecting, managing, and providing data for
organizational purposes, including but not only to machine learning applications. Other
uses of data in business analytics may be databases for descriptive analytics or visual-
izations.

20.2 MLOps Lifecycle Overview
The MLOps lifecycle is a combination of the machine learning model lifecycle, shown
in Figure 20.2, and the software development ”DevOps” lifecycle in Figure 20.3. The
resulting combination is shown in Figure 20.4.

The model development lifecycle in Figure 20.2 contains activities to manage the data

https://ieeexplore.ieee.org/abstract/document/10081336
https://ieeexplore.ieee.org/abstract/document/10081336

646CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

and to develop a machine learning or prediction model. Data collection can include ac-
tivities such as ETL (”extraction, transformation, loading”) data from source systems,
acquisition from external data brokers or vendors, scraping data from web sites or news
sites, or any number of other data collection means. The data must be curated. For ex-
ample, its provenance must be established and recorded, it’s quality must be assessed,
legal or licensing issues must be resolved, etc. The data can then be transformed. This
includes both pre-processing for data cleaning as well as engineering new features or
combining multiple data sets. Data validation then ensures that the data is of high
quality, relevant to the problem, fit for purpose, and can legally be used.

Figure 20.2: Model Development Lifecycle

The model part of the model development lifecycle begins with data exploration, that is,
gaining an understanding of the various features, their interactions, summary statistics,
etc. This leads to defining and training one or more models on the data set. This
step can also include model search (for example, varying the architecture of a neural
network model) or hyper-parameter search (for example, finding the optimal depth of
a decision tree). The models are then evaluated and compared on suitable metrics,
using hold-out samples or cross-validation. Finally, the evaluation results can be used
to inform additional data collection or additional features to be used in a better model
leading to another iteration of lifecycle.

DevOps (that is, integrated development and operations) is an approach to software
development that focuses on continuous integration and continuous deployment. In
early software development, a software application was created by developers, typi-
cally as a one-off project, and then turned over to the IT operations department to put
it into production. Having separate teams for development and operations leads to
problems and frictions. For example, the development team might not be concerned
with how much resources their application will require or what operational or secu-
rity risks an application poses. This puts significant pressure on the operations team.
The DevOps approach to software development focuses on an integrated process and
integrated teams. Rather than developing software in large one-off projects, DevOps
encourages continuous integration of small improvements and continuous deployment

20.2. MLOPS LIFECYCLE OVERVIEW 647

of the software into production.

Figure 20.3: Software Development Lifecycle

The lifecycle in Figure 20.3 begins with planning the software application, defining
what the application is required to do, its users, its business objective, etc. Software
developers then produce programming code. The build phase integrates the separate
code pieces from all developers into a complete application, and from this builds the
actual software application in the development environment. The test phase moves the
software application to a testing environment. It conducts functional tests to ensure
the application works correctly, but also performs security tests and performance tests
to ensure it poses acceptable risk and consumes reasonable resources. An applica-
tion is then formally released into production. Resources such as hardware, databases,
file storage space, network connections, etc. are provisioned, forming the production
environment. The application is then deployed into its production environment, inte-
grated with other software applications and operated. Continuous monitoring ensures
the software applications continues to work, to work correctly, and to consume only the
anticipated resources. The analysis of monitoring data will lead into a new iteration of
the DevOps lifecycle where the next version of the application is planned, developed,
and operated.

The combined lifecycle model in Figure 20.4 recognizes the fact that machine learning
models are just one part of a complex software application. Consider the example of
the dynamic pricing web-store application. The actual prediction model, while central
and important, is but a small part of it that must integrated into the web-store applica-
tion. When the available training data changes (in the ”collect” phase), all phases of
the lifecycle may need to be performed again to create a new model, develop or adapt
the software application and move it to operations. Given the number of steps involved
and their complexity, it becomes clear that managing this lifecycle efficiently, and man-
aging it at scale for multiple models, requires formalized and automated processes.

648CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Figure 20.4: MLOps Lifecycle

20.3 MLOps Roles and Requirements

Many people participate in different roles in MLOps processes. They participate in
or take responsibility in different phases of the overall MLOps lifecycle, as shown in
Figure 20.5. This figure shows a simplified representation of the MLOps lifecycle in
just 4 phases that are further explained in Section 20.5 below. Each role in the MLOps
lifecycle also has certain requirements in order to perform the role efficiently.

Subject matter experts are business stakeholders that provide the business prob-
lems, questions, or goals for a machine learning project. They also define how the
success of a project will be measured in business terms by defining the relevant KPIs
(key performance indicators). In a dynamic pricing example, a business KPI might
be to improve the acceptance rate of customized product offers by 5 percent. These
KPIs inform the choice of model and of model evaluation metrics. Once the model
is in production, subject matter experts evaluate the performance against the business
needs, that is, the KPIs. This evaluation cannot be done by the MLOps team, because
it concerns the business goals, not the predictive performance of a model: The model
may perform well in predicting the price customers are willing to pay, but customers
for other reasons choose not to accept product offers.

Subject matter experts require understandability and interpretability of models if they
are to assess them in business terms. Moreover, they require a responsive feedback
mechanism so that their evaluations and assessments can inform the next iteration of
the MLOps lifecycle.

20.3. MLOPS ROLES AND REQUIREMENTS 649

Source: Treveil et al. (2020), Figure 1-3

Figure 20.5: Roles in the MLOps lifecycle

Data scientists use available data sets to develop, train, and evaluate different ma-
chine learning models, based on the goals defined by the subject matter experts. Their
tasks also include related activities such as data preprocessing and feature engineering
that are necessary for training and evaluation.

Data Engineers work with data scientists to acquire or collect, manage, clean, main-
tain, and provide data. They build the data infrastructure necessary for data scientists to
efficiently access the data during model training and evaluation. This includes provid-
ing file storage space or databases or data warehouses. Data engineers are also involved
in data acquisition from internal or external sources, in evaluating and maintaining data
quality and in maintaining data provenance.

To perform their tasks efficiently, data scientists and data engineers require automated
model packaging and delivery tool. That is, once a model has been developed and
found to have acceptable performance, packaging the model (that is, the trained pa-
rameter values, hyper-parameter values, model architecture, training data provenance
and description, required software packages, etc.) so that it can be moved to produc-
tion deployment should be automatic. Data scientists and data engineers also require
automatic testing for models. That is, once a model has been trained, it should auto-
matically be subjected to a variety of tests, from simple predictive performance testing
on a range of metrics, through sensitivity testing for a range of normal and abnormal
inputs, to interpretability testing.

650CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Data scientists and data engineers require visibility into model performance as the
model moves across the development, staging or preparation, and deployment or pro-
duction phases. That is, they require access to raw performance data but better still,
access to online visual dashboards for each model or a set of models. They also require
visibility into the data pipeline that is used for each model.

Software Engineers integrate trained and operationalized models into the software
applications of an organization. This can take different forms depending on the nature
of the software application. For example, a trained model could be integrated into a
mobile application, or it could be accessed as a separate service from the organization’s
web-based store front. They are supported and advised by data engineers and ML
engineers or architects in identifying the most efficient way to deploy and deliver the
model within the organization’s software applications.

Software engineers require programming code versioning systems (such as git or GitHub)
to collaborate and track the changes that each member of a team makes to the applica-
tion’s code. They also require automatic testing tools for the software application so
that, as they make changes to an application’s programming code, their changes can
be automatically tested locally for correctness and functionality (unit tests) and in the
large for compatibility with other changes made by the team (integration tests).

DevOps Engineers are responsible for building the system developed by the soft-
ware engineers and testing them for security, performance, resource use, failure and
fault tolerance, and for availability. DevOps engineers perform the CI/CD processes
for continuous integration and continuous delivery of software applications through
programming code integration, software building, software testing, to software deploy-
ment.

DevOps engineers require seamless and automatic deployment pipelines, from soft-
ware code integration, to final testing, infrastructure provisioning (for example, virtual
machines, servers, containers, etc.) to deployment into production. In particular, the
MLOps lifecycle should integrate at this point with DevOps lifecycle that may already
exists in the IT department of an organization and leverage existing processes and tools.

Model risk managers and model auditors are responsible for assessing all types of
model risks and ensuring compliance with internal or external regulations and require-
ments. They assess the models that are developed by data scientists before they move
into production. They also monitor the performance of models that are in production
to identify relevant changes to the model risk.

Model risk managers require automated reporting on all models (past and present),
including data provenance and all model test results.

ML Engineers and ML Architects provide advice on how best to deploy a set of
models, the infrastructure required, and the implications of the types of model de-
ployment to software applications. They work closely with data scientists and data

20.3. MLOPS ROLES AND REQUIREMENTS 651

Source: Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine learning operations (mlops): Overview, definition, and
architecture. IEEE access, 11, 31866-31879.

Figure 20.6: Overlapping MLOps Roles

engineers who provide knowledge of the model and its data requirements. They make
large-scale architectural decisions, such as whether to deploy the model in cloud-based
environments like Amazon Web Services or Microsoft Azure, or on-premises, for ex-
ample using a Kubernetes cluster, or in a web browser or mobile application. They
determine scalability and infrastructure requirements.

ML engineers require the ability to easily assess and to quickly adjust infrastructure ca-
pacities. For example, if an ML engineer realizes that a ML prediction service performs
slowly, the engineer must be able to quickly allocate more servers, deploy additional
copies of the ML model, and make them available to the organization’s software appli-
cations that use that prediction model.

Backend Engineers provide and manage the computational infrastructure. They cre-
ate and maintain on-premises or cloud-based computer clusters and distributed storage
systems. They design and manage fast and efficient network connections between all
components, provide backup and restore functionality, and are responsible for high
availability of all infrastructure components. Backend engineers are not included in
Figure 20.5 but are shown in Figure 20.6 which is taken from a different source.

https://ieeexplore.ieee.org/abstract/document/10081336
https://ieeexplore.ieee.org/abstract/document/10081336

652CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

20.4 MLOps Tooling
Because of its heavy focus on automation, MLOps requires a variety of software tools
to support it. This section describes important types of software tool and provides
references to some popular examples.

Source Code Management (SCM), Code Versioning and Code Repositories are
tools that are used by software engineers to collaborate on the creation of a large soft-
ware application. These tools keep track of all changes and ensure that developers do
not overwrite each other’s work. The most popular cloud-based tool GitHub3 is based
on the open-source git system4, but many others exist, both open-source and commer-
cial, cloud-based or on-premises.

CI/CD tools are used to integrate software application programming code, automat-
ically build the software system, test it in a test environment, and then deploy it into a
production environments. Popular tools of this type are the open-source Jenkins sys-
tem5 and GitHub actions6 on the popular GitHub cloud-based platform.

Workflow Orchestration tools define the usage of data, model, software and config-
uration artifacts through the development, test, and deployment cycle. They coordinate
data extraction, model training, model inference/prediction, and model or software de-
ployment. A popular open-source on-premises system is Apache Airflow7, while AWS
SageMaker8 and Azure Pipelines9 are popular cloud-based tools.

Feature Stores offer centralized storage and management of data and any engineered
features for ML models. They track feature updates and changes, assess and monitor
data quality, and quickly provide data at training or at prediction time. Popular tools
are the open source system Feast10, the AWS SageMaker Feature Store11 or Tecton12

Model Training tools support the definition, training, evaluation and comparison of
ML models. They are open-source tools like R, Scikit-Learn, TensorFlow, or Spark, or
integrated cloud-based offerings such as AWS SageMaker13 or Azure Machine Learn-
ing 14.

3https://github.com
4https://git-scm.com/
5https://www.jenkins.io/
6https://github.com/features/actions
7https://airflow.apache.org/
8https://aws.amazon.com/sagemaker/
9https://azure.microsoft.com/en-us/products/devops/pipelines

10https://feast.dev/
11https://aws.amazon.com/sagemaker/feature-store/
12https://www.tecton.ai/
13https://aws.amazon.com/sagemaker/
14https://azure.microsoft.com/en-ca/products/machine-learning

https://github.com
https://git-scm.com/
https://www.jenkins.io/
https://github.com/features/actions
https://airflow.apache.org/
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-us/products/devops/pipelines
https://feast.dev/
https://aws.amazon.com/sagemaker/feature-store/
https://www.tecton.ai/
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-ca/products/machine-learning

20.4. MLOPS TOOLING 653

Model Registries provide storage for trained models and their meta-data. This in-
cludes the model itself, evaluation results, hyper-parameters, training history, data
provenance, documentation, and many other artifacts. These tools provide centralized
storage, secure access, version management, and other features. They allow model
versions to be tracked and to be quickly deployed in the MLOps lifecycle. A popular
open-source model registry is MLFlow15 while the major cloud platforms also provide
model registries, for example the AWS SageMaker Model Registry16 or the Azure ML
Model Registry17.

ML Metadata Stores store meta data about MLOps pipeline executions, model train-
ing, model lineage, etc. For example, they track when a model was trained, evaluated,
packaged for production, moved into deployment, etc. These tools support the au-
ditability and traceability of models and their deployment, in turn supporting risk man-
agement and compliance assurance.

Model Serving tools execute the model in its production environment and provide
access to model predictions or model explanations for the organization’s software ap-
plications. Popular tools are WSGI18 servers such as Flask19, that are often deployed
in containers, TensorFlow Serving20, TensorFlow Lite21 or TensorFlowJS22 for Tensor-
Flow models, or AWS SageMaker Endpoints23 for the AWS cloud platform.

Model Monitoring tools can monitor both the computational performance as well
as the prediction inputs and outputs of deployed models. Cloud-based examples are
the AWS SageMaker model monitor24 on the AWS platform or the Azure ML model
monitor25.

As MLOps is a relatively young discipline, tool support, both open-source, commer-
cial, and cloud-based, is still evolving rapidly. Figure 20.7 shows a (partial) overview
of companies that offer products and services in this space. Because of the rapid evo-
lution of offerings in MLOps it is simply not possible to provide a detailed description
or even a meaningful introduction to these software tools that would remain relevant
for more than a few months.

15https://mlflow.org/
16https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
17https://learn.microsoft.com/en-us/azure/machine-learning/

how-to-manage-models
18https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
19https://flask.palletsprojects.com/en/3.0.x/
20https://www.tensorflow.org/tfx/guide/serving
21https://www.tensorflow.org/lite
22https://www.tensorflow.org/js
23https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.

html
24https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
25https://learn.microsoft.com/en-us/azure/machine-learning/

concept-model-monitoring

https://mlflow.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-models
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-models
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://flask.palletsprojects.com/en/3.0.x/
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/lite
https://www.tensorflow.org/js
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring

654CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, AND DATA (MAD) LANDSCAPE 2021

© Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap) Version 3.0 - November 2021 mattturck.com/data2021

FINANCE - INVESTING

RESEARCHINCUBATORS & SCHOOLS

DATA RESOURCES
DATA SERVICESOTHERLOCATION INTELLIGENCE

DATA SOURCES & APIs
AIR / SPACE / SEAFINANCIAL & ECONOMIC DATA PEOPLE / ENTITIES

OPEN SOURCE
QUERY / DATA FLOW STREAMING &

MESSAGING
ML OPS & INFRASTAT TOOLS &

LANGUAGES
COLLABORATION SECURITYFORMAT DATA

ACCESS
DATABASES SEARCH VISUALIZATIONLOGGING & MONITORINGORCHESTRATION AI / MACHINE LEARNING / DEEP LEARNING

SERVER-
LESS

GRAPH DBs

MPP DBs DATA GOVERNANCE
& ACCESS

CLUSTER SVCS GPU DBS & CLOUDMGMT / MONITORING

NewSQL DATABASES

DATA INTEGRATION

DATA
WAREHOUSES

DATA LAKES STREAMING /
IN-MEMORY

HADOOP

PRIVACY &
SECURITY

REVERSE ETL

REAL TIME
DATABASES

APPLICATIONS — INDUSTRY

HUMAN CAPITAL

GOV’T &
INTELLIGENCE

EDUCATION REAL ESTATE FINANCE - LENDINGADVERTISING

MARKETING -
B2B

SALES CUSTOMER EXPERIENCE / SERVICEMARKETING - B2C

INSURANCECOMMERCE

PARTNERSHIPS

FINANCE AUTOMATION & RPALEGAL REGTECH &
COMPLIANCE

SECURITY

DATA SCIENCE
NOTEBOOKS

DATA SCIENCE
PLATFORMS

COMPUTER VISION SPEECH NLP SYNTHETIC MEDIA

HORIZONTAL AI

ML PLATFORMS

MODEL BUILDING FEATURE STORE DEPLOY-
MENT & PRO-
DUCTION

MODEL
MONITORING
& OBSERVA-
BILITY

DATA GENERATION
& LABELLING

AI HARDWARE AGRICULTUREHEALTHCARE INDUSTRIALLIFE SCIENCES OTHERTRANSPORTATION

AUGMENTED ANALYTICS

LOG ANALYTICS

SEARCH

BI PLATFORMS

DATA ANALYST PLATFORMS

DATA CATALOG
AND DISCOVERY

METRICS
STORE

QUERY
ENGINE

VISUALIZATION

DATA MARKETPLACES
& DISCOVERY

FRAMEWORKS

NoSQL DATABASES

ETL / ELT /
DATA TRANSFORMATION

RDBMS

DATA QUALITY

STORAGE

DATA OBSERVABILITY

INFRASTRUCTURE APPLICATIONS — ENTERPRISEMACHINE LEARNING & ARTIFICIAL INTELLIGENCEANALYTICS

INFRA-
STRUCTURE

DATA OPS

Source: Turck, Matt. Red Hot – The 2021 Machine Learning, AI and Data (MAD) Landscape. September 28, 2021.
https://mattturck.com/data2021/ (last accessed July 22, 2024)

Figure 20.7: Commercial Offerings in the ML Landscape

20.5 MLOps Lifecycle Phases
Figure 20.8 shows a simplified MLOps lifecycle together with ML governance. While
the MLOps lifecycle concerns operations and management, ML governance refers to
the oversight and risk management of the MLOps lifecycle and its processes, partici-
pants, and tools. The lifecycle in Figure 20.8 is an abstracted version of the lifecycle
underlying Figure 20.5 above. This section provides brief additional comments on each
phase in this simplified lifecycle.

https://mattturck.com/wp-content/uploads/2021/12/2021-MAD-Landscape-v3.pdf
https://mattturck.com/data2021/

20.5. MLOPS LIFECYCLE PHASES 655

Figure 20.8: Simplified MLOps Lifecycle and ML Governance

20.5.1 Develop Models

The first phase of the simplified lifecycle, develop models, is highlighted in Figure 20.9.
It comprises data and feature engineering, as well as model building, training, evalu-
ation, and comparison. The inputs are training data and other models for comparison
(e.g. alternative model types, alternative architecture, the current production model,
etc.). The output of this phase are a selected model and its performance metrics and
associated documentation.

From the data management perspective, important questions to ask and answer in this
phase are about data permission or licenses, access requirements, and legal or regu-
latory obligations or constraints. These are questions that help assess the risk and to
assure compliance. Specific example questions are:

• What data are available? What is the quality of that data?

Source: Treveil et al. (2020), Figure 4-1

Figure 20.9: Model development in the MLOps lifecycle

656CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

• Can the data legally be used for this purpose? What are the terms of use of the
data? What licenses are available or in place for using the data? What is the cost
of any required licenses?

• How can the data be accessed? Is it available via an external service or does it
exist on-premises? What is the technical access mechanism?

• What features can be created by combining multiple data sets?

• Must the data be redacted or anonymized? Does it include personally identifiable
data, such as names or addresses? Does it include sensitive data, such as medical
or financial information?

• Are there features that cannot be used legally (age, gender, race, etc.) for some
purposes? For example, while age and gender could be used in a dynamic pricing
application, they are not legally useable in many jurisdictions for evaluating job
applications or making hiring decisions.

• Is the data representative of minority classes/populations? When the data set is
biased towards a large majority class or only covers part of the target population,
a predictive model built from it will not perform well for minority classes. At
best, this increases the risk due to poor predictions, at worst, this precludes the
use of the model in some jurisdictions as it may not exhibit fairness towards all
classes or sub-populations.

Tool support for data management in this phase includes ETL pipelines to extract data
from source systems, transform it, and load it into a central data or feature store. It also
includes centralized data storage, feature storage, and feature engineering tools.

From the model management perspective, important questions also address bias and
fairness of model predictions or outcomes. Again, this is to assess and mitigate model
risk and to ensure compliance with regulatory and legal obligations. Specific questions
to ask include the following:

• What are appropriate evaluation metrics? How do these metrics relate to the
business KPIs and the goals of the model?

• Is the model performance acceptable globally and for different sub-populations?
How are different performance metrics, such as precision and recall, combined
into an overall model performance assessment?

• Does the model need to be interpretable or explainable? What type of explana-
tions, for example global or local, should be provided to the model user?

• Are the model outcomes fair to all possible users? How is fairness defined?
Are there conflicting definitions or requirements for fairness and how are they
combined and reconciled?

Tool support for model definition and management include model registries and repos-
itories that can keep track of and store the models themselves (trained parameters), but
also the hyper-parameters, random seeds, software versions, train and test histories and
results, associated documentation, etc. Feature stores are used at this stage to provide

20.5. MLOPS LIFECYCLE PHASES 657

the data for model training, and container makefiles and container registries are often
used to provide fixed and reproducible training environments, including all required
software packages in their specific versions.

20.5.2 Prepare for Production

Preparing a model for production, highlighted in Figure 20.10, includes selection of the
runtime environment and deployment mode (e.g. as a micro-service, as a model em-
bedded in a mobile app, etc.). This decision is made by ML engineers in collaboration
with data engineers and data scientists. Preparing for production involves risk assess-
ment and quality assurance of the model by model risk managers and model auditors.
Risk mitigation measures are put into place (e.g. an automatic fail-safe when out-of-
scope inputs are detected), the model security is tested and improved if necessary, and
reproducibility and auditability of the model are confirmed.

Source: Treveil et al. (2020), Figure 5-1

Figure 20.10: Prepare for Production in the MLOps Lifecycle

The input to this phase are the selected model together with its performance metrics
and associated documentation. The output is a production ready model with the results
of the verification tests performed during this phase.

Technical questions to ask and answer and decisions about the runtime environment to
be made during this phase include the following:

• What is the runtime environment and deployment mode? Example options are
WSGI services in containers deployed on clusters (on-premises or cloud-based),
TensorFlow Serving deployment (again, either on-premises or cloud-based), so-
called ”edge-devices” such as mobile phones, embedded systems or IoT devices
(internet-of-things), or in a web-based application as a JavaScript model.

• Does the model need to be adapted for production? For example, quantization
can increase the performance of model predictions significantly by replacing
large floating point numbers with smaller ones. Often, models are trained with
32 bit floating point numbers, but then deployed with 8 bit numbers. The loss
in precision may be negligible while the performance benefits can be significant.
Another example of model adaptation is additional pruning of decision trees.

658CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Again, careful pruning may have a negligible impact on prediction accuracy but
a significant impact on prediction performance.

• How are data features accessed or provided? For example, a prediction model
that includes as a feature the customer’s driving distance to the business location
requires a service that can calculate this distance from a given address at the
time of prediction (at ”inference” time or at ”run” time). A prediction model that
includes the weather or temperature of a given day requires access to a service
that can provide this information at run time. Such services need to be internally
or externally provisioned, licensed and potentially paid for.

To assess model risk, relevant questions to ask by the model risk manager include the
following:

• What can happen if the model acts in the worst possible way? What is the worst
possible error of the model and what are the financial, business, legal or reputa-
tional impacts when the model behaves in such a way? What is the legal liability
for decisions that are made based on such model behaviour?

• What if a client extracts training data or model details? For example, consider
a KNN model where k is very small, e.g. 2 or 3. With just a few observations,
and the prediction of the model, other observations in the training set could be
identified or deduced.

• What are financial, business, legal, and reputational risks? Who assumes liability
for model errors and can the liability be reduced? Are there legal implications
for model errors? Are there reputational risks? The extent of such risks and the
impact of model prediction error differs from use case to use case. For example,
in large-scale medical diagnostics, the impacts may be much more severe than in
a small pilot implementation of a dynamic pricing application.

Sources of risk that a model risk manager or model auditor should consider include the
following:

• Errors in model design or training: Is the appropriate model type chosen? Is
the model architecture appropriate to the problem and are the hyper-parameters
chosen well? Did model training use the data correctly and use the correct data?

• Errors in the runtime environment: Are there security flaws or security ”holes”
in any of the software packages that are used in the runtime environment? Are
there known limitations of the packages for certain situations and do they affect
the deployed model?

• Data quality problems: Was the training data of sufficient quality? Were data
transformations and data pre-processing carried out correctly and verified?

• Differences between training & production data (”input drift”): Over time, the
characteristics of the input data may change. For example, future customers may
be different from past customers as the business’s products, services, competitive
position, and strategy evolve. A model that was built based on past customers’

20.5. MLOPS LIFECYCLE PHASES 659

training data may no longer provide good predictive performance for current or
future customers.

• Abuse of model or misuse of outputs: Is the model used only for the purpose
it was designed for, or are its outputs also used in other ways? For example,
the output of a dynamic pricing model that predicts the maximum amount a
customer is willing to pay for product could also be used to offer short-term
consumer credit to the customer for that product. However, the willingness to
pay a particular price for an item is not the same as the ability to afford to pay a
particular price or loan.

• Adversarial attacks: For example, consider again the dynamic pricing example.
Can the system be tricked into offering products for free when a particular input
is provided?

• Legal risk from training data use or model results: What are the implications of
using training data for which permission to use was not obtained? Can the model
be easily retrained when customers or third parties withhold or retract permission
to use their data.

• Reputational risk: Some ML model errors are high profile and covered by na-
tional and international news outlets. This can have serious implications for the
reputation of a company and its relationship with its customers.

Detailed and up-to-date documentation can help the risk manager in objectively evalu-
ating the probability and potential impact when these risks are realized. A number of
risk mitigation procedures are available to mitigate the risks, including:

• Shadow testing of a new model is to deploy both the old and new replacement
model at the same time. Both models receive the same inputs but only the old
model’s predictions are used or served to the client application. This allows
testing of a candidate new model on actual production data to ensure it will only
go live when it is confirmed to be no worse than the existing old model. Because
the new model is already deployed, switching the input and output traffic is then
a simple matter.

• Progressive rollout (sometimes called ”canary deployment”) also uses both an
old and a new replacement model. However, rather than shifting input and output
entirely from the old to the new model, this is done progressively for increasing
proportions of traffic. For example, initially, only 10% of customer input is
routed to the new model. Then, after the model behaviour has been assessed,
this is increased to 20%, etc.

• Continuous logging and monitoring is important to detect abnormal inputs which
can signal an adversarial attack or a software malfunction. Alarms are raised
and the model can be taken offline or replaced with a simpler model. Logging
and monitoring is also important to detect gradual input drift, that is, changing
characteristics of the input data, which indicates that the model is no longer
appropriate and should be retrained.

660CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

• Input and output checks are quick, simple checks that ensure that input values fall
within an acceptable range, are of an appropriate data type, etc. For example, a
dynamic pricing model may check inputs to ensure that customer addresses are
valid and in the business’ geographic market. Output checks are common-sense
checks that ensure the model predictions are at least sensible. For example, in a
dynamic pricing application, the predicted price should be positive and within a
range appropriate to the product category that is being priced.

• Fail-over to simpler model is the degradation of a model to a simple backup
when a model failure occurs. For example, the complex neural network model
in a dynamic pricing application may be unavailable because of software errors,
adversarial attackes, or invalid input or invalid output. In its place, a simpler
linear regression model may be used.

• Periodic retraining should occur whenever an input drift has been detected or a
significant amount of new training data is available. This ensures that the model
remains appropriate and useful for its intended purpose.

Automation tools used during the preparation for production include continuous inte-
gration and automated testing tools for quality assurance and model risk evaluation.
Model registries are used during this phase to document all information about a model
and document the findings of its quality assurance and risk evaluation, including input
data sources and data provenance, model assumptions, required software packages, test
results including explanations and bias or fairness evaluations, training and test logs,
security test results, etc.

20.5.3 Deploy to Production

Deploying a model to production includes both the CI/CD (continuous integration/
continuous deployment) pipelines for deploying the software that uses the model as
well as building the ML model and related artifacts. The deploy to production phase
is highlighted in Figure 20.11. Inputs are a production ready model and completed
verification tests. The output is a model in its production environment.

Source: Treveil et al. (2020), Figure 6-1

Figure 20.11: Deploy to Production in the MLOps Lifecycle

20.5. MLOPS LIFECYCLE PHASES 661

A typical, automated CI/CD pipelines comprises at least the following steps26:

1. Build model

(a) Build model artifacts (model code, configuration, data, trained model, en-
vironment, documentation, test code and test data)

(b) Archive model on model store and register model with model registry

(c) Basic checks for model

(d) Evaluate bias and interpretability

2. Deploy to test environment

(a) Evaluate predictive performance

(b) Evaluate computational performance

3. Deploy to production environment

(a) Limited deployment (shadow, progressive (”canary”) deployment)

(b) Full deployment

Deployment includes considering the scalability and reliability of the model at infer-
ence time. Deployment targets (that is, server types and numbers) must be chosen that
are appropriate to the expected workload. For example, an ML architect must be deter-
mine which servers should serve the model predictions, where in the world they should
be located, how many there should be, and other technical considerations. Workload
balancing for multiple servers must be defined and set up, for example, based on input
features, request characteristics such as geographic location, or randomly. Automatic
fail-over to replacement servers must be defined. This includes the ability to automati-
cally detect server failure and to automatically re-provision replace servers. This phase
must also consider how model upgrades are performed (e.g. shadow deployment, pro-
gressive deployment).

Deployment to production also includes defining and provisioning infrastructure for
continuous monitoring. Three aspects should be monitored regularly. Resource mon-
itoring measures the infrastructure resources consumed by the model in production.
This includes CPU computation time, network traffic, database and file storage space,
and many related metrics. Abnormally high or low values can indicate operational
problems and must be investigated. Model health checking involves assuring that the
model serving software does actually accept prediction requests and provides model
predictions. That is, it ensures the software works. This is different from resource
monitoring which can only measure whether the server computer is busy. Finally, ML
metrics monitoring focuses on prediction metrics, such as input and output charac-
teristics or their distributions, or prediction error rates or accuracy (if ground truth is
available at that time or shortly after).

26Adapted from Treveil et al. (2020) (pg. 74f)

662CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Automation tools required and used during this phase of the MLOps lifecycle include
source code repositories such as GitHub and software integration tools such as Jenkins
to build and test the model and related software applications. Also required are model
registries such as MLFlow and model serving tools such as TensorFlow Serving or
Flask. Finally, log data storage and log analysis software is required for monitoring.

The remainder of this section illustrates two basic deployment methods for a neural net-
work model developed using Keras. As a first step, the model is defined and trained.
The following example uses a very simple linear regression model for the Boston hous-
ing price dataset. The focus here is not on the quality of the model but on how the
trained model can be deployed.

Resources

Complete implementations of all examples in this chapter are available in the
following GitHub repo:
https://github.com/jevermann/busi4720-mlops

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-mlops.git

As a first step, the data set is retrieved, features are created and the linear regression
model is defined27.

import keras.utils
import pandas as pd
import tensorflow as tf
import tensorflowjs as tfjs

keras.utils.set_random_seed(42)
boston_data = pd.read_csv("https://evermann.ca/busi4720/boston.csv")

boston_features = boston_data[['rm', 'tax', 'age']]
boston_labels = boston_data['medv']

Linear regression model
norm_boston_model=keras.models.Sequential([

keras.layers.Input(shape=(3,), dtype=tf.float32),
keras.layers.Dense(1, activation=None)])

Next, the model is trained and saved in three different ways, for use in Keras, for use
in TensorFlow serving, and for use in TensorFlowJS. Each of these require a different
model package format.

27Complete implementation is available at https://github.com/jevermann/
busi4720-mlops/blob/main/train_model.py

https://github.com/jevermann/busi4720-mlops
https://github.com/jevermann/busi4720-mlops.git
https://github.com/jevermann/busi4720-mlops/blob/main/train_model.py
https://github.com/jevermann/busi4720-mlops/blob/main/train_model.py

20.5. MLOPS LIFECYCLE PHASES 663

stop_callback = keras.callbacks.EarlyStopping()
norm_boston_model.compile(

loss = tf.keras.losses.MeanSquaredError())
norm_boston_model.fit(

boston_features, boston_labels,
epochs=100, validation_split=0.33,
callbacks=[stop_callback])

Save model for use in Keras
norm_boston_model.save('norm.boston.model.trained.save')
Export model for use in TF Serving
norm_boston_model.export('norm.boston.model.trained.export')
Convert model for use in TFJS
tfjs.converters.save_keras_model(norm_boston_model,

'norm.boston.model.trained.tjfs')

Deployment as a Flask Microservice

The following code blocks illustrate how a trained model may be deployed as a micro-
service using the Flask WSGI (web services gateway interface) server. Flask is a
Python package that functions as a web server, accepting requests from client appli-
cations over the network and sending an appropriate response. In this example, client
applications send the input data for the prediction model as a JSON object in the web
request, and the Flask service responds with a JSON object that contains the prediction
and other information28.

First, the saved model is loaded. The predict() function accepts the inputs and
provides suitable output (assuming that inputs are single observations, it returns the
first and only target of the first and only element of a batch).

import keras
import flask
from flask import request
import pandas as pd

Load the trained model
norm_boston_model = keras.saving. \

load_model('norm.boston.model.trained.save')

A predict function for the model
def predict(inputs):

return norm_boston_model.predict_on_batch(inputs)[0][0]

Setting up the Flask web server is simple. The app defines the Flask application and
the decoration @app.route(...) indicates that the predict_json() function
should be called when a client requests the /predict_json URL using the POST

28Complete file is available on https://github.com/jevermann/busi4720-mlops/blob/
main/flask_deploy.py

https://github.com/jevermann/busi4720-mlops/blob/main/flask_deploy.py
https://github.com/jevermann/busi4720-mlops/blob/main/flask_deploy.py

664CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

method on the server. The predict_json() function accepts the input data from
the request, and creates a suitable Pandas dataframe. It calls the predict() function
and packages the resulting prediction as a JSON object to be returned to the client.

app = flask.Flask(__name__)

Define the URL handler:
@app.route("/predict_json", methods=["POST"])
def predict_json():

reply = {}
TODO: Input checking goes here
TODO: Input logging goes here
inputs = pd.DataFrame.from_dict(request.json).transpose()
prediction = predict(inputs)
TODO: Output checking goes here
TODO: Output logging goes here
reply["prediction"] = str(prediction)
reply["success"] = True
return flask.jsonify(reply)

Run the server app
app.run()

To access this microservice application when it is running, a simple web request can
be used from the Bash command line29. The curl program sends web requests and
receives and prints the responses, the -X option specifies the request method, the -H
option specifies request headers, -data specifies the data to be sent and the final
argument is the web server address and URL.

curl -X POST \
-H "Content-Type: application/json" \
--data '[6, 250, 66.5]' \
http://localhost:5000/predict_json

To show how such a service may be used from a web-based application, the following
code blocks define a simple HTML form30. The form provides input fields for the user
to enter the input feature values, and in the document header defines a short JavaScript
script that calls the Flask microservice to provide the predicted house price.

29Complete file is available on https://github.com/jevermann/busi4720-mlops/blob/
main/json_demo.sh.

30Complete file is available on https://github.com/jevermann/busi4720-mlops/blob/
main/predict_form_async.html.

https://github.com/jevermann/busi4720-mlops/blob/main/json_demo.sh
https://github.com/jevermann/busi4720-mlops/blob/main/json_demo.sh
https://github.com/jevermann/busi4720-mlops/blob/main/predict_form_async.html
https://github.com/jevermann/busi4720-mlops/blob/main/predict_form_async.html

20.5. MLOPS LIFECYCLE PHASES 665

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Boston Housing Data Prediction Service</title>
<script>
async function predict() {
// Get the values from the text inputs
const rooms = parseFloat(document.getElementById('rooms').value);
const tax = parseFloat(document.getElementById('tax').value);
const age = parseFloat(document.getElementById('age').value);
// Make a POST request to the server
const response = await fetch('/predict_json', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify([rooms, tax, age]);

});
// Parse the JSON response
const result = await response.json();
// Display the result
document.getElementById('output-div').textContent
= result.prediction;

}
</script>
</head>

The body of the HTML document is the HTML form with its input elements. When the
”submit” button is pressed, the predict() function defined in the document header
in the previous HTML code block is executed.

<body>
<h1>Boston Housing Data Inputs</h1>
<form onsubmit="event.preventDefault(); predict();">
<p>
<label for="rooms">Number of Rooms</label>
<input name="rooms" id="rooms" required>
</p>
<p>
<label for="tax">Tax Rate per 10,000</label>
<input name="tax" id="tax" required>
</p>
<p>
<label for="age">Prop bldg older than 1940</label>
<input name="age" id="age" required>
</p>
<input type="submit" value="Submit">

</form>
<p>Prediction is: <div id="output-div">...</div></p>
</body>
</html>

The Flask application defined here is typically packaged in a container (using Docker

666CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

or other container technology). One or more instances of such a container are then exe-
cuted on container servers, depending on the required capacity. Container deployments
to servers are typically performed automatically using software such as Kubernetes31,
which is an open-source container orchestration system for automating software de-
ployment, scaling, and management.

Deployment as a JavaScript Model

Another way to deploy an ML model is to embed it in a browser-based web applica-
tion. This deployment has the advantage that the organization does not need to provide
computational resources to run the model at inference time, and the prediction request
and response need not be sent across a network connection. On the other hand, this
deployment is suitable only for small models and only for models that can be made
available to application users as organization loses control over the model and must
treat its results as insecure. Examples where such models may be useful could be ob-
ject recognition tasks in a web browser, speech translation or transcription in a web
video conferencing application, etc.

The following HTML code block32 is a slightly altered version of the web form in
the Flask example above. Instead of requesting a prediction from the Flask service,
the JavaScript script loads the model directly using the tf.LoadLayersModel()
function provided by the TensorFlowJS framework and calls its predict() function.
The document body that defines the form and its input fields is identical to the one in
the code block above.

31https://kubernetes.io/
32Complete file is available on https://github.com/jevermann/busi4720-mlops/blob/

main/tjfs_demo.html.

https://kubernetes.io/
https://github.com/jevermann/busi4720-mlops/blob/main/tjfs_demo.html
https://github.com/jevermann/busi4720-mlops/blob/main/tjfs_demo.html

20.5. MLOPS LIFECYCLE PHASES 667

<!DOCTYPE html>
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/\

@tensorflow/tfjs@latest/dist/tf.min.js"></script>
<script>
async function predict() {
// Load the model
const model = await \
tf.loadLayersModel('https://raw.githubusercontent.\
com/jevermann/busi4720-mlops/main/model.json');

// Get the values from the text inputs
const rooms = parseFloat(document.getElementById('rooms').value);
const tax = parseFloat(document.getElementById('tax').value);
const age = parseFloat(document.getElementById('age').value);
// Package the values into a Tensor
const inputs = tf.tensor2d([rooms, tax, age],[1, 3]);
// Get the prediction from the model
document.getElementById('output-div').innerText =
model.predict(inputs).dataSync();

}
</script>
</head>

20.5.4 Monitoring and Feedback
The monitoring and feedback phase of the MLOps lifecycle, highlighted in Figure 20.12,
is important to ensure that the model performance does not diminish or degrade over
time. It also detects any input drift, that is, systematic changes in the characteristics
or frequency distributions of the input values, and provides a feedback loop for subject
matter experts.

Inputs to this phase are the model logs, the ground truth, and developmental data for the
deployed model. Ground truth denotes the actual, true value for the predicted target.
Output of this phase are metrics that quantify input drift and model performance.

The feedback loop is important in that it triggers model retraining when required. The
input drift and performance metrics are evaluated and assessed by the subject matter
expert with reference to the relevant business key performance indicators. However,
model retraining is not automatically triggered but depends on a number of considera-
tions, for example:

• Domain changes: This indicates a shift or change in business requirements. For
example, rather than extracting the maximum price for each item from a cus-
tomer in a dynamic pricing model, the business is now also interested in maxi-
mizing the purchase of related products. Therefore, the existing prediction model
may no longer be suitable o ruseful.

• Training cost: Model training, especially for complex models or large training
data sets, is time consuming and computationally costly. Organizations must

668CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Source: Treveil et al. (2020), Figure 7-1

Figure 20.12: Monitoring and Feedback in the MLOps Lifecycle

consider these costs and the potential benefits or a more accurate prediction.

• Model performance: Not every change in prediction accuracy or prediction error
translates into a significant negative business impact. Some changes may be
tolerable, in particular in light of the potential training time and costs for a new
model version.

• Ground truth availability: While continuous monitoring and logging can provide
additional input data for training, it does not also provide the true target values.
For example, while a dynamic pricing prediction service captures the input fea-
ture values, and whether a customer purchases a product offered at the predicted
price, the true maximum price that a customer is willing to pay is not known.

Ground truth availability is a significant problem in many ML applications for at least
the following three reasons:

• Ground truth is not immediately or imminently available. Consider the example
of the dynamic pricing service that predicts the maximum amount a customer is
willing to pay. The true maximum will never be known. Proxy variables can be
used, for example whether a customer purchases a product at a given price, but
these remain approximations. An example where ground truth is available late is
loan application prediction, where the model predicts loan repayment or default
of a customer. Loan repayment can only be fully captured at the conclusion of
the loan duration, which may be months or even years after the prediction was
made.

• Ground truth and prediction are decoupled. Difficulties in capturing the ground
truth can arise when different software applications are involved. For example,
the dynamic pricing prediction model may not include a customer’s identification
as an input so that this information is not logged. This makes it difficult to later
identify whether a purchase occurred for a particular price prediction.

• Ground truth not available for all classes. Consider a fraud detection or predic-

20.5. MLOPS LIFECYCLE PHASES 669

tion service. Predicted instances of fraud (”positive predictions”) may be inves-
tigated and be shown to be either true or false. that is, true and false positives
will be known. However, not all negative predictions can or will be investigated
because of their large number. Therefore, true negatives and false negatives will
not be identified.

Input drift, that is, systematic changes to the frequency distributions of input values,
may be caused by a non-stationary environment, for example, customers or markets
changing over time, or by selection bias induced by the model itself. For example, a
dynamic pricing application may drive away price conscious customers from the web
store, changing the characteristics of the input values.

There are two main methods for input drift detection. The first method uses univariate
statistical tests, for example, the χ2 or Kolmogorov-Smirnov tests33 34 to test whether
two samples of input values are drawn from the same probability distribution. While
these tests are simple and quickly carried out, they neglect the multi-variate distribution
characteristics of the input data.

The second approach is called the ”domain classifier approach”. Conceptually, the
old and new input values are considered as two classes (”domains”), and a classifier is
trained on the input values themselves to predict whether an input observation belongs
to the old class or the new class. If such a classifier can be trained to yield a classifica-
tion accuracy better than chance, the old and new input data sets can be distinguished
and must be considered different.

The monitoring and feedback phase of the MLOps lifecycle requires software tools for
logging of inputs, predictions, model explanations, and actions taken by the consumer
of the prediction (e.g. the customer). This phase also requires access to model stores
and online evaluation support. The latter tools allow for A/B testing or shadow testing,
that is, to have two or more models in production and learn which one performs better
based on live data.

To illustrate basic logging in Python, the following code blocks extend the Flask mi-
croservice application introduced above35. This example can illustrate only the most
basic notions of logging events to a log file for later analysis. It uses the built-in, default
logging package for Python.

The first code fragment sets up a logger to log the web requests to a file. A logger
is characterized by its name and log level. Typical log levels, across many logging
frameworks in most programming languages, are DEBUG, INFO, WARN, ERROR and
CRITICAL, which are ordered in increasing order of severity. For example, DEBUG
logging can be used to log a multitude of events that are useful to know about when
creating a software application. However, DEBUG logging is generally not needed for
applications in production. INFO logging captures events that are useful to determine

33https://en.wikipedia.org/wiki/Chi-squared_test
34https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
35Complete file is available on https://github.com/jevermann/busi4720-mlops/blob/

main/flask_deploy_logging.py.

https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://github.com/jevermann/busi4720-mlops/blob/main/flask_deploy_logging.py
https://github.com/jevermann/busi4720-mlops/blob/main/flask_deploy_logging.py

670CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

the normal functioning of an application whereas WARN events in a log indicate condi-
tions that are abnormal, but have not led to errors. Finally, ERROR events indicate errors
in a software application but the application continues to work, while CRITICAL log
events indicate errors that have led to the halting of a software application. The code
below sets the logging level to INFO as routine events are to be captured.

A file handler is added to the logger for writing the events to a file, rather than printing
them on the console. As an alternative, a RotatingFileHandler may be used.
This handler automatically limits the log file size and rotates logs when a file size
exceeds the limit. In the example below, the 5 most recent logs are kept, while earlier
log information is discarded.

import logging.handlers

Set up the logger:
req_logger=logging.getLogger(model_name+'.requests')
req_logger.setLevel(logging.INFO)
req_logger.addHandler(

logging.FileHandler(
model_name+'.requests.log'))

req_logger.addHandler(
logging.handlers.RotatingFileHandler(
model_name+'.requests.log',
maxBytes=1000000,
backupCount=5))

With the request logger defined, the following code fragment shows how it can be
used. The code block modified the predict_json() and the predict_form()
functions to log the web request, together with the model name, the current time, and
the remote internet address (the address of the web client or browser). Logging is done
simply by calling the info() method of the request logger and providing the message
to the be logged as well as the arguments to be inserted into that message.

Use the logger:
@app.route("/predict_json", methods=["POST"])
def predict_json():

req_logger.info('%s TIME %s IP %s JSON %s',
model_name,
time.ctime(),
request.remote_addr,
request.json)

...
def predict_form():

req_logger.info('%s TIME %s IP %s FORM %s',
model_name,
time.ctime(),
request.remote_addr,
request.form)

...

20.6. ML GOVERNANCE 671

Hands-On Exercise

1. Download the complete file from GitHub.
2. Define a second logger that writes to a different log file

• You do not need to rotate this log file
• The definition of the second logger is analogous to that of the re-

quest logger
3. Add logging to the predict_json() and the predict_form()

functions to capture the time, the three input values, and the prediction
outcome in the log.

• Replace the # TODO: Output logging goes here com-
ments with your code

• To make the log easy to analyze, write the information in CSV
format. Make sure you quote the fields that need quoting.

20.6 ML Governance
In general, governance provides control, oversight, guidance, and makes strategically
important decisions. ML governance in particular provides oversight, control, and di-
rections to ML operations, and makes important strategic decisions around ML use in
an organization. Governance often asks critical questions of management and opera-
tions to ensure that risks are appropriately managed and business value is realized or
organizational goals are achieved. Figure 20.13 shows an 8-step process model for ML
governance36.

1. Understand ML Use Cases. This step prompts the organization to understand the
extent to which it uses ML models and for what purposes. Typical questions to
ask (and to answer!) are the following:

• Who are the consumers of the model outputs? Some models may be devel-
oped for internal consumption and decision making, while others may be
customer facing.

• What regulations and legal constraints apply to each use case or model?
Different industries and geographic or jurisdictional areas have different
constraints. Organizations must identify the users of their models and the
laws and regulations that apply.

• What are the legal, financial, reputational risks of prediction errors? An-
swering this question ensures that effective model risk management is in
place, as described above.

• What is need for explainability or interpretability? Not all models need
to be interpretable, and different models or model use cases may require
different types of interpretability.

36The figure and the material in this section are adapted from Treveil et al. (2020).

https://github.com/jevermann/busi4720-mlops/blob/main/flask_deploy_logging.py

672CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Figure 20.13: ML Governance Phases (after Treveil et al. (2020), Chapter 8)

• What are the availability requirements for the various models? Not every
model must provide 5-nines uptime, that is, be available 99.999% of the
time. Ensuring high availability is generally costly.

• What are the model lifetimes and likely rates of model deterioration? Know-
ing even approximate answers to this question can inform how fast or re-
sponsive the MLOps processes need to be.

2. Define the Ethical Position. This step guides how ML models will be used (or
not used) by an organization. It examines the following questions:

• How important are aspects like equality, privacy, human rights, democracy,
and bias? Answers to this question can, for example, inform the features
that are used or excluded from prediction models, or what data is stored
and logged from models in production.

• How transparent should decision making be to the customers of the predic-
tion models? Answers can inform the use of interpretable ML methods or
the type of models deployed by the organization.

• What level of responsibility for errors will or should the business assume?
For some errors, the business or organization may accept financial respon-
sibilities, for others it may try to deflect this responsibility by appropriate
legal instruments (e.g. terms-of-service or licenses to use).

20.6. ML GOVERNANCE 673

Source: Treveil et al. (2020), Figure 8-4

Figure 20.14: RACI Matrix for ML Governance

• What is the potential for deception, manipulation, exploitation of model
users? For example, a recommendation system that is used to increase sales
may lead some users to purchase products or services they cannot afford,
leading to financial hardship. As another example, consider recommen-
dation systems for news articles that may lead users to biased or limited
coverage.

3. Establish Responsibilities. This step essentially defines ”who will do what?”.
A frequently used way to define responsibilities is through the use of a ”RACI”
matrix as in Figure 20.14. RACI stands for ”responsible”, ”accountable”, ”con-
sulted”, and ”informed”. This step of ML governance covers the following
points:

• Responsibilities must be defined at the strategic, tactical, and operational
level. For example, who must be involved in model training (operational),
who is allowed to sign-off on model risk (tactical) and who determines
business goals or KPIs for a model (strategic)?

• Senior management sponsorship is important for the MLOps lifecycle. With-
out senior management recognizing the importance of ML models to the
organization, and providing adequate resources and guidance for their de-
velopment and use, ML and MLOps cannot function.

• ML governance should be integrated into existing governance mechanisms.
For example, organizations typically have IT governance mechanisms and
a set of IT related policies and procedures. ML governance can extend
these and define whether and how they apply to the MLOps lifecycle.

674CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

4. Define Policies. This step answers the question ”how will we do that?”. Policies
are formal and explicit rules that govern the details of what acceptable perfor-
mance of the following issues means and how acceptable performance levels
are achieved and documented. The following are the major MLOps aspects that
require policies and some example questions to be answered by such policies:

• Reproducibility and traceability: How is this achieved, measured, and ver-
ified? What are acceptable levels?

• Auditability and documentation: How much documentation and in what
format is required? Where is the documentation maintained and who can
access it?

• Sign-off between stages: Who has authority to, for example, select a model
and move it to testing or deployment?

• Model verification: What verification tests must be performed? What are
acceptable results? Who determines acceptable results? How are verifica-
tion results documented?

• Model explainability: What types of explainability are required for each
model? Who is allowed to define such requirements? How can they be
tested and documented?

• Model bias and bias testing: When and how must model bias be tested?
What are acceptable levels of bias or fairness? Who determines them?
How is bias testing documented?

• Model deployment mechanisms: Who has the authority to decide the choice
of deployment mechanism and how are the resulting infrastructure require-
ments and model risk determined? How are decisions and their rationale to
be documented?

• Model monitoring: At what intervals is model performance monitored?
Which metrics are recorded? How long are such records kept and main-
tained? Who has access to such records for analysis? What alarms are
defined to identify model problems? Who must react how quickly to such
alarms?

• Data quality and data compliance: What are acceptable levels of data qual-
ity? How is it ensured, tested, and documented? Who is responsible for
data compliance with legal and regulatory constraints? How is compliance
demonstrated?

As noted, existing governance mechanisms, such as an IT use policy or an IT
development or DevOps policy, should be applied when relevant.

5. Integrate Policies into MLOps Process. This step ensures that the relevant poli-
cies are actually applied and followed throughout the phases of the MLOps life-
cycle. In particular, integration involves the following steps:

20.6. ML GOVERNANCE 675

• Formalize and automate MLOps processes: Automation of processes can
ensure that the actions and decisions specified in policies are applied reli-
ably and consistently. As far as possible, the activities required by a policy
should be tool supported or automated.

• Define controls: This step translates policy requirements into actionable or
specific constraints and determines how control effectiveness can be mea-
sured. For example, if a policy specifies that a model must be globally ex-
plainable in terms of feature importance, an automated tool should prevent
a model being deployed to production that does not have associated expla-
nation test results in the model repository. A control for this may specify
exactly what the model repository must contain. This also indicates how
control effectiveness can be tested: All models in production should have
the required explanation test results.

• Define monitoring of controls: When and how frequently is control effec-
tiveness monitored? Who performs such monitoring and who is responsible
for actions in case of violations?

6. Implement Governance Tools. As one of the core principles of MLOps is au-
tomation, it is unsurprising that ML governance mechanisms should also be au-
tomated and supported by appropriate software tools. This involves the following
aspects:

• Automate controls: As indicated above, controls should be automated in
the software tools that form part of the MLOps tooling, such as model
repositories, ML pipelines and ML workflow orchestration tools.

• Logging of control violations: Once controls are defined, violations should
be monitored and logged. This ensures accountability and auditability but
is also useful for determining how MLOps processes or policies can be
improved in the future.

• Auditing of control effectiveness: Policy compliance and control effective-
ness should be periodically audited by an independent auditor, that is, staff
outside the MLOps process. Examples might be staff of the chief risk offi-
cer (CRO) or of the chief information officer (CIO) of the organization.

• Policy and procedure maintenance: Policy repositories can support periodic
policy and procedure evaluation, assessment and updates when required.
They support policy dissemination and version management.

7. Engage and Educate. Policies and procedures are only effective if they are
known and followed by those who they apply to. This step in the governance
process includes the following aspects:

• Communicate: Organizations have many different formal, semi-formal,
and informal ways to communicate policies and procedures.

• Awareness: While communication makes policies and procedures avail-
able, awareness requires that MLOps participants consider the applicable

676CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

policies throughout their daily work.

• Training: Different training methods, online or in-person, individual or in
groups, must be made available that cover both technical MLOps aspects
as well as applicable policies, and how to best implement or comply with
policies.

• Buy-in & commitment: Successful MLOps and ML governance requires
the buy-in and commitment to ML governance and efficient MLOps of all
stakeholders and participants, at all levels of the organizations.

• Culture: Successful MLOps is a cultural issue as much or even more so
than a technical one.

8. Monitor and Refine. Just like deployed models must be continually monitored
in the MLOps lifecycle, so must deployed policies and controls be continually
monitored in ML governance. This includes:

• Evaluating risk exposure: Governance, through the deployed policies, is
designed to manage risk. An organization must periodically assess the ac-
tual risk exposure versus acceptable levels of risk and must, if necessary,
adapt its governance mechanisms such as responsibilities, policies, or spe-
cific controls.

• Evaluating policy adequacy: This examines whether policies are appropri-
ate to control risk and ensure efficiency of the MLOps process.

• Evaluating control effectiveness: As noted above, control effectiveness
must be continually monitored and evaluated. If necessary, controls must
be strengthened.

• Evaluating MLOps process performance: The overall efficiency and effec-
tiveness of the MLOps process must be evaluated. This asks question such
as: ”how long does it take to move a new model to production?”, ”how
long does it take to recover from a production model problem?”, ”how of-
ten are there significant problems when moving a candidate model through
testing?”. Recall that governance mechanisms are not only intended to
manage risk but also to ensure efficiency. When process performance does
not meet expectations, processes and policies may need to be adapted.

20.7 Review Questions
Introduction

1. Why is the integration of a trained model into a production environment impor-
tant, and what challenges can arise during this process?

2. Provide an example of how a predictive model might be used in a business con-
text and the potential risks involved.

3. What are the three main purposes of MLOps?

20.7. REVIEW QUESTIONS 677

4. Why is the constant change in data a significant challenge for organizations using
predictive models?

5. Describe the composition of business analytics teams and the issues that may
arise within such teams.

6. What are the main principles around moving predictive analytics models into
production according to MLOps?

7. Define ”infrastructure as code” and its importance in MLOps.
8. Describe how MLOps intersects with machine learning, software engineering,

and data engineering.

MLOps Lifecycle Overview

9. Describe the two lifecycles that are combined in the MLOps lifecycle.
10. How does the DevOps approach address the issues found in early software de-

velopment practices?
11. Explain the rationale behind combining the model development lifecycle and the

DevOps lifecycle.
12. How does the combined MLOps lifecycle address the integration of machine

learning models into complex software applications?
13. Using the example of a dynamic pricing web-store application, illustrate the steps

involved in the MLOps lifecycle.
14. Discuss the importance of formalized and automated processes in managing the

MLOps lifecycle efficiently.

MLOps Roles and Requirements

15. Describe the role of subject matter experts in the MLOps lifecycle. What are the
requirements for subject matter experts to perform their role efficiently?

16. Explain the responsibilities of data scientists in the MLOps process.
17. How do data engineers support data scientists, and what are their main responsi-

bilities?
18. What automated tools do data scientists and data engineers require to perform

their tasks efficiently?
19. Discuss the role of data engineers in the MLOps lifecycle.
20. Define the role of software engineers in integrating machine learning models.

Describe the requirements of software engineers for effective collaboration and
code management.

21. What are the responsibilities of DevOps engineers in the MLOps lifecycle?
22. Who are model risk managers and model auditors, and what are their primary

responsibilities? What tools do model risk managers require?
23. Describe the roles of ML engineers and ML architects in the MLOps lifecycle.

Why is it important for ML engineers to quickly assess and adjust infrastructure
capacities?

MLOps Tooling

24. What are CI/CD tools, and how do they support the MLOps lifecycle?

678CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

25. Define feature stores and their importance in managing data for ML models.
26. Discuss the role of model registries in the MLOps lifecycle.
27. What is the purpose of ML metadata stores, and how do they support MLOps?
28. Explain the importance of model monitoring tools for deployed models.

MLOps Lifecycle Phases

29. Describe the main phases of the simplified MLOps lifecycle.
30. What are the main activities in and the outputs of the model development phase

of the MLOps lifecycle?
31. List some important questions related to data management that should be ad-

dressed during the model development phase.
32. What are some key considerations for ensuring model fairness and mitigating

bias during model development?
33. What are the main tasks in and the inputs and outputs of the phase of preparing

a model for production?
34. What are the key considerations when selecting a runtime environment for a

model?
35. What are some key technical questions to consider when preparing a model for

production?
36. Describe the potential risks associated with deploying a machine learning model

and how these risks can be assessed.
37. List and explain some risk mitigation procedures that can be employed during

the preparation for production phase.
38. What are the main steps in and the inputs to deploying a model to production?
39. Describe the components of a typical automated CI/CD pipeline for deploying

machine learning models.
40. What are the key considerations for ensuring scalability and reliability of model

inference during deployment?
41. Explain the importance of continuous monitoring in the deployment phase and

what aspects should be monitored.
42. Explain how a Flask microservice can be used to deploy a trained model.
43. How can a neural network model be deployed in a browser-based web applica-

tion using TensorFlowJS?
44. Explain the concept of input drift and its potential impact on model performance.
45. What are some aspects to consider when triggering model retraining?
46. Discuss the challenges associated with ground truth availability and how they

impact the monitoring and feedback phase.
47. Describe two main methods for detecting input drift.

ML Governance

48. What is the role of ML governance in the context of ML operations?
49. Why is it important for an organization to understand its ML use cases?
50. What are some critical questions to ask when understanding ML use cases?

20.7. REVIEW QUESTIONS 679

51. What are the potential consequences of not identifying the legal and regulatory
constraints for ML models?

52. Discuss some ethical considerations that organizations must address when using
ML models.

53. How can transparency in decision-making affect the deployment of ML models?
54. Why is it important for an organization to consider the potential for deception or

manipulation by ML models?
55. Explain the concept of a RACI matrix and its role in ML governance.
56. Why is senior management sponsorship important for the MLOps lifecycle?
57. What are the key aspects of MLOps that require defined policies?
58. Give examples of questions that need to be answered by policies related to model

verification and monitoring.
59. Provide examples of questions that policies should answer for reproducibility

and traceability.
60. Why is it important to formalize and automate MLOps processes?
61. How can governance tools automate controls in the MLOps process?
62. Explain the importance of logging control violations and auditing control effec-

tiveness.
63. List the aspects involved in engaging and educating MLOps participants.
64. What is the importance of monitoring and refining policies and controls in ML

governance?
65. How can policy repositories support policy and procedure maintenance?

680CHAPTER 20. MANAGING MACHINE LEARNING OPERATIONS (MLOPS)

Chapter 21

Legal Issues in Business
Analytics

Learning Goals
After reading this chapter, you should be able to:

• Identify potential risks with respect to Canadian tort law contract law that can
arise in the context of business analytics.

• Identify copyright protection of data for business analytics and manage licenses
that govern the use of such material.

• Understand the limitations of web site data for business analytics.

• Create and manage an accountability program for an organization to ensure com-
pliance with PIPEDA.

• Understand the legal responsibilities with respect to AI in different jurisdictions
and implement compliance programs.

21.1 Introduction
This chapter provides a brief introduction to legal issues in business analytics. The
chapter begins with an introduction to tort law, contracts, licenses, and copyrights, but
focuses on data protection and privacy regulation. It concludes with a brief view to
AI-specific regulations that are proposed (in Canada) or have already taken effect (in
the European Union).

The chapter takes a Canadian perspective. Canadian tort law is based on common law
in the English tradition. As such, some of the concepts and issues discussed in this
chapter may be applicable to other common law jurisdictions in the English tradition.

681

682 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

On the other hand, the law of the province of Quebec has a different tradition and not
all common law concepts apply there. Similarly, the section on copyright law focuses
on Canada, although copyright law is internationally relatively harmonized, beginning
with the Berne convention of 1886 and through the ongoing activities of the WIPO1

(World Intellectual Property Organization), such as the WIPO copyright treaty (1996),
to which most countries are signatories. The section on information protection and pri-
vacy focuses on Canadian federal regulation that applies to commercial activity within
Canada. A different set of regulations apply to Canadian federal and provincial gov-
ernments. Many other jurisdictions around the world also have information protection
and/or privacy regulation that may apply to Canadian businesses operating in those ju-
risdictions, but that may be significantly different from the Canadian regulations. The
final two sections discuss Canadian and European Union (EU) legislation around the
use of artificial intelligence systems. The Canadian legislation is proposed and, at the
time of writing (Sep 2024), is working its way through parliament, while the EU legis-
lation is in force.

21.2 Tort Law
A tort is a civil wrong that causes harm to an individual. Tort law governs such civil
wrongs or injuries, other than breach of contract, and the remedies for such wrongs
and injuries. Torts are typically categorized into torts against the person, property torts,
economic torts, dignitary torts, and negligent torts. This section does not provide a
comprehensive discussion of tort law but only briefly discusses some torts that may
arise in the context of business analytics.

An important general concept in tort law is that of vicarious liability. In particular,
employers may be liable for the negligent behaviour, actions, and omissions of their
employees. This liability hinges on the definition of an employee versus an indepen-
dent contract, which has become somewhat blurred in the so-called ”gig economy”.
Various tests of employment relationships have been devised and applied by the courts,
typically focusing on the exclusivity of the relationship and the level of control exerted
by the employer over the employee.

An example in the context of business analytics may be large scale data collection
efforts, for example Google’s Street View program, may use a fleet of car or bicycle
drivers, that may through their actions cause significant harm. Whether the drivers are
employees or independent contractors is of importance in assessing the risk. Moreover,
the potential harm is not only associated with the risk of traffic accidents, but also
potentially other torts such as intentional trespassing or invasion of privacy (intrusion
on seclusion). In these cases, the employer may be vicariously liable for the injuries
caused by their drivers.

Damages that can be awarded in tort law are compensatory, which compensate the in-
jured party financially, and punitive, which are intended to punish the injuring party

1https://www.wipo.int/portal/en/index.html

https://en.wikipedia.org/wiki/Google_Street_View
https://www.wipo.int/portal/en/index.html

21.2. TORT LAW 683

and deter similar future actions or omissions. The difference is important in that com-
pensatory damages may sometimes be so small as to be considered the normal ”cost of
doing business” by the injuring party. Hence, punitive damages may be awarded that
amount to a significant cost to the injuring party in order to form an effective deterrent.
Courts may also order an injunction, that is, they prohibit a party from engaging in
certain behaviour.

Intentional Torts
Among the intentional torts, invasion of privacy (intrusion on seclusion) may be the
most relevant to business analytics endeavours, especially with respect to permissi-
ble modes of data collection. Intrusion on seclusion requires intent to intrude, judged
subjectively based on the the knowledge of the intruder. The tort also requires the
intrusion to be highly offensive, judged objectively from the perspective of a ”reason-
able person”. Finally, the tort requires actual harm, e.g. in the form of anguish or
emotional suffering. Intrusion on seclusion can be physical, for example, drone-based
video collection over private spaces, or virtual, e.g. data scraping off web-sites or
illegally accessing databases. Another example is that of employees inappropriately
accessing private information held by their own organization (”employee snooping”).
However, the standards for offensiveness and actual harm are often difficult to meet,
and other privacy laws (cf. Section 21.7) may be more applicable in typical cases.

Breach of confidence is the tort of disclosing information that is secret, confidential, or
private and that was communicated in a situation that implies or imports an expectation
of privacy and confidence. The tort requires this information to be of some value or
importance and the disclosure to third parties must have caused actual harm. Here too,
the standard of actual harm may be difficult to demonstrate and other privacy laws may
be more applicable in cases of unauthorized information disclosure. An example in the
area of business analytics could be the disclosure of confidential personal information
by a data processor to a competitor, with reputational harm to the data owner due to
customer complaints, or economic harm to due increased competition.

A related tort that has recently been recognized by the Alberta Court of Queen’s Bench
and the Saskatchewan Court of King’s Bench in 2021 and 2022 respectively. The
public disclosure of private facts involves publishing an aspect of private life in some
form that is highly offensive and is not a legitimate concern to the public. Importantly,
both courts determined that the tort is actionable per se, that is, without showing ac-
tual damages. As an example in the context of business analytics this tort may arise
by publishing a person’s medical information with the intent to embarrass or cause
reputational damage.

Trespass to land is the interference with another’s right in real property. An example in
the business analytics content may occur through video or other sensor data collection.
For example, the property rights above land typically extend to some portion of the
lower airspace above it. Modern drones commonly use such heights in overflight and
may cause ”interference”. However, this tort requires direct and physical interference,
a standard that routine data collection behaviour may not rise to. Indirect interference

684 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

is covered by the tort of nuisance.

Important defenses against these torts are consent, assumption of risk, or contributory
negligence. Both consent and assumption of risk can be expressed or implied. Express
assumptions of risk or consent typically take the form of a waiver of liability. How-
ever, liability waivers must describe specific risks and can absolve a defendant only
of liability for negligent, but not reckless conduct. Implied consent is given when a
specific harm may be ordinarily or reasonably expected and a person continues to en-
gage in a particular activity. For example, implied consent to data collection may be
provided by an online retailer clearly describing the data collection that occurs and a
clear statement that continued use of the service implies consent to that data collection.
Contributory negligence is the concept that negligence, i.e. failure to take reasonable
care, by the injured party contributed to the injury or harm. This typically leads to
some apportionment of loss when both parties contributed to the harm.

To summarize, the torts described here are intentional torts; an organization or indi-
vidual must demonstrate intent to harm or injure another party. Additionally, most of
these torts are actionable only when harm or injury has actually occurred.

Negligent Torts and Liability

Negligence is the failure to exercise appropriate care, that is, the breach of the duty of
care. A duty of care typically exists where harm or injury is reasonably foreseeable
and where there is a required degree of ”proximity” between the injured party and the
defendant. Typical situations in which a duty of care exists are employer-to-employee,
manufacturer-to-consumer, provider-to-customer, etc. Throughout the common law
countries and jurisdictions, a number of specific tests for the existence of a duty to care
have been developed and applied. Negligence requires a breach of the duty to care and
a causal proximity to the incurred loss, injury or harm. Causal proximity means that
the particular action or omission was the direct or indirect cause of the injury, but at
the same time, was not too causally remote or the causal chain interrupted by another
event.

An example of negligence in the context of business analytics may be injury caused by
decisions or actions from a predictive model if the development or operation of such a
decision tool was negligent. For example, the organization failed to examine training
data for bias, or failed to appropriately test the finished model. Another example is a
data breach by a company that fails to apply security patches or updates to its software,
or fails to follow industry security guidelines, and as a result suffers a data loss with
consequent injuries or harms to its customers.

Product liability is a subset of strict liability in Canadian tort law, which holds man-
ufacturers, distributors, or retailers liable for harm caused by defective or dangerous
products, regardless of fault or negligence. With strict liability, the focus is on whether
the product was defective or unsafe rather than on the conduct of the defendant and
whether the duty of care was breached. In Canadian law, a product is considered de-
fective if there is a design flaw, manufacturing defect, or insufficient warning about its

21.3. CONTRACTS 685

potential risks. In such cases, strict liability allows an injured party to recover damages
without needing to prove that the manufacturer was negligent.

In the context of data analytics, strict liability can apply to software products or plat-
forms that handle sensitive data, where defects in the software lead to harm. For ex-
ample, data analytics software tools should meet high standards for security, reliability,
and accuracy. A defective product in this area could lead to data breaches, financial
loss, or reputational harm. Consider a retail company that purchases data analytics
services from another company to predict customer behaviour. A design flaw in the
prediction algorithm means that the retailer consistently misses out on sales as it over-
prices its products.

Defences against claims of negligence are assumption of risk and contributory negli-
gence, as discussed above.

21.3 Contracts
Contracts are important in many areas of business analytics as they govern the purchase
or sale of data, the licensing of data, the collection or creation of data, data process-
ing and data manipulation, the provision of access to or use of analytics services, etc.
While the foundations of contract law are important to business analytics, they are not
specific or unique to this area. Contract creation in the English law tradition concerns
concepts such as offers (willingness to contract with the intent to become binding),
invitation to treat (a pre-offer communication), firm offers (valid for a particular time),
counteroffers, battle of the form (conflicting terms in offer and acceptance), revocation
of offers (prior to acceptance) and acceptance. Contract law introduces the concepts
of consideration (the objects or services being exchanged; contracts must involve mu-
tual consideration), privity (being party to a contract; contracts cannot confer rights or
obligations on third parties), and assignment (of rights or benefits by one party to an-
other). The law clarifies what form an offer or acceptance must take, how offers, revo-
cations, and acceptance must be communicated, when and whether an offer is deemed
to be accepted, etc. For electronic commerce in Canada, the Uniform Electronic Com-
merce Act (UECA) provides legal recognition of electronic documents, ensures that
electronic contracts are enforceable, clarifies electronic communication modalities in
contract formation (sending and receiving of electronic documents), and addresses the
use of electronic or digital signatures.

Specific issues in business analytics sometimes arise in the description of what is being
purchased or sold. In particular, data can be sold (that is, the copyright can be assigned
to another party), or it can be licensed for use, typically with limitations and restric-
tions. Data sets may be provided in their entirety as copies, or data may be accessed
as needed through electronic means, for example on a subscription basis. In the for-
mer case, the contract may specify the rights that are transferred and any limitations on
use of the data; in the latter case, the contract may specify the access modalities and
rights and obligations of each partner in making available the service and responsible
use of the service. Often, data contains personal or protected private information and

686 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

contracts should contain clauses that specify whether and how such data must be pro-
tected. These contract clauses may specify technical or administrative measures, audit
and oversight rights, or prescribe employee training and education.

In business analytics, processing services may be offered and contracted, e.g. for data
cleaning, data preprocessing, format shifting, etc. Analytic prediction models may be
sold and purchased. For example, trained models are copyrighted and this copyright
could be assigned, or a license could be issued, or the model may be accessed to make
predictions. For example, when real-time access to a predictive service is purchased in
a contract, the buyer should include a liability and indemnification clause that holds the
provider liable for wrong or misleading predictions and any injuries suffered because
of it. Contracts for accessing services may also specify service levels and performance
standards. As an example, a contract may specify the required availability and response
time for a real-time prediction service to ensure the service provider maintains appro-
priate service level. A contract may also impose rate limits for the number of requests
per time unit on the part of the service consumer.

In all these cases, the issue of quality, of data or of a service, is important but often
difficult to specify in contract terms. For example, how should the quality of a data set
be defined so that it can be objectively measured by all parties to the contract? How
should thresholds for acceptable quality be set that are unambiguous and understand-
able by all parties? How should the quality of a trained predictive model be defined?
Are there considerations beyond the validation or test error? Who provides the valida-
tion or test data to assess the quality? These questions show that considerable effort
must be expended on defining appropriate contract clauses.

21.4 Licenses
A license is the permission to use or do something that would otherwise not be permis-
sible. Licenses are transferred as part of a contractual agreement between the rights
holder (licensor) and the licensee. A typical use of licenses in business analytics con-
cerns the use of copyrighted material, such as data sets, trained prediction models, or
software applications. Licenses can be exclusive, sole, or non-exclusive (ordinary). An
exclusive license differs from a sole license in that an exclusive license also prohibits
the licensor (rights holder) from engaging in the licensed activity, while a sole license
means that only a single license is issued but the rights owner can also engage in the
licensed activity.

Contractual agreements may specify the license to be revocable by the licensor, or to
be irrevocable. Licenses may also be time-bound, that is, they have an expiration date,
or they can be in perpetuity. Time-boundedness is independent of revocability. For
example, a license in perpetuity may be revocable, and an irrevocable license may be
bounded in time.

Licenses may be transferable by the licensee to another party, or non-transferable. Li-
censes may also provide a (limited) option to sub-license to a third party. When a
license is transferred, the original licensee is no longer permitted to engage in the li-

21.5. COPYRIGHT 687

censed activity, that is, they no longer hold a license, while in the case of sub-licensing,
the original licensee retains a license.

Licenses may grant specific rights or may permit all uses that are normally the right
of the author or copyright holder. Licenses may also provide conditions or restrictions
for engaging in the licensed activity, and termination of the license when the licensee
fails to meet such conditions or violates the restrictions. Finally, licenses may provide
or explicitly exclude warranties or provide indemnification clauses.

21.5 Copyright
Copyright law governs the rights of authors of an original work, in the sense that the
work originated with the author. The scope of what is copyrightable is rather broad, but
importantly it does not cover ideas but must involve a ”fixed,” tangible form. Copyright
in Canada includes the rights to reproduce (copy), distribute, publish, and to translate
or adapt a work.

In the context of business analytics, questions may arise with respect to what is copy-
rightable and whether an activity is reserved for the rights holder. For example, a fact
itself is not eligible for copyright protection as it is not an original work, and neither
is the simple collection of facts. However, once a collection is curated (that is, some
items are removed while others are retained), transformed, or otherwise processed in
a manner that involves skill, judgment, or creativity of an individual, the result does
constitute an original work eligible for copyright protection. For example, data that is
indiscriminately and automatically compiled, e.g. a recording of raw sensor data or the
raw text collected by an automated web crawler bot, may not be afforded copyright,
but subsequent data cleaning, preprocessing or feature engineering may make the data
set eligible for copyright protection.

A particular issue where copyright law may be unclear is the use of data for the training
of predictive models. In particular, the question of whether the ingestion of data into
model training without making a local copy of that data constitutes reproduction, adap-
tation, or translation is not yet settled in Canada. Consider text data that is immediately
submitted to a tokenizer, converted to integers, and then processed by an embedding
layer, all without a copy of the original text being retained. Moreover, the copyright
act allows temporary reproductions for technological processes, given that ”the repro-
duction’s only purpose is to facilitate a use that is not an infringement of copyright,
and the reproduction exists only for the duration of the technological process” (Canada
Copyright Act, 30.71).

21.6 Web Site Data Collection
Web sites provide a lot of information that is useful for business analytics. Assuming
that the data presented on a web site is eligible for copyright protection, the rights
holder can limit or prohibit its use by issuing (or withholding) licenses. Typically,
web sites provides ”terms of use” for this purposes. These terms are human-readable

688 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

documents that specify what rights are given to persons accessing the web site. Terms
of use are typically considered valid if clear and reasonable notice is given to them, e.g.
by requiring explicit acknowledgment or by providing a conspicuous link to them on a
web site.

However, large-scale web data collection does not rely on human users accessing and
reading web sites. Instead, it relies on automated software applications, so called web
bots or crawler bots or simply crawlers, that access the content of a web page, process
it, and follow any links from one page to another. Crawlers were first devised by the
early web search engines, such as Yahoo or Google, to populate their search databases.
However, web crawlers are not limited to search engine use. They are now also used,
perhaps primarily, to collect data for analytics, e.g. text mining, social network analy-
sis, or collecting image data for the training of predictive models.

To help control or limit access to the information on a web site by crawlers, web sites
can use the Robot Exclusion Protocol, commonly referred to as the ”robots.txt” file.
Originally devised in 1994 and formally standardized in 2022, a ”robots.txt” file for
a web site specifies in computer-readable format which crawlers or bots are allowed
to access which portions of a web site. However, while standardized, not all crawlers
obey the limits specified in the robots.txt file and organizations should also consider
other measures to prevent unauthorized data scraping, e.g. by configuring their web
server to block or ignore such requests or to set access rate limits.

Figure 21.1 shows an excerpt of the ”robots.txt” file of the YouTube web site. The
directive User-agent: specifies which type of crawler or bot the following direc-
tives in the file apply to. The ”Disallow:” directive excludes certain portions of
the web site. For example, the YouTube ”robots.txt” file in Figure 21.1 allows the
”Mediapartners-Google*” bots access to the entire site, that is, it does not dis-
allow anything for these bots. In contrast, all other bots (”User-agent: *”) are
disallowed from certain portions of the site. Contents of the site that are not disallowed
are deemed to be allowed. In contrast, the directive ”Allow:” (not used in the exam-
ple) works by explicitly permitting access and deeming all not allowed portions to be
prohibited. Finally, the ”Crawl-delay:” (not used by the example) can be used to
specify a minimum time (in seconds) before a crawler should access the site again.

In summary, the robot exclusion protocol through the ”robots.txt” file provides access
limits to automated web crawling, but adherence to this protocol by a crawler or bit
is voluntary, and not all crawlers understand or honour all directives. Importantly, the
directives in this file are not legally binding.

Hands-On Exercise

Identify the robots.txt file of your university web site.
• Are there portions of the site a crawler bot is not permitted? Why might

this be?
• Are there different directives for different crawlers?
• Are there limits on crawl frequency?

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA689

robots.txt file for YouTube
Created in the distant future (the year 2000) after
the robotic uprising of the mid 90's which wiped
out all humans.

User-agent: Mediapartners-Google*
Disallow:

User-agent: *
Disallow: /api/
Disallow: /comment
Disallow: /feeds/videos.xml

Disallow: /watch_popup
Disallow: /watch_queue_ajax
Disallow: /youtubei/

Figure 21.1: Robots.txt file from youtube.com/robots.txt

21.7 Information Protection and Privacy Legislation
in Canada

This section presents an overview over the information protection and privacy leg-
islation in Canada. The section focuses on the Personal Information Protection and
Electronic Documents Act (PIPEDA).

Resources

Information in this section is based on and adapted from that provided by the
Office of the Privacy Commissioner of Canada on the PIPEDA web page and
related pages. In particular, the following web pages are useful introductory
resources:

• 10 Tips for avoiding complaints is a short list of recommendations for
businesses.

• Privacy Guide for Businesses is a concise guide to responsibilities under
PIPEDA.

• PIPEDA Interpretation Bulletins provide commentary based on legal
precedents and interpretations by courts of the PIPEDA legislation.

• Issue specific guidance for businesses provides guidance on a number of
specific issues, ranging from e-marketing to manufacturing internet-of-
things devices.

• Getting accountability right provides a guide for businesses to design and
implement an ”accountable organization”.

PIPEDA is a federal legislation that applies to commercial activity in all Canadian
provinces, unless the activity takes place solely within a province has passed substan-

youtube.com/robots.txt
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/02_05_d_55_tips/
https://www.priv.gc.ca/media/2038/guide_org_e.pdf
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/issue-specific-guidance-for-businesses/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-compliance-and-training-tools/gl_acc_201204/

690 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

tially similar provincial legislation. At the time of writing (Sep 2024), this is only
applies to British Columbia and Ontario. Importantly, PIPEDA does not apply to the
Canadian federal government or the provincial governments. Information protection
for the former is subject to the Privacy Act and the Access to Information Act, while
information protection for provincial governments is regulated by specific provincial
acts, for example, the Access to Information and Protection of Privacy Act (ATIPPA)
in Newfoundland and Labrador.

PIPEDA establishes the Office of the Privacy Commissioner of Canada (OPC) that is
responsible for overseeing compliance with both the Privacy Act and PIPEDA. In par-
ticular, the OPC has the power to investigate complaints about compliance, but has no
enforcement power. Upon investigation of a complaint, the OPC issues a report that
makes non-binding recommendations. This report also provides leave for the com-
plainant to take their case to federal court.

Personal Information
Personal information in PIPEDA means information about an identifiable individual.
This definition is very broad and covers a range of data. However, specifically ex-
empt is contact information that an organization uses solely for communication with
employees. Examples of personal information are:

• Name, age, weight, height

• Address and communication info, for example email addresses and phone num-
bers.

• Medical information, such as medical records, clinical notes, and prescriptions
for medication.

• Financial information, for example income, purchases, financial transactions,
debt and credit information.

• Race and ethnicity, marital status and religion.

• Biometrics, such as DNA, voice-prints, and fingerprints.

• Location information, for example GPS or RFID based location information (if
linked to an individual), an IP address (if linked to an individual).

• Education information, such as transcripts, grades, scholarship applications, schol-
arships.

• Employment information, such as employment records, performance evaluations
and appraisals, salary and benefits information.

• Opinions held and comments expressed by an individual.

Importantly, anonymous information is also considered personal if there is a serious
possibility that an individual could be identified, based on that information alone or in
combination with other information. This interpretation presents a serious challenge
for anonymizing information when large data sets with multiple variables are stored.

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA691

Fair Information Principles
PIPEDA is structured around ten ”Fair Information Principles” that govern the collec-
tion, use, disclosure, and retention of personal information, as well as the rights of
individuals with respect to the organizations holding that data.

1. Be accountable

2. Identify the purpose

3. Obtain valid, informed consent

4. Limit collection

5. Limit use, disclosure and retention

6. Be accurate

7. Use appropriate safeguards

8. Be open

9. Give individuals access

10. Challenging compliance

Additionally, PIPEDA provides for mandatory breach reporting by organizations, a
process for individuals to complain about compliance to the OPC, and the authority of
the OPC to audit organizations for PIPEDA compliance. The remainder of this section
will examine each fair information principle in more detail.

PIPEDA Fair Information Principle 1: Accountability
The accountability principle is an overarching principle that requires organizations to
be compliant with PIPEDA and all ten fair information principles2. Specifically, orga-
nizations are required to appoint a person responsible and accountable for compliance
with PIPEDA. This person or office is responsible for protecting personal informa-
tion, including any information that is transferred to third parties and agents, e.g. for
processing or for other purposes. In larger companies, this may take the form of a
dedicated privacy officer, possibly with an office and staff. This person or office must
have the support of the senior management, must be appropriately resourced, and must
have the authority to take action on privacy issues. The reporting lines, both from this
person, e.g. to the CEO or board of directors, but also to this person, e.g. from other
employees or managers of the organization, should be explicitly defined.

The OPC recommends that organizations develop and implement a comprehensive pri-
vacy management program to demonstrate accountability3. A key element of such a
program is an information inventory that identifies all personal information held or
controlled by the organization, including its sensitivity, when and why it was collected,

2PIPEDA Fair Information Principle 1 – Accountability (OPC)
3Getting accountability right with a privacy management program (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_accountability/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-compliance-and-training-tools/gl_acc_201204/

692 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

when and how consent for the collection was obtained, how and where it is stored, who
uses or accesses it, and who it is shared with or disclosed to.

A second element is a set of policies that govern how an organization engages in the
collection, use and disclosure of personal information, organizational rules on gaining
consent and notifying individuals about their information. A policy should also define
how individuals can exercise their rights under PIPEDA to access and correct their in-
formation. The policy might specify how the organization determines the identity of
the requesting individual, how it identifies and locates the requested information, how it
redacts information about other individuals, and how it deals with correction requests.
A policy should define the retention and disposal of information, for example, how
long information is retained, and when the retention period may be extended. Disposal
is more than the deletion of a data file and policies should specify disposal mechanisms
for different types of information and different media. An information security policy
specifies administrative, physical, and technological security controls, such as physical
access to the computer room, encryption of data at rest and in transit, required or ac-
ceptable authentication and authorization mechanism, and role-based access privileges
to the data. Individuals have the right under PIPEDA to challenge organizations to
demonstrate compliance. Policies should be in place how such challenges are managed
and processed.

A third element of a privacy management program is a set of risk and threat assess-
ments tools and mechanisms for all business operations. New initiatives, new prod-
ucts, or new business processes should routinely undergo a risk or threat assessment
with respect to personal information protection and privacy in the normal course of
their development. This includes information system development, business process
redesigns, product design, outsourcing agreements, new venture creation, new market
development, etc.

Employee training and education are another element of a comprehensive privacy man-
agement program. These should foster an organizational culture of privacy awareness
and also convey knowledge about the specific policies and procedures. One important
way in which PIPEDA may be violated is by ”employee snooping”, that is, unautho-
rized access by employees to and use or disclosure of such information for purposes for
which it was not collected. Training should be provided when employees first enter an
organization as well as on a recurring schedule, and in particular when the organization
makes significant changes to its policies or procedures.

Because PIPEDA requires organizations to report privacy breaches to the OPC in cer-
tain situations, breach and incident management procedures must be in place that gov-
ern who reports a breach, when a breach is reported, when and how affected individuals
are notified, etc.

An important element of a privacy management program is the management of exter-
nal service providers, agents, or other third parties that data is shared with or disclosed
to. While transfer of data for processing constitutes use of data, rather than disclosure,
the organization owning the data remains accountable for its protection and privacy.
Therefore, data transfer for processing requires contractual agreements to be in place

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA693

that provide an equivalent protection of information at third parties. This ranges from
specifying permitted uses to required technological security measures, and may include
required employee training and specific administrative responsibilities. Such contracts
must be managed and third party compliance with such contracts should be ensured by
regular audits. Of particular importance in trans-border data sharing arrangements are
the legal protections of information4. Foreign governments may have rights to access
information that make it difficult to comply with PIPEDA, for example through finan-
cial disclosure regulations, or access to information for police and national security
purposes.

Finally, a privacy management program should have procedures for handling external
communication that specify how policies are communicated, how individuals can con-
tact the organization, when and how individuals are notified of transfer or disclosure of
their information, etc.

With these elements in place, accountable privacy management requires periodic as-
sessment of the effectiveness of these elements and controls and document compliance
by the organization with their policies through audits and documentation of audit find-
ings. Important in this context is the authority of the OPC to audit organizations for
PIPEDA compliance. This means that, for example, it is insufficient to offer training
to employees; training participation and outcomes must be evaluated and recorded to
demonstrate effectiveness. Similarly, it is insufficient to merely put in place an infor-
mation access policy; access to information should be monitored and relevant docu-
mentation should be retained to demonstrate compliance.

Policies and procedures should be periodically assessed as to whether they reflect the
latest OPC guidelines and industry best practices. As noted above, the OPC may make
recommendations as the result of a complaint, and individuals may bring cases to fed-
eral court. Both mechanisms should lead organizations to adopt any resulting best
practices or requirements.

PIPEDA Fair Information Principle 2: Identifying Purpose
PIPEDA requires organizations to identify and document the purpose for which infor-
mation is collected5. The purpose for collection must be communicated to individuals
when requesting consent for collection. The purpose for collection must be specific and
considered appropriate by a ”reasonable person”, that is, not overly broad and must be
related to the business activities of the organization. Importantly, when information
that is already collected is to be used for a different purpose, renewed consent must be
obtained.

PIPEDA Fair Information Principle 3: Obtaining Consent
Obtaining consent for collection, use, and disclosure of information is the aspect of
PIPEDA that has drawn the most attention by consumers, the OPC, and the courts.

4Guidelines for processing personal data across borders (OPC)
5PIPEDA Fair Information Principle 2 – Identifying purposes (OPC)

https://www.priv.gc.ca/en/privacy-topics/airports-and-borders/gl_dab_090127/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_purposes/

694 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

Consent must be meaningful and valid6. This requires that individuals understand what
they are consenting to, that is, what information is collected, for what purpose, who it
is shared with or disclosed to, and what are the potential risks or harms that arise from
the collection, use, and disclosure. Since PIPEDA came into force, the requirements
for meaningful and valid consent have been clarified by the OPC and the courts7. In
particular, the information about collection, use, and disclosure of information must be
clearly and explicitly communicated in understandable form. Individuals must be pre-
sented with a clear choice to provide or withhold consent, and the consent process must
be user-friendly. Organizations are required to provide a way for individuals to with-
draw or revoke their consent, and must act as soon as feasible on such a revocation or
withdrawal. Organizations must also re-obtain consent if information is to be used for
a different purpose, or if the organization makes significant changes to its privacy prac-
tices, e.g. sharing information with different third parties, or with third parties located
in different jurisdictions, etc. Finally, organizations are required to retain appropriate
records to demonstrate compliance with the PIPEDA consent requirement.

Importantly, the OPC and the court has held that consent is necessary but not sufficient
for data collection. In combination with principle 2 (identifying purpose), the infor-
mation collection must also serve a real and genuine business interest, and the loss of
privacy must be proportional to the benefits gained by individual.

The OPC considers certain types of data collection to be ”no-go zones”, that is, they
are considered inappropriate even with consent8:

• Collection, use, or disclosure that would be illegal

• Profiling or categorization that leads to unfair, unethical, or discriminatory treat-
ment

• Collection, use, or disclosure that is likely to cause significant harm

• Publishing information with intent to charge for removal

• Requiring social media passwords for employee screening

• Surveillance through an individual’s own devices

Consent may be provided explicitly or implicitly but the collection, use, and disclosure
of sensitive information requires explicit consent. Health or medical information and
financial information is considered sensitive, but the sensitivity of information also
depends on the purpose for which it is collected and the context in which it is used.
The following examples are based on OPC recommendations and court decisions9:

• The number of weekly gym visits may not require explicit consent, but disclosure
to work team members may make this information sensible, therefore requiring
explicit consent.

6PIPEDA Fair Information Principle 3 – Consent (OPC)
7Guidance on inappropriate data practices: Interpretation and application of subsection 5(3) (OPC)
8Guidance on inappropriate data practices: Interpretation and application of subsection 5(3) (OPC)
9Interpretation Bulletin: Form of Consent (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_consent/
https://www.priv.gc.ca/en/privacy-topics/collecting-personal-information/consent/gd_53_201805/
https://www.priv.gc.ca/en/privacy-topics/collecting-personal-information/consent/gd_53_201805/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/interpretations_07_consent/

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA695

• The viewing of health-related websites is sensitive information.

• While an email address is not normally considered sensitive information, it may
be sensitive when it indicates a social connection between individuals.

• Palm-vein scanning in the context of authentication to a computer system or for
physical access control is not sensitive if the scan is not stored and is immediately
transformed.

• Disclosure of sensitive financial information requires explicit consent, while dis-
closure only of customer contact information for financial marketing is not con-
sidered sensitive and may only require opt-out consent.

• Purchasing habits and transaction records are sensitive information, whose col-
lection, use, and disclosure requires explicit consent.

• Voice prints collected for purposes of authentication to a computer system are
not considered sensitive information.

• Non-users of social networking sites would not reasonably expect the use of their
email addresses for creating links. Hence, this use requires explicit consent.

• In initiating a complaint procedure, medical information may be be disclosed to
the defendant in order to defend themselves through implied consent.

• GPS location data may be collected by implied consent for the purposes of im-
proving productivity, or protecting and managing company assets, but not for
employee evaluation.

Organizations may collect information by offering opt-out consent whereby consent is
assumed until and unless an individuals withdraws that consent. Opt-out consent is
acceptable only under specific conditions10:

• The information is non-sensitive in nature and in context, and

• Sharing of information is limited and well-defined, and

• The organization’s purposes are limited and well-defined and clearly stated at
time of collection, and

• An opportunity for opt-out is offered as soon as possible, and

• The procedure for opting out must be convenient, and

• The opt-out takes effect immediately, and

• The opt-out must be communicated to related businesses, subsidiaries, or third
parties that use the collected data.

10Interpretation Bulletin: Form of Consent (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/interpretations_07_consent/

696 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

Hands-On Exercise

Consider your bank or communications provider or other large organization
you regularly deal with.

• What information have they collected and for what purpose?
• How have you provided meaningful consent? Did you have a clear

choice?
• What is process for withdrawing or revoking consent?

PIPEDA Fair Information Principle 4: Limiting Collection

As noted above, the information collected about individuals must fulfill a legitimate
and identified purpose11 and it must be fair and lawful. Organizations should identify
the information they collect in information management policies. In general, limit-
ing the amount of collected information also reduces the risk to an organization from
accidental disclosure or inappropriate use.

Video data collection may play an important role in the context of business analytics,
whether it is for automatic event detection or to serve as training data for prediction
models. The OPC provides a number of guidelines12 for PIPEDA compliant video data
collection.

• Organizations should evaluate whether less privacy-intensive alternatives can
achieve the same purpose. For example, organizations may consider infrared
cameras, LIDAR or radar sensors to record the movement of individuals, but
these do not normally allow identifying individuals.

• Organizations must establish a clear business purpose and use video data collec-
tion only for that purpose.

• Organizations should develop a policy for the use of video data that limits how
and when such data can be accessed, viewed, and processed.

• Organizations should limit the viewing angle and viewing range of cameras as
far as possible and not not record audio unless necessary. In particular, video
data collection is not permissible in areas where individuals have heightened
expectations of privacy.

• Organizations must inform the public that surveillance is taking place using clear
and understandable notices before individuals enter an area that is under video
surveillance.

• The collected video data must be stored securely and destroyed when it is no
longer required for the purpose for which it was collected.

11PIPEDA Fair Information Principle 4 – Limiting Collection (OPC)
12Guidelines for Overt Video Surveillance in the Private Sector (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_collection/
https://www.priv.gc.ca/en/privacy-topics/surveillance/video-surveillance-by-businesses/gl_vs_080306/

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA697

• Organizations must allow individuals access to their video data. At the same
time, individuals must not be able to view information about others. This may
require organizations to technologically blur or otherwise make unrecognizable
third parties in video data.

• While video data is often collected and processed automatically and without hu-
man involvement, organizations should train and educate any human camera op-
erators and third party data processors on privacy obligations.

• Organizations should periodically evaluate the need for continued video surveil-
lance.

PIPEDA Fair Information Principle 5: Limiting Use, Disclosure,
and Retention
Organizations must limit the use, disclosure, and retention of data to identified pur-
poses for which it has obtained consent from the individual13. Renewed consent is
required when the data is to be used for a new purpose or is disclosed to a different
set of third parties. Organizations should also identify the normal retention period for
data and the circumstances that require an extension of the retention period. For exam-
ple, financial regulations may specify minimum retention periods; when an individual
has filed a complaint, information must be retained until resolution of the complaint.
Organizations must also restrict access to only those employees that require access
to fulfill the purpose for which the information is to be used. Organizations should
have in place administrative, technological, and physical measures to authenticate and
authorize individuals to access personal information.

Disposal of information should be governed by a policy and follow a process that is ap-
propriate to the sensitivity of the information and to the medium on which it is stored.
Disposal must include any back-ups and copies of the information, including those at
third party service providers and other parties to which it has been disclosed. Con-
tractual agreements should be in place to govern information disposal by third parties
and contractual compliance should be regularly audited. Importantly, information to
be disposed of must be maintained securely until disposal is complete and verified.

Figure 21.2 shows guidelines for media sanitization by the United States National In-
stitute for Standards and Technology (NIST). Depending on the sensitivity of the infor-
mation and whether the medium leaves organizational control, three different types of
disposal are used. ”Clearing” information is the simple deletion of information. How-
ever, on most computer systems this means that the information remains on the storage
medium, e.g. the hard drive, but the space is marked as available for overwriting with
new data. In other words, the information can easily be recovered. ”Purging” of in-
formation explicitly overwrites deleted information with zeros or random information
or exposes magnetic storage media to strong magnets, so that the deleted information
cannot normally be recovered. However, forensic laboratories with the right equipment
may even in these circumstances be able to recover at least some of the information.

13PIPEDA Fair Information Principle 5 – Limiting use, Disclosure, and Retention (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_use/

698 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

”Destroying” storage media means physical destruction so that even forensic recovery
techniques are unable to restore the information. This typically involves finely shred-
ding hard drives or vaporizing them using extremely high temperatures. Important in
the process shown in Figure 21.2 is the need to validate and document the disposal of
information in all cases.

PIPEDA Fair Information Principle 6: Ensure Accuracy

PIPEDA requires organizations to ensure the accuracy, completeness and currency of
information about individuals14. This means that collection dates for all information
should be recorded and information should be updated if necessary. Organizations
should define policies and procedures for ensuring accuracy, e.g. by regularly verifying
information with the individual about which it is held, and communicate and follow
those procedures.

Over the years, the OPC and courts have interpreted and clarified this principle15:

• Information need only be as accurate as is necessary for the purpose for which
the information is collected.

14PIPEDA Fair Information Principle 6 – Accuracy (OPC)
15Interpretation Bulletin: Accuracy (OPC)

Source: NIST SP 800-88R1 — Guidelines for Media Sanitization, National Institute of Standards and Technology, US

Figure 21.2: US NIST guidelines for media sanitization

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_accuracy/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/interpretations_04_accuracy/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA699

• Industry standards for data accuracy are not always an appropriate reference, as
these standards may be too low to satisfy the PIPEDA requirements.

• The responsibility for ensuring information accuracy rests with the organization
that holds the data, not the individual. That is, the organization must be pro-
active in verifying the data it holds.

• Any updates to data must also be communicated in a timely manner to any third
parties that hold copies of the data for processing.

PIPEDA Fair Information Principle 7: Information Safeguards

Organizations need to safeguard the information they collect through measures that
are commensurate with and appropriate for the sensitivity of the information 16. Such
measures can be administrative, technological, or physical in nature. PIPEDA does not
specify particular safeguard mechanisms. Instead, organizations must continually en-
sure they adequately protect the information and evolve their safeguards as technology
evolves. An example of administrative safeguards are role-based access permission and
employee training. Encryption and password-based access restrictions are examples of
technological safeguards.

Since PIPEDA was enacted, the interpretation of the requirement to safeguard infor-
mation has evolved and been interpreted in light of complaints17 brought before the
OPC:

• Safeguards must be commensurate with the sensitivity of information. For exam-
ple, highly sensitive financial or health information requires stronger safeguards
than low sensitivity information such as addresses or telephone numbers.

• Policies for safeguarding information are important but not sufficient. To be
effective, they must be consistently followed and diligently applied in practice.

• Safeguarding of information also extends to the disposal of information. Until
disposal is verified, information safeguards must remain in place. In particular,
accidentally collected or received personal information must also be safeguarded
until disposal.

• Employee training and education with respect to safeguarding information is
required, and its effectiveness must be demonstrated.

• Organizations must ensure that third parties that use or process the data have
appropriate safeguards in place. Accountability for PIPEDA compliance rests
with the organization that controls the information.

• Before information is disclosed as a response to an access request, organizations
need to establish the identity and the authority of the requesting individual.

16PIPEDA Fair Information Principle 7 – Safeguards (OPC)
17Interpretation Bulletin: Safeguards (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_safeguards/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/interpretations_08_sg/

700 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

• Information stored on portable devices must be encrypted and password pro-
tected at all times.

• Information stored online must be encrypted and password protected at all times.

• Organizations must ensure that their technological safeguards, including encryp-
tion standards, remain up-to-date.

One particular aspect of safeguarding information is the prevention of unauthorized
access by employees, that is ”employee snooping”18. An organizational culture that
holds information privacy important, employee training and regular reminders, as well
as policies for granting and revoking access permission are important mechanisms for
preventing employee snooping. For example, the procedures for employees joining or
leaving an organization, transferring them between departments or assigning employ-
ees new roles should include an assessment and if necessary an update to their access
permissions. Organizations need to ensure that access to information is restricted as
narrowly as possible by role, geography, time, etc. Organizations should routinely
monitor and record information access in order to identify anomalies and inappropriate
access.

PIPEDA Fair Information Principle 8: Openness
Openness means that individuals and employees must be informed about policies that
govern the collection, use, and disclosure of personal information19. In particular, poli-
cies must be easily available to all relevant individuals, they must be easy to under-
stand, they must provide sufficient information about collection, use, and disclosure of
information, they must provide information on how to access and update or amend per-
sonal information, and they should specify how to complain to the organization about
PIPEDA violations. Even when consent for information transfer to third party for pro-
cessing is not required, individuals must be informed about such transfer, especially
when information is transferred outside of Canada.

Hands-On Exercise

Consider your bank or communications provider or other large organization
you regularly deal with.

• What policies or procedures do they communicate?
• Where can you find them? Are they easy to find? Are they easy to

understand?

PIPEDA Fair Information Principle 9: Access
PIPEDA compliance requires that individuals can access the information that an or-
ganization holds about them20. Moreover, individuals have the right to challenge the

18Ten tips for addressing employee snooping (OPC)
19PIPEDA Fair Information Principle 8 – Openness (OPC)
20Responding to access to information requests under PIPEDA (OPC)

https://www.priv.gc.ca/en/privacy-topics/business-privacy/safeguards-and-breaches/privacy-breaches/02_05_d_65_tips/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_openness/
https://www.priv.gc.ca/en/privacy-topics/accessing-personal-information/obligations-for-organizations/02_05_d_54_ati_02/

21.7. INFORMATION PROTECTION AND PRIVACY LEGISLATIONIN CANADA701

accuracy and completeness of their data, and the right to have their information cor-
rected or amended. Therefore, organizations must implement a process to manage
such access and correction of information. An important step of this process is the
verification of the identify of the requester and their authority to access and update the
information. Providing access to information must be free for individuals, or at very
low cost. If organization choose to charge a fee to provide access, the requester must
be informed of the expected fee and must explicitly agree to the fee.

PIPEDA requires organizations to respond substantively to a request for access within
30 days of receiving the request. Specifically, organizations cannot simply respond
with an acknowledgment of receipt within 30 days and take additional time to satisfy
the request; partial responses are insufficient to comply with the 30 day time limit.
In exceptional circumstances, organizations may extend the response time by another
30 days after notifying the requester. Examples of such exceptional circumstances
are access requests that require a legal consultation, extensive format shifting, or the
removal of information about other individuals (e.g. blurring of a video recording).

Requests for information must be made by individuals in writing, e.g. by email or
through a web form. Organizations should document all requests as well as the dates
they are received, and should also update the information retention period for the re-
quested information to ensure that it remains available to satisfy the request and for any
potential subsequent investigation or legal dispute.

Organizations must respond to access requests by providing information in a format
that is generally understandable. For example, organizations may need to provide ad-
ditional explanations to ensure the requester can understand the data that is held by the
organization. When responding to a request, organizations must also inform requesters
about their rights to complain to the OPC, irrespective of whether the organization
satisfied the request or refused the request.

Refusing a request for access to information may be done only for a very limited set of
reasons21:

• Information may be refused if disclosure would reveal personal information
about third parties. However, organizations have the responsibility of separating
the personal information of third parties, whenever possible, to satisfy a request
for information.

• Information that is subject to solicitor-client privilege or subject to litigation or
anticipated litigation is exempt from disclosure under the access to information
principle.

• Confidential commercial information is exempt, but the OPC and federal court
have set high standards for this exemption and the onus is on the organization to
demonstrate the need for confidentiality.

• Information whose disclosure would threaten the security of others is exempt
from disclosure under this access to information principle.

21Responding to access to information requests under PIPEDA (OPC)

https://www.priv.gc.ca/en/privacy-topics/accessing-personal-information/obligations-for-organizations/02_05_d_54_ati_02/

702 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

Importantly, when individuals request correction or amendment of information, the
individual must demonstrate the inaccuracy of the presently held information. Orga-
nizations may satisfy such a request by maintaining both versions of the information.
Finally, organizations must transmit any amendments or updates to all third parties that
have access to that information.

Because of the complexity of handling a request for access to information and updat-
ing of information, organizations should have a policy and process in place and must
provide employees with specific training with respect to this process22.

Hands-On Exercise

Consider your bank or communications provider or other large organization
you regularly deal with.

• What is the process to access the information held about you? Who do
you contact?

• Is access free or does it have an associated cost?
• What is the process to update your information? Who do you contact?

PIPEDA Fair Information Principle 10: Challenging Compliance
PIPEDA requires organizations to provide individuals with an ability to challenge the
organization’s PIPEDA compliance23. Organizations must provide a simple complaint
handling and investigation process, must inform complainants about their procedures
for handling complaints, and must inform complainants about the complaints processes
offered by industry associations, regulators, and the OPC. Organizations need to record
and acknowledge complaints, investigate in a timely manner, and record the outcome
of investigations, such as decisions and actions taken in response, as they notify the
complainant.

Hands-On Exercise

Consider your bank or communications provider or other large organization
you regularly deal with.

• How do you initiate a complaint about lack of compliance?
• Who do you contact?

Mandatory Breach Reporting
Privacy breaches, that is, unauthorized disclosure of information to third parties, must
be reported to the OPC when there is a ”real risk of significant harm”, independent
of the number of individuals affected24. The OPC defines significant harm to include

22Interpretation Bulletin: Access to Personal Information (OPC)
23PIPEDA Fair Information Principle 10 – Challenging Compliance (OPC)
24What you need to know about mandatory reporting of breaches of security safeguards (OPC)

https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda-compliance-help/pipeda-interpretation-bulletins/interpretations_05_access/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/principles/p_compliance/
https://www.priv.gc.ca/en/privacy-topics/business-privacy/safeguards-and-breaches/privacy-breaches/respond-to-a-privacy-breach-at-your-business/gd_pb_201810/

21.8. ARTIFICIAL INTELLIGENCE AND DATA ACT 703

”bodily harm, humiliation, damage to reputation or relationships, loss of employment,
business or professional opportunities, financial loss, identity theft, negative effects on
the credit record and damage to or loss of property.” In determining the risk, organi-
zations should take into account the sensitivity of the information and the probability
of misuse by third parties. As noted earlier, health and financial information is more
sensitive than other information, but other information, such as political opinions or
sexual orientation is also considered sensitive. In assessing the probability of misuse,
organizations should consider when, for how long, and to whom the information was
disclosed, and whether the information was accidentally disclosed or whether there was
malicious intent by an outside party (”hacking”), among other considerations.

PIPEDA requires organizations to also report privacy breaches to the affected individu-
als, in a conspicuous form directly to the individual, and as soon as feasible after it has
been determined that there is a real risk of significant harm. Notification to individuals
must include at least:

• A description of the circumstances of the breach, and

• The dates or approximate times during which the breach occurred, and

• The personal information that was potentially disclosed, and

• The possible harm that could occur, and

• The steps the organization has taken to reduce the risk of harm, and

• Recommendations for the individual to reduce the risk of harm, and

• Contact information where individuals can obtain further information.

While this section has focused on the Canadian context and the Canadian information
privacy legislation related to commercial activity, information protection or privacy
legislation exists in many other jurisdictions with different requirements and obliga-
tions for organizations. For example, the European Union General Data Protection
Regulations (GDPR) apply to all organizations that collect information about individ-
uals located inside the EU. That is, the GDPR may also apply to Canadian businesses.
In the United States, the Child Online Privacy Protection Act (COPPA) and the Health
Insurance Portability and Accountability Act (HIPAA) are more limited in scope and
govern information about children and health data in the US. California has its own
California Consumer Protection Act (CCPA) that governs information about residents
of California. In China, the Personal Information Protection Law (PIPL) governs the
processing of personal information. As with the GDPR, these regulations apply also
to Canadian organizations if they operate in these jurisdictions or process information
about residents of these jurisdictions.

21.8 Artificial Intelligence and Data Act
This section examines the proposed Artificial Intelligence and Data Act (AIDA). This
act is part of the Digital Charter Implementation Act 2022 which combines the Con-

704 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

sumer Privacy Protection Act (an update to PIPEDA), the Personal Information and
Data Protection Tribunal Act, and the Artificial Intelligence and Data Act (AIDA). The
Digital Charter Act was introduced in the House of Commons of the Parliament of
Canada as bill C-27, sponsored by the Minister of Innovation, Science, and Industry,
in June 2022. It received a second reading in April of 2023 and, at the time of writing
(Sep 2024), is being considered by the House of Commons Standing Committee on
Industry and Technology.

Resources

Information in this section is based on and adapted from that provided by the
House of Commons and the Department of Innovation, Science, and Economic
Development. In particular, the following web pages are useful introductory
resources for further reading:

• Parliament of Canada
• AIDA Companion Document (Government of Canada)

The intent of the proposed legislation is to prohibit reckless and malicious use of AI
systems, and to ensure accountability of risks associated with the use of AI systems.
The act defines AI as:

”Artificial intelligence system means a technological system that, autonomously
or partly autonomously, processes data related to human activities through
the use of a genetic algorithm, a neural network, machine learning or an-
other technique in order to generate content or make decisions, recommen-
dations or predictions.” Source: Parliament of Canada

However, the proposed AIDA applies only to ”high-impact systems”. When consider-
ing whether an AI system has a high impact, the government would consider factors
such as the potential to inflict serious harm, whether intended or unintended, the scale
of use of the system, whether there is evidence of risk to health or safety or of a nega-
tive impact on human rights (e.g. discrimination or differentiation based on prohibited
factors, such as ethnicity, gender, etc.), whether harm or adverse impact has already oc-
cured, whether there is an imbalance of economic or social circumstances, and whether
the risks are adequately regulated under another law.

Examples of high-impact systems are screening systems that make decisions, recom-
mendations, or predictions that affect an individual’s access to services, benefits, or
employment (e.g. credit scoring systems). These systems are argued to pose risk due
to the potential for discriminatory outcomes and economic harm to individuals.

Another example of high-impact systems are biometric systems that identify people
remotely in order to make predictions about their behaviour, their characteristics, or
their psychology. These are argued to have a potential negative impact on mental health
and autonomy.

Systems that influence behaviour at scale, such as content recommendation systems
found on social media platforms, with their potential impacts on psychological and

https://www.parl.ca/legisinfo/en/bill/44-1/c-27
https://ised-isde.canada.ca/site/innovation-better-canada/en/artificial-intelligence-and-data-act-aida-companion-document
https://www.parl.ca/legisinfo/en/bill/44-1/c-27

21.8. ARTIFICIAL INTELLIGENCE AND DATA ACT 705

physical health would also be considered high-impact AI systems.

AI systems that are integrated in health and safety functions or in critical infrastructure
may also be classified as high-impact AI systems. Examples are autonomous driving
systems and triage decision making systems in health care settings. Such systems are
argued to have the potential to cause physical harm.

AIDA is concerned with individual harms, collective harms (e.g. human rights impacts,
or impacts on historically marginalized communities) as well as biased output. The
proposed act defines biased output as follows:

”Biased output means content that is generated, or a decision, recommen-
dation or prediction that is made, by an artificial intelligence system and
that adversely differentiates, directly or indirectly and without justifica-
tion, in relation to an individual on one or more of the prohibited grounds
of discrimination set out in section 3 of the Canadian Human Rights Act
. . . ” Source: Parliament of Canada

Requirements under AIDA
AIDA would require organizations to implement measures to identify, evaluate, and
mitigate or reduce the risk of harm or biased output. Specifically, AIDA’s requirements
are guided by following six principles.

Human Oversight and Monitoring: This principle would require organizations to ex-
ercise meaningful human oversight over decisions or recommendations made by an AI
system. It may requires a ”human-in-the-loop” when operating such systems, and it
would require systems to be designed to allow such oversight. Effective human over-
sight would require the behaviour of the AI system to be interpretable, with the specific
level of interpretability dependent on the context and purpose of the system. Monitor-
ing of input and output (predictions, recommendations, decisions) of an AI system
would be required so that human oversight can be performed after the fact.

Transparency: This principle would require organizations to provide information to
individuals and the regulator about how a high-impact AI system is used, and what its
capabilities, limitations, and potential impacts are.

Fairness and Equity: This principle would require organizations to demonstrate aware-
ness of potential discriminatory outcomes and to take actions to mitigate such out-
comes.

Safety: The safety principle would require organizations to pro-actively evaluate po-
tential harms stemming from the development or use of a high-impact AI system and
to take measures to reduce the risk of harm.

Accountability: The accountability principle would require organizations to implement
governance mechanisms to ensure compliance with AIDA. This would take the form
of documentation of policies, processes, and any measures for risk reduction, bias re-
duction, and safety improvements.

https://www.parl.ca/legisinfo/en/bill/44-1/c-27

706 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

Validity and Robustness: This principle would require organizations to ensure that
high-impact AI systems operate in a valid way, that is, consistent with the intended
objectives, and reliably, that is, they are resilient and stable in a variety of different
circumstances.

Regulated Activities under AIDA
AIDA would regulate four types of activities throughout the life-cycle of a high-impact
AI system.

System Design: Organizations that design high-impact AI systems would have to take
measures to identify and reduce risks and bias during system design, and to document
appropriate use and the limitations of the system. Specific examples are risk assessment
during initial system design, during training data set selection, and when determining
the level of interpretability of the output that is required and provided by the system.

System Development: During development of a high-impact AI system, including its
training, organizations would be required to document the training data and the models
themselves. They would need to evaluate the performance of the model in different
situations and to retrain the model as needed in order to minimize risk and bias of the
output. Organizations would also be required to build mechanisms to allow human
oversight and monitoring.

Make System Available for Use: When making a high-impact AI system available for
use, organizations would be required to document how the system meets its require-
ments for a safe and unbiased design. They would also have to provide documentation
to users of the system with information about the data sets that were used for training,
information on the limitations of the system, and on the appropriate uses of the system.
Organizations would be required to continuously review their risk assessment as the
system is operated.

Manage Operations of a System: Organizations that manage the operation of a high-
impact AI system would be required to maintain records of the inputs and outputs of a
system and monitor its performance. They would have to ensure adequate monitoring
and human oversight over recommendations and decisions made by the system. Orga-
nizations would be required to intervene in the operation of a system if its behaviour
falls outside of established operational parameters or expected performance parame-
ters.

Enforcement of AIDA
The proposed act includes the establishment of an AI and Data Commissioner, analo-
gous to the role of the Privacy Commissioner established by PIPEDA. Also analogous
to PIPEDA, AIDA contains a notification requirement in case of harm of potential ma-
terial harm. However, in contrast to PIPEDA, the Minister of Industry, Science, and
Economic Development would have enforcement powers in the form of the right to re-
quest demonstration of compliance, the right to order an independent audit, the ability

21.9. EUROPEAN UNION ARTIFICIAL INTELLIGENCE ACT 707

to levy administrative monetary penalties, and the right to stop the use of a high-impact
AI system.

Additionally, the proposed act would establish three new criminal offences25. Note
that the first of the following proposed offences also applies to data collected by third
parties outside of Canada.

• ”Every person commits an offence if, for the purpose of designing, developing,
using or making available for use an artificial intelligence system, the person
possesses . . . or uses personal information, knowing or believing that the infor-
mation is obtained or derived, directly or indirectly, as a result of (a) the com-
mission in Canada of an offence . . . or (b) an act or omission anywhere that, if it
had occurred in Canada, would have constituted such an offence.”

• ”Every person commits an offence if the person without lawful excuse and know-
ing that or being reckless as to whether the use of an artificial intelligence sys-
tem is likely to cause serious physical or psychological harm to an individual or
substantial damage to an individual’s property, makes the artificial intelligence
system available for use and the use of the system causes such harm or damage”

• ”Every person commits an offence if the person with the intent to defraud the
public and to cause substantial economic loss to an individual, makes an artificial
intelligence available for use and its use causes that loss.”

The proposed act leaves concrete details unspecified, to be defined through subsequent
regulation after the act receives royal assent (that is, after it becomes law). At the time
of writing (Sep 2024), the further progress of this act through the House of Commons
and Senate is uncertain, but it shows the increasing awareness of governments of the
potential risks presented by AI systems and the willingness of governments to regulate
the development, use and offering of such systems.

21.9 European Union Artificial Intelligence Act
The European Union Artificial Intelligence act came into force in August of 2024.
It governs the use of AI systems across a broad range of sectors and is intended to
ensure that AI systems are safe, respect fundamental rights, and align with EU values,
such as democracy, human dignity, and non-discrimination. The EU AI Act aims to
minimize the risks associated with AI, especially in critical sectors such as healthcare,
education, employment, and public services. Moreover, the Act seeks to establish clear
rules for the classification of AI systems, distinguishing between low-risk, medium-
risk, and high-risk applications. High-risk AI systems, in particular, are subject to
strict regulatory requirements to mitigate potential harms. Another important objective
is to promote transparency in AI by ensuring that users are informed when interacting
with AI systems and that decisions made by AI are explainable.

The EU AI act categorizes AI system by the level or type of risk they pose and imposes

25Bill C-27, House of Commons

https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading

708 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

Source: AI Act Briefing (EU Parliament)

Figure 21.3: Risk levels defined in the European Union AI Act

specific requirements for each risk level. Figure 21.3 provides an overview of the
various risk levels.

Systems with unacceptable risk are categorically prohibited. These are systems that
manipulate human behaviour or that classify people based on their behaviour, socio-
economic status, or personal characteristics (”social scoring systems”). Also prohibited
is the untargeted scraping of facial images off the internet for purposes of building face
recognition databases. Emotion recognition in the workplace or educational institu-
tions is prohibited, except when used for medical or safety reasons. Also prohibited
is the use of real-time biometric identification systems in public spaces, such as fa-
cial recognition, iris scanners, or others. Biometric categorization to infer race, sexual
orientation, political opinions or religious beliefs is also prohibited as posing an unac-
ceptable risk.

Systems with high risks are those that could be expected to pose significant risks to
health, safety or the fundamental rights of a person. The EU AI act imposes a registra-
tion requirement for AI systems operating in specific sectors that are deemed to present
such a high risk. These include:

• Operation of critical infrastructure, for example water or electricity supply, air
traffic control,

• Education and vocational training,

• Employment, worker management and access to self-employment (the latter
would capture the so-called ”gig economy” companies like Uber),

• Access to essential private and public services, and benefits,

https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf

21.9. EUROPEAN UNION ARTIFICIAL INTELLIGENCE ACT 709

• Law enforcement,

• Migration, asylum, and border control,

• Assistance in legal interpretation and application of the law.

Additionally, AI systems that are incorporated into products governed by EU product
safety regulations (toys, cars, medical devices, etc.) are also considered high-risk, but
do not have a registration requirement.

For AI systems classified as high-risk, the AI Act imposes several strict regulatory
obligations:

• Risk Management and Mitigation: These systems should include regular risk
assessments to identify potential safety risks and risks to fundamental rights.
Any risks must be mitigated through appropriate design, testing, and validation
processes before the AI system is deployed.

• Data Governance and Quality Requirements: The data used to train, validate,
and test high-risk AI systems must be accurate, relevant, representative, and free
from biases that could lead to discriminatory outcomes.

• Logging and Record-Keeping: To ensure traceability and accountability, devel-
opers are required to log the operation of high-risk AI systems, keeping records
of system activities, training data, and the decision-making processes of the AI.

• Transparency and Information Disclosure: Users of high-risk AI systems must
be informed about how the system operates, its intended purpose, and the possi-
ble impacts on them. In certain cases, the AI system must provide explanations
for its decisions, especially when they affect an individual’s rights or freedoms.

• Human Oversight: The EU AI Act emphasizes the importance of human over-
sight in the deployment of high-risk AI systems. AI systems should not operate
entirely autonomously in critical areas, such as law enforcement or healthcare.
Human operators must have the ability to intervene and override AI decisions
when necessary to prevent harm or ensure ethical outcomes.

Systems that pose a transparency risk are those that could be used to impersonate or
deceive users or third parties. Typical examples are chat-bots, deep-fake AI systems,
and AI generated content. The EU AI act imposes information and transparency obli-
gations on such systems. That is, users must be informed when they are interacting
with an AI system, and the output of such systems must be marked and disclosed as AI
generated.

Systems that pose minimal risk are the remaining systems that do not fall in the other
three categories. There are no regulations for their development or use, nor are there
registration requirements.

Organizations developing or deploying high-risk AI systems will need to undergo com-
pliance assessments, conducted by either the organizations themselves or third-party
bodies, depending on the type of AI system involved. Developers will also need to reg-
ister certain high-risk AI systems in a public EU database, allowing for transparency

710 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

and public oversight. Non-compliance with the AI Act can lead to significant penalties,
including fines. For the most serious infringements, such as deploying prohibited AI
systems, the AI Act allows for fines of up to 6% of a company’s global annual turnover.
Lesser violations, such as failure to comply with transparency requirements, can result
in fines of up to 4% of global turnover.

In conclusion, the EU AI act is the first legislation that recognizes the risks posed by AI
and machine learning systems, and is a first attempt to regulate these systems to reduce
or prevent potential harms.

21.10 Review Questions

Tort Law

1. Distinguish between employees and independent contractors. Why is this dis-
tinction important in determining vicarious liability?

2. Discuss the concept of compensatory and punitive damages. How do they differ,
and what purpose does each serve in tort law?

3. In what ways could a business’s data collection efforts lead to a claim for intru-
sion on seclusion? Provide an example.

4. What is the tort of breach of confidence? How might this tort arise in a business
analytics context?

5. Differentiate between trespass to land and nuisance. How might these torts apply
to data collection via drones?

6. Define negligence and outline the elements required to prove a negligence claim.
How does the concept of duty of care apply in a business setting?

7. Provide an example of how negligence in the development or operation of a
predictive model could result in harm or injury.

Contracts, Licenses, Copyright, and Web Data

8. Define a contract in the context of business analytics. What are some examples
of contracts related to data or analytics services?

9. What is the significance of the Uniform Electronic Commerce Act (UECA) for
contracts formed in the digital realm?

10. Explain the difference between selling data and licensing data in a business ana-
lytics context. Provide an example of each.

11. How can liability and indemnification clauses be used in contracts for predictive
models or analytics services?

12. Define a license and explain the difference between an exclusive, sole, and non-
exclusive license.

13. What is the significance of transferability and sub-licensing in a license agree-
ment?

14. How does copyright law distinguish between facts and original works? Why is
this distinction important for business analytics?

21.10. REVIEW QUESTIONS 711

15. What is the copyright issue related to training predictive models with data? Why
is this area still unclear in Canadian law?

16. What is the Robot Exclusion Protocol (robots.txt)? How does it help limit web
crawlers from accessing certain parts of a website?

PIPEDA

17. What is PIPEDA and what areas of Canadian business does it apply to?
18. Explain what is meant by ”personal information” under PIPEDA and provide

five examples of personal information.
19. What types of information are specifically exempt from PIPEDA?
20. What is the role of the Office of the Privacy Commissioner (OPC) under PIPEDA?

What enforcement powers does it hold?
21. What are the ten Fair Information Principles that form the foundation of PIPEDA?
22. Discuss the principle of accountability under PIPEDA. What measures must or-

ganizations take to comply?
23. Explain the importance of obtaining valid, informed consent under PIPEDA.

What are some examples of situations where explicit consent is required?
24. Describe some ”no-go zones” where collecting, using, or disclosing personal

information is considered inappropriate, even with consent.
25. Under what circumstances is opt-out consent considered acceptable by the OPC?
26. Outline the guidelines provided by the OPC for video data collection. Why is

limiting collection important in video surveillance?
27. Describe the process for disposing of personal information under PIPEDA. What

are the differences between clearing, purging, and destroying information?
28. What steps must organizations take to ensure the accuracy of personal informa-

tion under PIPEDA?
29. What safeguards does PIPEDA require organizations to implement to protect

personal information?
30. What is "employee snooping," and what steps can organizations take to prevent

it?
31. What rights do individuals have under PIPEDA regarding access to their personal

information held by an organization?
32. Explain how organizations must respond to requests for correction or amendment

of personal information under PIPEDA.
33. What does PIPEDA require with respect to mandatory breach reporting? In what

circumstances must organizations report a breach to the OPC?
34. Describe the role of contractual agreements in ensuring PIPEDA compliance

when personal information is shared with third parties.
35. How must organizations handle information that is accidentally collected or re-

ceived under PIPEDA?

Bill C-27, AIDA, and the EU AI Act

36. What is the main purpose of the proposed Artificial Intelligence and Data Act
(AIDA)?

712 CHAPTER 21. LEGAL ISSUES IN BUSINESS ANALYTICS

37. What is the significance of ”high-impact AI systems” under AIDA? Provide two
examples of such systems.

38. Explain what is meant by ”biased output” under AIDA and give an example of
how this could occur in an AI system.

39. What six principles guide the requirements under AIDA for organizations using
high-impact AI systems?

40. Discuss the principle of human oversight and monitoring. Why is it important in
the context of high-impact AI systems?

41. Explain the principle of transparency under AIDA. What kind of information
should organizations provide about high-impact AI systems?

42. Describe the safety principle in AIDA. How should organizations approach po-
tential harms from AI systems?

43. Define the validity and robustness principle. Why is it critical to ensure AI sys-
tems operate reliably?

44. What activities with respect to high-impact AI systems are regulated under AIDA?
45. What are the responsibilities of organizations when making a high-impact AI

system available for use?
46. Discuss the enforcement powers of the Minister of Industry, Science, and Eco-

nomic Development under AIDA.
47. What are the three new criminal offences introduced by AIDA? Provide an ex-

ample for each.
48. What are some examples of AI systems categorized as posing unacceptable risk

under the European Union AI Act?
49. How does the European Union AI Act handle AI systems that pose transparency

risks, such as chatbots and deep-fakes?
50. Compare the regulation of high-risk AI systems in AIDA and the European

Union AI Act. What are the similarities and differences?

Appendix A

Installing and Using a Virtual
Machine

A.1 Introduction

A virtual machine provides a ”computer within the computer”. That is, it is a complete
”guest” computer system with its own hard drive space that can run as an application
on a ”host” computer system. This makes it ideal to deliver a fixed environment with
software packages and data sets fully installed and configured.

A virtual machine is specific to a particular type of computer hardware (processor
chip/CPU)and the guest system hardware should be the same as the host system hard-
ware. Hence, when choosing how to proceed, it is important to determine the real com-
puter’s hardware. As of this writing, there are two major processor chip/CPU types in
use.

• Intel and the fully compatible AMD chips are used primarily with the Windows
operating system. However, they were also used by Apple Mac computers until
approximately 2021.

• ARM chips are used in current Apple Mac computers (since approximately 2021,
using the Apple M1, M2, or M3 processors/CPU), but are also used in a num-
ber of recent Windows laptops (since approximately 2023, using the Qualcomm
processors/CPU).

The virtual machine for this course is available for Intel/AMD processors running Win-
dows or MacOS, as well as for ARM processors running MacOS. ARM processors
running Windows have not been tested.

713

714 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

A.2 VirtualBox on Windows
The virtual machine for use on Intel and AMD processors (CPUs) uses the Oracle
VirtualBox virtual machine software application. Oracle VirtualBox is free and open-
source software that is available at no cost. It comes packaged as a virtual box appliance
for import into the VirtualBox software. To install the virtual machine, follow these
steps:

1. Ensure you have approximately 80GB of hard drive space available (30GB to
download the virtual box appliance file, and 50GB to install it).

2. Download Oracle VirtualBox from its website. Choose the version for your op-
erating system (Windows or MacOS). The virtual machine was developed with
VirtualBox version 6.1 but should work with newer versions of VirtualBox.

3. Follow the general installation instructions or the detailed instructions for Win-
dows or the detailed instructions for MacOS. The following screen shots guide
you through the installation of VirtualBox on Windows:

• The setup wizard guides you through the setup process. You should confirm
default choices:

• Confirm the default features to install:

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch01.html#intro-installing
https://www.virtualbox.org/manual/ch02.html#installation_windows
https://www.virtualbox.org/manual/ch02.html#installation_windows
https://www.virtualbox.org/manual/ch02.html#installation-mac

A.2. VIRTUALBOX ON WINDOWS 715

• Confirm the warning about temporary network disconnect:

• Ignore the warning about missing Python dependencies:

• Select which menu entries and shortcuts to create according to your prefer-
ences:

716 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

• Confirm the installation:

• Wait for the installation to finish:

• Finish the installation, start VirtualBox, and exit the setup wizard:

A.2. VIRTUALBOX ON WINDOWS 717

• You will see the VirtualBox Manager screen:

• Press the ”Preferences” button. In the general preferences, specify the lo-
cation for VirtualBox to store the virtual machines. Ensure at least 50GB
of hard drive space is avilable in that location:

• An overview of the VirtualBox user interface is found in chapter 1 of the
user manual.

4. Download the virtual appliance file. Warning: This is a 30GB file and will take
some time to download.

5. Import the virtual appliance into the VirtualBox software.

• On the VirtualBox Manager main screen, select ”Import”

https://www.virtualbox.org/manual/ch01.html
https://www.virtualbox.org/manual/ch01.html
https://evermann.ca/Busi4720.ova

718 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

• Select the virtual appliance file you have downloaded. This is most likely
in your ”Downloads” folder

• Confirm the appliance settings. At this point, you may also choose a dif-
ferent folder than the default one for storing the virtual machine:

A.2. VIRTUALBOX ON WINDOWS 719

• Wait for the import to complete. This may take a few minutes.

• When the import is complete, the virtual machine settings will be dis-
played. Press the ”Settings” button to change settings for the virtual ma-
chine.

• In the General settings, you may choose whether to share the clipboard for
copy/paste between guest and host, and whether to enable drag-and-drop
operations between guest and host.

720 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

• In the Systems settings, you may choose how much memory to allocate to
the virtual machine. You should allocate around 8000 MB, but ensure that
enough memory is left over for the host computer to work smoothly.

• In the Processor tab of the Systems settings, you may choose how many
processor chips/CPUs to allocate to the virtual machine. Ensure that enough
are left over for the host computer to work smoothly.

• In the Display settings, you should allocate all the maximum video memory
to the virtual machine. You may also choose a scaling factor. This may be
useful if you are working on a very high resolution monitor like an Apple

A.2. VIRTUALBOX ON WINDOWS 721

Macbook Retina display.

• In the Shared Folders settings, you should remove any existing shared fold-
ers.

6. Start the virtual machine.

• Press the ”Start” button on the virtual machine settings overview.

• The virtual machine will start and notify you about keyboard and mouse
integration. This means your keyboard and mouse inputs will automati-
cally be forwarded from the host to guest system. You can dismiss these

722 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

messages

• Once the virtual machine has started, you will see the desktop user inter-
face. Popular software applications are accessible via the dock on the left
side of the screen. The most important application for working with this
book is the Terminal window application.

• To shut down the virtual machine, select ”Power Off...” from the system
menu in the top right and shut down the machine.

A.3. VMWARE FUSION ON MACOS 723

A.3 VMWare Fusion on MacOS
The virtual machine for use on ARM processors (CPUs) uses the VMWare Fusion
Pro virtual machine software. VMWare was acquired by Broadcom in 2023. While
VMWare Fusion is proprietary software, Broadcom makes it available at no cost for
personal use. To install the virtual machine, follow these steps:

1. Ensure you have approximately 70GB of hard drive space available (20GB to
download the virtual machine file, and 50GB to install it).

2. Download VMWare Fusion Pro from its website. You may need to register for a
free Broadcom account and login.

• Choose the latest version of VMWare Fusion Pro for Personal Use. The
virtual machine was created with version 13.5.2.

• Tick the box to agree to terms and conditions and press the download button
next to the VMWare Fusion product.

3. Install VMWare Fusion Pro

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fusion

724 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

• Once the download is complete, double-click the downloaded file. You will
see the VMware Fusion installer. Double-click it to begin the installation.

• Confirm that you wish to open the application. You may be asked to enter
your password to allow this.

• Installation of VMWare Fusion may take a few minutes.

• When installation is complete, VMWare Fusion Pro is launched and will
present you with a list of virtual machines or a welcome screen if there are
none on your computer.

• Select ”Settings...” from the VMWare Fusion main menu bar.

A.3. VMWARE FUSION ON MACOS 725

• In the Display settings, ensure that resizing the virtual machine is selected
both for single window and full screen modes.

4. Download the virtual machine file. Warning: This is a 15GB compressed zip file
and will take some time to download.

• Once the download is complete, the file will be decompressed automati-
cally. This will also take a few minutes of time.

• Once the file is downloaded and decompressed, you will be able to see it in
your Downloads folder. Expand the ”Busi4720VMWareFusion” folder to
see the uncompressed virtual machine VMBundle.

• Move this file to a permanent location, for example, to the Documents or
Desktop folder.

https://evermann.ca/Busi4720VMWareFusion.zip

726 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

5. Start the virtual machine.

• Double-click on the virtual machine file. This will open the virtual machine
in VMWare Fusion Pro.

• Press the start button to start the virtual machine. The first time you do
this, you may be asked whether you copied or moved the machine. Select
”I Copied It”.

• Once the virtual machine has started, you will see the desktop user inter-
face. Popular software applications are accessible via the dock on the left
side of the screen. The most important application for working with this
book is the Terminal window application.

A.3. VMWARE FUSION ON MACOS 727

• To shut down the virtual machine, select ”Power Off...” from the system
menu in the top right and shut down the machine.

728 APPENDIX A. INSTALLING AND USING A VIRTUAL MACHINE

Index

Accountability, 641, 691
Accumulated local effect plot, 517
Accuracy (in classification), 292
ACF, see Autocorrelation function
Action (in Spark), 557
Action value function, 583, 590, 619
Activation function, 413
Activation map, see Feature map
Actor-critic method, 630
Advantage function, 627
Agglomerative cluster analysis, see

Hierarchical cluster analysis
AIC, see Akaike information criterion
AIDA

seeArtificial Intelligence and
Data Act, 704

Akaike information criterion, 401
ALE plot, see Accumulated local

effect plot
Algorithmic transparency, 506
Alignment-based fitness, 258
AlphaGo, 633
ANN, see Artificial neural network
Arc, see Edge (in a graph)
Area under curve, 293
ARiMA model, see Autoregressive

integrated moving average
model

Array (in Python), 158
Array (in R), 30, 133
Artificial Intelligence and Data Act,

704
Artificial neural network, 413

Associative array, see Dictionary (in
Python)

Assumption of risk, 684
AUC, see Area under curve
Auditability, 641
Autocorrelation function, 383

partial, 385
sample, 384

Autocovariance, 383
sample, 383

Automation, 643
Autoregression, 371
Autoregressive integrated moving

average model, 392
Axis

secondary, see Secondary axis
Axon, 413

Backend engineer, 651
Bag-of-words model, 464
Baseline (in reinforcement learning),

629
Bash, see Bourne-again shell
Batch normalization, 423
Bayes classifier, 287
Bayesian information criterion, 401
Bellman equation, 591
Bellman optimality, 594
Bias (in neural network), 413
Bias (in prediction), 285
BIC, see Bayesian information

criterion
Big data, 539

729

730 INDEX

Bill C-27, 704
Binary number, 25
Binary relationship, 76
Biplot, 345
Black-box model, 501
Bootstrapping, 607
Bottom-up cluster analysis, see

Hierarchical cluster analysis
Bourne-again shell, 14
Breach of confidence, 683
Business process, 244

Canary deployment, see Progressive
rollout

Case (of business process, 245
CD, see Continuous delivery
Centroid, 351
CERN, see Conseil Eruopeenne pour

la Recherche Nucleaire
Channel (convolution filter), 448
CI/CD tool, see Continuous

integration/continuous
delivery tool

Classification, 278
Classification tree, 509
Cluster analysis

hierarchical, 356
k-means, 351

Coalition, 528
Collection (data type), 30
Colour palette

continuous, 191
discrete, 191
diverging, 190
sequential, 190
spectral, 191

Colour vision deficiency, 192
Comma-separated values, 31
Compound key, 83
Confusion matrix, 290
Conseil Europeenne pour la

Recherche Nucleaire, 540
Consent, 694
Constraint

Check, 76
Foreign key, 76

Not null, 75
Primary key, 76
Unique, 75

Container format
Video, 54

Containerization, 643, 665
Continuous delivery, 644
Continuous integration/continuous

delivery tool, 652
Continuous monitoring, 644, 661
Contract, 685
Contrast (for categorical predictor),

309
ConvNet, see Convolutional neural

network
Convolution filter, 447
Convolution kernel, see Convolutional

filter
Convolutional layer, 447
Convolutional neural network, 447
Copyright, 687
Cross-entropy, 296
Cross-validation, 298
CSV, see Comman-separated values
CVD, see Colour vision deficiency
Cypher (query language), 102

Damages
Compensatory, 682
Punitive, 683

Data cleaning, 59
Data definition language

Spark, 560
SQL, 79

Data engineer, 649
Data frame

in Pandas, 165
in R, 135
in Spark, 557

Data lineage (Spark), 557
Data locality, 542
Data node (in Spark), 543
Data provenance, 57
Data quality, 56
Data scientist, 649
Data set (Spark), 557

INDEX 731

Data stream, 571
Data validation, 59
Database management system, 77
Date, 29
DBMS, see Database management

system
DDQN, see Double DQN
Decision boundary, 288
Decision tree, 506
Declarative visualization, 179
DeconvNet, 453
Degrees of freedom, 283
Dendrogram, 356
Dependency graph, 254
Dependent variable, see Output
Detrending, 387
Deuteranopia, 192
DevOps, 646
DevOps engineer, 650
DFG, see Directly-follows graph
Dict, see Dictionary (in Python)
Dictionary (in Python), 30, 156
Differencing, 388
Directly-follows graph, see

Dependency graph, 562
Distance function, 524
Distance metric (in hierarchical

cluster analysis), 357
Divisive cluster analysis, see

Hierarchical cluster analysis
Docker, see Containerization
Document database, 41
Dotted chart, 263
Double DQN, 626
Double Q Network, 622
DQN, see Double Q Network
Dropout (regularization), 425
Dueling DQN, 627
Dummy variable, 308

Early stopping (regularization), 420
Edge (in a graph), 42
Eigenvalue, 347
Eigenvector, 347
Elastic net, 321
Element (in XML), 37

Embedding, 467
Embedding vector, see Embedding
Entity-relationship diagram, 85
Environment, 590
Episodic task, 596
Epoch, 420
ER diagram, see Entity-relationship

diagram
Error bars, 220
Error rate, 286
Estimator (in Spark), 563
European Union Artificial Intelligence

Act, 707
Event (of business process), 245
Event log, 246
Expected value, 284
Experience replay, 621
Exploring starts, 598
Extensible event stream, 247
Extensible markup language, 37

F1 score, 292
Factor, 308
Factor (in R), 30, 130
Factor level, 308
Fail-over, 660, 661
False negative, 291
False positive, 291
Feature, see Predictor
Feature importance by t-test, 505
Feature map, 447, 453
Feature store, 652
Fitness, 258
Fitted values, see Predicted values
Flask, see Web services gateway

interface
Floating point number, 25
Force-directed graph layout, 186
Foreign-key relationship, 33
Forget gate (in LSTM), 479
FOSS, see Free and open-source

software
Free and open-source software, 6
Free software, 6
Fully connected layer (in neural

network), 414

732 INDEX

Function approximation, 618

GARCH model, see General
autoregressive conditional
hterescedasticity model

Gated recurrent unit, 481
Gaussian kernel, 377
General autoregressive conditional

heteroscedasticity model,
401

Gini impurity index, 510
git (source code management tool),

652
Global model-agnostic interpretation

method, 514
Global surrogate interpretation model,

521
Glorot initialization, 424
Google file system, 541
GQL, see Graph query language
Gradient, 417

exploding, 424
vanishing, 423

Gradient clipping, 424
Gradient descent, 418

stochastic, see Stochastic
gradient descent

Graph, 42
Graph database, 100
Graph query language, 102
Gremlin (query language), 102
GRU cell, see Gated recurrent unit

Hadoop (Apache project), 541
Hadoop Distributed File System, 542
Handover-of-work network, 268
HDFS, see Hadoop Distributed File

System
He initialization, 424
Heuristic net miner, 256
Hidden layer (in neural network), 414
Hidden state (in recurrent network),

475
Hive (Apache project), 553
Holdout sample, 298
HUber loss, 281

ICE curve, see Individual conditional
expectation curve

Image
Raster, 53
Vector, 53

Independent variable, see Predictor
Individual conditional expectation

curve, 515
Inductive miner, 254
Information gain (in decision trees),

509
Information leakage, 299
Infrastructure-as-code, 643
Input (of prediction model), 277
Input drift, 667, 669
Input gate (in LSTM), 479
Integer, 25
Interpretability, 502

intrinsic, 502
post-hoc, 502

Interpretation method
global, 503
local, 503

Intrusion on seclusion, 683
Invasion of privacy, 683
Irreducible error, 285
Iterative policy evaluation, 592
Iterative policy improvement, 594

JavaScript, 666
JavaScript object notation, 35
Join (in SQL), 89
JSON, see JavaScript object notation

K-armed bandit, 585
k-fold cross-validation, 299
k-nearest neighbour, 333

classfication, 287
regression, 288

Key performance indicator, 648
Key-value data store, 34
KL divergence, see Kullback-Leibler

divergence
kNN, see k-nearest neighbour
KPI, see Key performance indicator
Kullback-Leibler divergence, 296

INDEX 733

L1 regularization, see Ridge
regression

L2 regularization, see Least absolute
shrinkage and selection
operator

Label (in Neo4j), 104
LASSO, see Least absolute shrinkage

and selection operator
Last observation carried forward, 375
Least absolute shrinkage and selection

operator, 319
Leave-one-out cross-validation, 298
LeCun initialization, 424
Levenshtein distance, 52
License, 686
LIME, see Local interpretable

model-agnostic explanations
Linear regression, 505
Linkage function (in hierarchical

cluster analysis), 357
List, 134, 154
List (in Python), 30
List (in R), 30
Ljung-Box statistic, 399
Loading vector, 343
Local effect, 517
Local interpretable model-agnostic

explanations, 523
Local model-agnostic interpretable

method, 522
LOCF, see Last observation carried

forward
Log odds, 326
Logging, 669
Logistic function, see Sigmoid

function
Logistic regression

binary, 326
multinomial, 327

Logit, 326, 416
Long short-term memory cell, 478
LOOCV, see Leave-one-out

cross-validation
Loss function, 280, 417

Huber, 281

LSTM cell, see Long short-term
memory cell

Machine learning architect, 650
Machine learning engineer, 650
Machine learning governance, 654,

671
Machine learning operations, 641
Machine learning operations lifecycle,

654
Macro averaging, 296
MAE, see Mean absolute error
Main effect, 310
Map function, 546
Map-Reduce, 546
MAPE, see Mean absolute percentage

error
Markov decision process, 589
Matrix (in R), 30, 133
Mean absolute error, 280
Mean absolute percentage error, 281
Mean squared error, 280
Meta character, 50
Metadata, 55
Metadata store, 653
Micro averaging, 295
Minibatch, 419
ML governance, see Machine learning

governance
MLOps, see Machine learning

operations
MLOps lifecycle, see Machine

learning operations lifecycle
Model (in reinforcement learning),

583
Model auditor, 650
Model development lifecycle, 645
Model registry, 653
Model risk manager, 650
Momentum, 422
Monochromatism, 192
Monte Carlo control

first visit, 597
Monte Carlo prediction

first visit, 597
Moving average, 370

734 INDEX

MSE, see Mean squared error

n-step TD learning, 610
Naive Bayes assumption, 332
Naive Bayes classifier, 332
Name node (in Spark), 543
Namespace (in XML), 38
Negligence, 684

Contributory, 684
Neural network, see Artificial neural

network
Neuron, 413
Node, 42
Node (in Neo4j), 104
Normalization (in a relational database

management system), 33
NoSQL database, 100

Object detection, 460
Off-policy learning, 603
One-hot encoding, 433
Open-source software, 5
Operational efficiency, 641
Operational visualization, 179
OSS, see Open-source software
Outlier (in Box plot), 207
Output, 277
Output gate (in LSTM), 479
Output layer (in neural network), 416
Output mode (in Spark), 572
Overfitting, 282, 285

Padding (in convolutional layer), 449
Parametric model, 277
Partial dependence plot, 514
Path (in Neo4j), 105
Pattern (in Cypher), 105
Payout, 528
PCA, see Principal components

analysis
PDP, see Partial dependence plot
Penalized regression, see Shrinkage

methods
Performance mining, 263
Performance spectrum graph, 266
Permutation feature importance, 519

Personal information, 690
Personal Information Protection and

Electronic Documents Act,
689

Pig (Apache project), 552
Pipe, 19, 138
PIPEDA

seePersonal Information
Protection and Electronic
Documents Act, 689

Pipeline (in Spark), 563
Plot

Area, 203
Bin, 223
Box, 230
Box plot, 206
Bubble chart, 213
Column chart, 204, 228
Count, 211, 232
Density, 201, 222, 239
Donut chart, 216, 236
Dot, 209
Histogram, 201, 227
Line, 214, 234
Pie chart, 215, 235
Points, 233, 238
Radar, 217, 237
Raster, 224
Violin, 208, 231

Policy, 583, 619, 674
Behaviour, 603
Epsilon-greedy, 586
Epsilon-soft, 600
Target, 603

Policy coverage, 604
Policy gradient method, 628
Pooling layer (in convolutional

network), 450
Precision

in classification, 291
in process discovery, 258

Predicted values, 305
Predictor, 277
Primary key, 33
Principal component, see Principal

components analysis

INDEX 735

Principal components analysis, 343
Prioritized replay, 626
Processing trigger (in Spark), 571
Product liability, 684
Progressive rollout, 659
Property (in Neo4j), 104
Protanopia, 192
Public disclosure of private facts, 683

Q-learning, 610
Quantization, 657

RACI matrix, 673
Random number generator, 161, 315
Random walk, 372
RDD, see Resilient distributed dataset
RDF, see Resource description

framework
Recall, 291
Receiver operating characteristic, 293
Rectified linear unit, 414
Recurrent neural network, 475
Reduce function, 546
Referential integrity, 33
Regex, see Regular expression
Regression, 277

linear, 305
Regression tree, 508
Regular expression, 50
Regularization, 317
REINFORCE, see Policy gradient

method
Relation, 33
Relational database management

system, 33
Relational diagram, 85
Relationship (in a graph), see Edge (in

a graph
Relationship (in Neo4j), 105
ReLU, see Rectified linear unit
Reproducility, 643
Reset gate (in GRU), 481
Residual network, 423
Residual sum of squares, 307
Resilient distributed dataset, 556
ResNet, see Residual network

Resource description framework, 42
Response, see Output
Return (in reinfocement learning), 590
Return (in reinforcement learning, 583
Return (in time series), 402
Reward, 583
Ridge regression, 317
Risk assessment, 658
Risk management, 641
Risk mitigation, 659
RNG, see Random number generator
Robot exclusion protocol, 688
robots.txt, see Robot exclusion

protocol
ROC, see Receiver operating

characteristic
RSS, see Residual sum of squares
Rugs (in plots), 225

SARSA, 607
semi-gradient, 620

Schema
in relational database, 77
in Spark, 560

Scree plot, 347
Secondary axis, 218
Selectivity, see Specificity
Semantic segmentation, 460
Sensitivity, see Recall
Seq2Seq model, 476
Seq2Vec model, 475
Sequence (in Python), 156
Series (in Pandas), 164
Service time, 263
Set (in Python), 30
Shadow testing, 659
Shape (of array), 159
Shapley value, 528
Shrinkage methods, 317
Shuffle phase, 547
Sigmoid function, 325, 414
Signal-in-noise, 373
Slicing, 129, 157, 160
Softmax function, 416
Software development, 646
Software engineer, 650

736 INDEX

Source code management tool, 652
Spark (Apache project), 554
SPARQL protocol and RDF query

language, 102
Specificity, 291
SQL, see Structured query language

in R, 144
Standardization (of text), 463
State value function, 583, 590, 618
Statefulness, 483
Stationarity (of time series), 382

strict, 382
weak, 383

Stochastic gradient descent, 419
Strict liability, 684
Striding (in convolutional network),

449
Structured query language, 76
Subject matter expert, 648
Subquery, 91
Supervised machine learning, 277
Synapse, 413

t-test, 308
Table, 31

unbounded, 571
Tag (in XML), 37
Target, see Output
Target network, 622
TD learning, see Temporal difference

learning
Temporal difference learning, 606
Terse RDF Triples, 47
Text, 48
Tibble, 137
Time, 29
Time series smoothing

Kernel smoothing, 377
Lowess smoothing, 378
Moving average, 376
Smoothing splines, 379

Token-based replay fitness, 258
Tokenization (of text), 463
Tooling, 652
Top-down cluster analysis, see

Hierarchical cluster analysis

Tort, 682
Trace, 245
Traceability, 641
Trainable parameter, 416
Transformation (in Spark), 557
Transformer (in Spark), 563
Trendline, 219
Trespass to land, 683
Tritanopia, 192
True negative, 291
True positive, 291
Tuple (in Python), 30, 155
Turtles, see Terse RDF Triples

Unary relationship, 76
Underfitting, 282, 285
Unfolding, see Unrolling
Unicode, 27
Unicode transformation format, 27
Unrolling, 477
Update gate (in GRU), 481
Update target, 585
UTF-8, 27

Value error, 619
Value function, see State value

function
Variance

of a predictive model, 285
of a random variable, 284

Variant, 253
Vec2Seq model, 476
Vector (in R), 30, 128
Vectorization (of text), 463
Versioning, 644
Vertex, see Node
Vicarious liability, 682
Video codec, 54
View (Spark), 561
Virtual machine, 13
Virtualization, see Virtual machine
Visual discovery, 178

Waiting time, 263
Web services gateway interface, 663
Weight (in neural network), 413

INDEX 737

Weight kernel, 524
Whiskers (in Box plot), 207
White-box model, 502
WIPO, see World Intellectual Property

Organization
Word embedding, see Embedding
Workflow orchestration tool, 652
World Intellectual Property

Organization, 682

WSGI, see Web services gateway
interface

Xavier initialization, see Glorot
initialization

XES, see Extensible event stream
XML, see Extensible markup

language

YARN resource manager, 547

	Preface
	About the Author
	Introduction
	Introduction
	Methods, Techniques, and Tools
	Types of Analytics
	Machine Learning
	Analytics is not Statistics
	Tools used in this Course
	Ubuntu Linux
	Virtual Machines
	The Ubuntu Command Line (also for Mac Users)
	Review Questions
	Hands-On Exercises

	Data, Data Types, Data Quality
	Introduction
	Data Types
	Primitive Types
	Structured Data
	Unstructured Data

	Metadata
	Data Quality and Data Provenance
	Data Cleaning and Validation
	Data Sources
	Review Questions
	Hands-On Exercises

	Managing Tabular Data with Relational Databases
	Introduction
	Constraints and Data Types
	Introduction to SQL and PostgreSQL
	Data Definition in SQL
	SQL Queries
	Review Questions
	Additional SQL Exercises

	Managing Graph Data with Graph Databases
	Introduction
	Use Cases
	Graph Database Languages
	The Neo4j Graph Database Management System
	Introduction to Cypher
	Defining Graphs in Cypher
	Graph Data Modeling
	Graph Queries with Cypher
	Review Questions

	Introduction to Data Management with R
	Introduction
	Using R
	R Basics
	The R Environment
	Arrays, Matrices, Lists, and DataFrames
	Tidyverse
	SQL and R

	Introduction to Data Management with Python
	Introduction
	Python versus R
	Using Python
	Python Basics
	NumPy
	Data management with Pandas
	The Pagila Database in Pandas

	Data Visualization in R and Python
	Introduction
	Honesty in Visualization
	Special Types of Data and Visual Analytics
	Color Palettes
	Common Types of Plots
	Graphics Libraries and Frameworks
	Mapping Data to Plot Elements
	Visualization in R using ggplot2
	Visualization in Python using Plotly Express
	Review Questions

	Business Process Analytics
	Introduction
	Business Processes and Business Process Models
	Business Process Event Logs
	Types and Goals of Process Analytics
	Process Analytics Tools
	Process Mining in Python with PM4Py
	Performance Mining
	Organizational Mining
	Review Questions

	Introduction to Supervised Machine Learning
	Introduction
	Explanation and Prediction
	Bias and Variance in Regression Analysis
	Model Quality in Classification
	Multinomial Classification
	Crossvalidation Methods
	Review Questions

	Regression and Classification Models
	Introduction
	Linear Regression
	Linear Regression in R
	Cross-Validation in R
	Shrinkage Methods
	Ridge Regression
	LASSO
	Elastic Net

	Shrinkage Methods in R
	Classification
	Logistic Regression
	Logistic Regression in R
	Naive Bayes Classifier
	Naive Bayes Classifier in R
	KNN Classification
	KNN Classification in R

	Review Questions

	Introduction to Unsupervised Machine Learning
	Introduction
	Principal Components Analysis
	Principal Components Analysis in R
	Clustering
	K-Means Clustering
	K-Means Clustering in R
	Hierarchical Clustering
	Hierarchical Clustering in R

	Review Questions

	Time Series Analysis
	Introduction
	Time Series Statistical Models
	Basic Time Series Operations in R
	Smoothing a Time Series
	Time Series Regression
	Stationarity
	Dealing with Non-Stationarity
	ARIMA Models
	Fitting an ARIMA Model
	GARCH Models
	Review Questions

	Introduction to Neural Networks and Deep Learning
	Introduction
	Parameter Estimation
	Gradient Descent
	Stochastic Gradient Descent
	Parameter Updates
	Gradient Problems
	Regularization with Dropout

	Software Frameworks for Neural Network Models
	Linear Regression using Tensorflow and Keras
	Non-Linear Regression using Tensorflow and Keras
	Classification using Tensorflow and Keras
	Review Questions

	Convolutional Neural Networks
	Introduction
	Convolutional Layers
	Pooling Layers
	Understanding ConvNets
	Image Classification Example using Tensorflow
	Other Computer Vision Tasks for CNNs
	Text Classification Example using Tensorflow
	Bag-ofWord encoding
	Word Embedding

	Review Questions

	Recurrent Neural Networks
	Introduction
	Sequence Models
	Unrolling an RNN
	LSTM Cells
	GRU Cells
	Statefulness
	Example – Stock Market Prediction
	Next Activity Prediction in Business Processes
	Review Questions

	Intepretable Machine Learning
	Introduction
	Intrinsically Interpretable Models
	Linear Regression
	Decision Trees

	Global Model-Agnostic Methods
	Partial Dependence Plots (PDP)
	Individual Conditional Expectation (ICE) Curves
	Accumulated Local Effects (ALE) Plot
	Permutation Feature Importance
	Global Surrogate Models

	Local Model-Agnostic Interpretation Methods
	Local Interpretable Model-agnostic Explanations (LIME)
	Shapley Additive eXplanations (SHAP)

	Review Questions

	Analytics at Industrial Scale
	Introduction
	Hadoop
	HDFS
	Map-Reduce

	Apache Spark
	Spark SQL
	Spark Machine Learning

	Stream Analytics
	Spark Streaming
	Review Questions

	Reinforcement Learning – Tabular Methods
	Introduction
	K-Armed Bandits
	Markov Decision Processes and Dynamic Programming
	Definitions
	Bellman Equations and Iterative Policy Evaluation
	Bellman Optimality and Iterative Policy Improvement

	Monte Carlo (MC) Learning
	Off-Policy MC Learning
	Temporal-Difference (TD) Learning
	Off-Policy TD Learning
	Review Questions

	Reinforcement Learning – Function Approximation
	Introduction
	Value-Based Methods and Stochastic Gradient Descent
	Deep Q Network (DQN)
	Policy Gradient Methods
	Additional Information
	Additional Learning Materials
	Review Questions

	Managing Machine Learning Operations (MLOps)
	Introduction
	MLOps Lifecycle Overview
	MLOps Roles and Requirements
	MLOps Tooling
	MLOps Lifecycle Phases
	Develop Models
	Prepare for Production
	Deploy to Production
	Monitoring and Feedback

	ML Governance
	Review Questions

	Legal Issues in Business Analytics
	Introduction
	Tort Law
	Contracts
	Licenses
	Copyright
	Web Site Data Collection
	Information Protection and Privacy Legislation in Canada
	Artificial Intelligence and Data Act
	European Union Artificial Intelligence Act
	Review Questions

	Installing and Using a Virtual Machine
	Introduction
	VirtualBox on Windows
	VMWare Fusion on MacOS

	Index

