
Business 4720 - Class 21
Reinforcement Learning – Tabular Methods

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 61

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Reinforcement Learning

▶ Multi-Armed Bandits
▶ Value Functions
▶ Monte-Carlo (MC) Methods
▶ Temporal-Difference (TD) Methods

2 / 61

Based On

Richard S. Sutton and Andrew G. Barto (2018) Reinforcement
Learning – An Introduction. 2nd edition, The MIT Press,
Cambridge, MA. (SB)

http://incompleteideas.net/book/the-book.html

Chapters 2–7

(CC BY-NC-ND License)

3 / 61

http://incompleteideas.net/book/the-book.html

Resources

Implementations are available on the following GitHub repo:
https://github.com/jevermann/busi4720-rl

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-rl.git

4 / 61

https://github.com/jevermann/busi4720-rl
https://github.com/jevermann/busi4720-rl.git

Reinforcement Learning

Online Learning by Acting in an Environment

Ideas
▶ Maximize return
▶ Immediate and delayed/subsequent rewards
▶ Discover which actions to take by trying them
▶ Tradeoff between exploration and exploitation
▶ Uncertain/random/stochastic environment

Problem cannot be tackled by optimization (e.g. dynamic
programming), because of incomplete knowledge of

environment.

5 / 61

Reinforcement Learning

Core Elements
▶ Policy π (probability of taking action a in state s)
▶ Reward R (received from the environment after each

action)
▶ Return G (possibly discounted sum of future rewards)
▶ State value function v (expected return for each state)
▶ Action value function q

(expected return for each state and action)
▶ Model p (behaviour of the environment, optional)

6 / 61

Introductory Example – Tic-Tac-Toe (Naughts and Crosses)

https://commons.
wikimedia.org/
wiki/File:
Tic_tac_toe.svg

▶ Value is probability of winning from state
▶ Value of any state with X-X-X is 1.0
▶ Value of any state with O-O-O or full board

is 0.0
▶ Initial values are 0.5

7 / 61

https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg
https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg
https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg
https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg

Introductory Example – Tic-Tac-Toe [cont’d]

Source: SB Figure 1.1

▶ Normally, move greedily to
highest-valued next state

▶ Sometimes, make random
exploratory move

▶ After each greedy move,
update state value towards
value of later state with
step size α

▶ Temporal-difference
learning V (St+1)− V (St)

▶ Take advantage of
information during
episode/game.

V (St)← V (St) + α [V (St+1)− V (St)]

8 / 61

Example Applications in Business and Management

▶ Marketing: Learn which online ads to show to which site
visitor

▶ HR: Learn which employee to assign to which task
▶ Operations: Learn which work item to assign to which

machine
▶ Logistics: Learn which item to route on which truck or

flight
▶ . . .

9 / 61

K-armed Bandits

https://commons.
wikimedia.org/
wiki/File:
Antique_
one-armed_
bandit,_Ventnor,
_Isle_of_Wight,
_UK.jpg

▶ Stateless environment

▶ k possible actions At at time t with stochastic
reward Rt

▶ Estimate action value as:

Qt(a) =
∑t−1

i=1 Ri × 1a∑t−1
i=1 1a

(average reward)

▶ ϵ-greedy policy: With probability ϵ take random
action, with probability 1− ϵ take optimal action

At = argmax
a

Qt(a)

▶ Incremental implementation

Qt+1(a) = Qt(a) +
1
t
[Rt(a)−Qt(a)]

10 / 61

https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg
https://commons.wikimedia.org/wiki/File:Antique_one-armed_bandit,_Ventnor,_Isle_of_Wight,_UK.jpg

General Update Rule for Estimates

NewEstimate← OldEstimate + StepSize [Target −OldEstimate]

[Target −OldEstimate] is the error in the estimate

11 / 61

K-armed Bandits – Example

A simple bandit algorithm
Initialize, for a = 1 to k :

Q(a)← 0
N(a)← 0

Loop forever:

A←

{
argmaxa Q(a) with probability 1− ϵ

a random action with probability ϵ

R ← bandit(A)
N(A)← N(A) + 1

Q(A)← Q(A) +
1

N(A)
[R −Q(A)]

12 / 61

K-armed Bandits – Python

Environment:

class k_bandit_env:
def __init__(self, k):

self.k = k
self.mean_rewards = []

for i in range(self.k):
self.mean_rewards \

.append(random.normalvariate(0, 1))

def step(self, action):
mean = self.mean_rewards[action]
reward = random.normalvariate(mean, 1)
return reward

13 / 61

K-armed Bandits – Python

Agent:

class k_bandit_agent:
def __init__(self, k, epsilon, initial_value):

self.k = k
self.epsilon = epsilon
self.env = k_bandit_env(k)

self.Q = [initial_value] * self.k
self.N = [.0] * self.k

def determine_action(self):
if random.uniform(0,1) < self.epsilon:

explore
action = random.randint(0, self.k-1)

else:
exploit
action = self.Q.index(max(self.Q))

return action

14 / 61

K-armed Bandits – Python

Agent (continued):

def train(self, steps):
rewards = []
for step in range(steps):

action = self.determine_action()
reward = self.env.step(action)
self.N[action] += 1
self.Q[action] = \

(reward-self.Q[action])/self.N[action]
rewards.append(reward)

return rewards

Complete implementation at

https://evermann.ca/busi4720/bandits.py

15 / 61

https://evermann.ca/busi4720/bandits.py

K-armed Bandits – Policy Comparison

Values for ϵ and the initial Q value affect learning behaviour:

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

1.2 agent
eps0
eps01
eps001
eps0opt

index

re
su

lts

16 / 61

Markov Decision Processes

Source: SB Figure 3.1

▶ Trajectory:

S0,A0,R1,S1,A1,R2, . . .

▶ Dynamics:

p(s′, r |s,a) = Pr{St = s′,Rt = r |St−1 = s,At−1 = a}

17 / 61

Markov Decision Processes [cont’d]

▶ Discounted future return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑

k=0

γkRt+k+1

= Rt+1 + γGt+1

▶ State value function of state s under a policy π:

vπ(s) = Eπ[Gt |St = s] = Eπ

[∞∑
k=0

γkRt+k+1|St = s

]

▶ Action value function for policy π:

qπ(s,a) = Eπ[Gt |St = s,At = a]

= Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a

]
18 / 61

Bellman Equation

The value function v for policy π is the unique solution to the
Bellman equation:

vπ(s) = Eπ[Gt |St = s]
= Eπ[Rt+1 + γGt+1|St = s]

=
∑

a

π(a|s)
∑
s′

∑
r

p(s′, r |s,a)
[
r + γEπ[Gt+1|St+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r |s,a)
[
r + γvπ(s′)

]
for all s ∈ S

(Recall: Expected value is sum weighted by probabilities)

19 / 61

MDP – Gridworld State Value Function

▶ Actions: Up, Down, Left, Right
▶ Falling off the world results in reward of −1
▶ Other actions result in reward of 0, except for A to A′ and B

to B′ as indicated
▶ Policy π is to take each action with equal probability
▶ Discount rate γ = 0.9

Source: SB Figure 3.2

20 / 61

MDP – Optimal Policies

Maximizing the state value function v or action value function q
is finding an optimal policy π:

v∗(s) = max
π

vπ(s)

q∗(s,a) = max
π

qπ(s,a)

Intuitively, the value of a state under an optimal policy π∗ is
equal to the expected return for the the best action from that
state:

v∗(s) = max
a∈A(s)

qπ∗(s,a)

21 / 61

MDP – Bellman Optimality

v∗(s) = max
a∈A(s)

qπ∗(s,a)

= max
a

Eπ∗ [Gt |St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r |s,a)[r + γv∗(s′)]

Similarly for action value under an optimal policy:

q∗(s,a) = E
[
Rt+1 + γmax

a′
q∗(St+1,a′)|St = s,At = a

]
=

∑
s′,r

p(s′, r |s,a)[r + γmax
a′

q∗(s′,a′)]

22 / 61

Dynamic Programming

Intuition:
1 Start from random value function and policy
2 Compute updated value function (iteratively)
3 Adjust policy based on updated value function
4 Repeat from (2) until convergence

23 / 61

Dynamic Programming

Iterative Policy Evaluation

Loop:
∆← 0
Loop for each s ∈ S :

v ← V (s)

V (s)←
∑

a
π(a|s)

∑
s′,r

p(s′, r |s,a)[r + γV (s′)]

∆← max(∆, |v − V (s)|)
until∆ < θ

24 / 61

Iterative Policy Evaluation in Python

Initialize value function V
V = dict()
for state in States:

V[state] = 0
Initialize policy pi
pi = dict()
for state in States:

pi[state] = 0

def evaluate_policy():
while True:

Delta = 0
for s in States:

v = V[s]
V[s] = exp_reward(s, pi[s])
Delta = max(Delta, abs(v - V[s]))

print(Delta)
if Delta < theta:

break

25 / 61

Dynamic Programming

Iterative Policy Improvement

Loop:
stable← true
For each s ∈ S :

old_action← π(s)

π(s)← argmaxa

∑
s′,r

p(s′, r |s,a)[r + γV (s′)]

If old_action ̸= π(s) then stable← false
If stable then

return V ≈ v∗ andπ ≈ π∗

else
go to policy evaluation

26 / 61

Iterative Policy Improvement in Python

def improve_policy():
stable = True
for s in States:

old_action = pi[s]
max_r = -math.inf
max_a = None
for action in Actions:

r = exp_reward(s, action)
if r > max_r:

max_r = r
max_a = action

pi[s] = max_a
if old_action != pi[s]:

stable = False
return stable

27 / 61

Iterative Policy Improvement in Python

stable = False
while not stable:

evaluate_policy()
stable = improve_policy()

print("Optimal Policy:")
print(pi)

Complete implementation at

https://evermann.ca/busi4720/jacks.py

28 / 61

https://evermann.ca/busi4720/jacks.py

Example – Jack’s Car Rental

▶ Jack rents cars at 2 locations with capacity of 20 cars
▶ Daily rental requests and returns are Poisson distributed
▶ Move a maximum of 5 cars between locations overnight
▶ −2 reward for each move, +10 reward for each satisfied

rental request
▶ How many vehicles to move each night?

States = []
for cars1 in range(21):

for cars2 in range(21):
States.append((cars1, cars2))

Actions = range(-5, 5+1)

29 / 61

Example – Policies and Final Value Function

Policies after each improvement, starting with random initial
policy. Final state value function at bottom right.

30 / 61

Monte Carlo Methods

▶ In practice, dynamics of the environment are not known,
i.e. p(s′, r |s,a) is unknown; there is no model of the
environment

▶ Learning V and Q from experience, ie. sample sequences
of states, actions, and rewards.

▶ Consider episodic tasks, with a terminal state and finite
returns

▶ Create episodes following policy π by interacting with
environment

▶ Similar to the bandit problem, which also learned an action
value function, but now with states

31 / 61

First-visit MC Prediction
▶ Estimate V ≈ vπ
▶ Return assigned to state is that of first visit of state

Input: a policy π to be evaluated

Initialize:

V (s) ∈ R, arbitrarily, for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

Loop forever (for each episode):

Generate an episode followingπ : S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G← 0

Loop for each step of episode, t = T − 1,T − 2, . . . , 0 :

G← γG + Rt+1

Unless St appears in S0,S1, . . . ,St−1 :

Append G to Returns(St)

V (St)← average(Returns(St))

32 / 61

MC Control

▶ State-value function V not useful without model
▶ Estimate action-value function Q and π ≈ π∗ directly
▶ To ensure all state-action pairs are visited with a greedy

policy, set these as episode starts with some probability
(”exploring starts”, ES)

33 / 61

MC Control (ES)

Initialize for all s ∈ S, a ∈ A
π(s) ∈ A(s) (arbitrarily)

Q(s, a) ∈ R (arbitrarily)

Returns(s, a)← empty list

Loop forever (for each episode):

Choose S0 ∈ S,A0 ∈ A(S0) randomly

Generate an episode followingπ : S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G← 0

Loop for each step of episode, t = T − 1,T − 2, . . . , 0 :

G← γG + Rt+1

Unless the pair St ,At appears in S0,A0,S1,A1, . . . ,St−1,At−1 :

Append G to Returns(St ,At)

Q(St ,At)← average(Returns(St ,At))

π(St)← argmaxa Q(St , a)

34 / 61

MC (ES) Control Example – Black Jack

▶ Card values A, 2, 3, . . . , 10
▶ Ace can be 1 or 11 (”usable ace”)
▶ Actions: take another card (”hit)” or do not (”stick”)
▶ Dealer showing initial card, stands on 17 or more
▶ Over 21 is ”bust” (lost), otherwise closest to 21 wins

35 / 61

MC (ES) Control Example – Black Jack

Define states S and actions A:

gamma = 1.0
Define states
States = []
for ace in [0,1]:

for dealer_showing in range(1,11):
for hand_sum in range(12, 22):

States.append((ace,dealer_showing,hand_sum))

Define actions
Actions = (0, 1)

36 / 61

MC (ES) Control Example – Black Jack

Initialize policy π, action-value function Q, and returns:

Initialize policy
pi = dict()
for s in States:

pi[s] = random.randint(0,1)

Initialize action value function
Q = dict()
for s in States:

for a in Actions:
Q[(s, a)] = 0

Initialize returns
Returns = dict()
for s in States:

for a in Actions:
Returns[(s, a)] = []

37 / 61

MC (ES) Control Example – Black Jack

Generate an episode using policy π from initial state S0 and
initial action A0:

def generate_episode(pi, s0, a0):
terminal = False
s = s0
a = a0
states = [s0]
actions = [a0]
rewards = [math.nan]
while terminal is False:

sprime, r, terminal = step(s, a)
rewards.append(r)
if not terminal:

aprime = pi[sprime]
states.append(sprime)
actions.append(aprime)
s = sprime
a = aprime

return states, actions, rewards, len(rewards)

38 / 61

MC (ES) Control Example – Black Jack

Learn the Q function:

for e in range(0, 1000000+1):
s0 = random.choice(States)
pi0 = random.choice(Actions)
S, A, R, T = generate_episode(pi, s0, pi0)
G = 0
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
if (t == 0) or \

((S[t], A[t]) \
not in zip(S[0:t-1], A[0:t-1])):

Returns[(S[t], A[t])].append(G)
Q[(S[t], A[t])]=mean(Returns[(S[t], A[t])])
if Q[(S[t], 1)] > Q[(S[t], 0)]:

pi[S[t]] = 1
else:

pi[S[t]] = 0

Full example available at
https://evermann.ca/busi4720/blackjack_es.py

39 / 61

https://evermann.ca/busi4720/blackjack_es.py

MC (ES) Control Example – Black Jack

Policies and state value function after 1,000,000 episodes.
Usable ace on top, no usable ace at bottom:

40 / 61

MC Control Example – Epsilon-Soft Policy

▶ Exploring starts not always feasible
▶ Use ϵ-soft policy to ensure exploration (instead of greedy

policy)
▶ Policy π is now the probability of taking action a in state s
▶ Update π with epsilon-soft probabilities, instead of greedy

deterministic action

Q[(S[t], A[t])] = mean(Returns[(S[t], A[t])])
Optimal policy (for two actions)
A_star = 1 if Q[(S[t], 1)] > Q[(S[t], 0)] else 0

for a in Actions:
if a == A_star:

pi[(S[t],a)] = 1-epsilon+epsilon/len(Actions)
else:

pi[(S[t],a)] = epsilon/len(Actions)

41 / 61

MC Control Example – Racetrack

Source: SB Figure 5.5

▶ States: Position and velocity on race track
▶ Actions: Accelerate +1, 0, -1 in horizontal or vertical dir.
▶ Rewards: -1 for each step, +1 for reaching finish line
▶ Noise: With small probability, actions are ignored

42 / 61

MC Control Example – Racetrack

Actions = []
for y in range(-1, 2):

for x in range(-1, 2):
Actions.append((y,x))

Q = dict()
def getQ(s, a):

if (s, a) not in Q:
return 0

else:
return Q[(s, a)]

pi = dict()
def get_action(s):

weights = []
for a in Actions:

if (s, a) in pi:
weights.append(pi[(s, a)])

return random.choices(Actions, weights=weights)[0]

43 / 61

MC Control Example – Racetrack

Returns = dict()
def getReturns(s, a):

if (s, a) not in Returns:
return []

else:
return Returns[(s, a)]

def appendReturn(s, a, r):
if (s, a) not in Returns:

Returns[(s, a)] = [r]
else:

Returns[(s, a)].append(r)

44 / 61

MC Control Example – Racetrack

for e in range(0, 10000+1):
S, A, R, T = env.generate_episode()
G = 0
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
if (t == 0) or ((S[t], A[t]) \

not in zip(S[0:t-1], A[0:t-1])):
appendReturn(S[t], A[t], G)
Q[(S[t],A[t])]=mean(getReturns(S[t],A[t]))
A_star = argmaxQ(S[t])
for a in Actions:

if a == A_star:
pi[(S[t],a)]=1-eps+eps/len(Actions)

else:
pi[(S[t],a)]=eps/len(Actions)

Full example at
https://evermann.ca/busi4720/racetrack.py

45 / 61

https://evermann.ca/busi4720/racetrack.py

MC Control Example – Racetrack

Racetrack trajectory after 0, 100, 200, and 10000 learning
episodes:

46 / 61

On-Policy and Off-Policy Learning

On-Policy Learning
▶ Trying to learn action values for optimal behaviour
▶ But have to behave sub-optimal (e.g. ϵ-soft) to explore all

actions

Off-Policy Learning
▶ Use two policies
▶ Target policy π: Being learned, typically deterministic,

greedy
▶ Behaviour policy b: Used to generate behaviour

(episodes), typically ϵ-soft
▶ Behaviour policy b must cover target policy π (i.e. all

possible behaviour under π must be generated by b)

47 / 61

Off-Policy MC Control

Initialize for all s ∈ S, a ∈ A(s) :
Q(s, a) ∈ R (arbitrarily)

C(s, a)← 0

π(s)← argmaxa Q(s, a)

Loop forever (for each episode):

Generate an episode following b : S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G← 0;W ← 1

Loop for each step of episode, t = T − 1,T − 2, . . . , 0 :

G← γG + Rt+1

C(St ,At)← C(St ,At) + W

Q(St ,At)← Q(St ,At) +
W

C(St ,At)
[G −Q(St ,At)]

π(St)← argmaxa Q(St , a)

If At ̸= π(St) then proceed to next episode

W ← W/b(At |St)

48 / 61

Off-Policy MC Control in Python – Policies
Racetrack example revisited

def b(s):
weights = []
for a in Actions:

if (s, a) in Q:
weights.append(math.exp(Q[(s, a)]))

else:
weights.append(0)

if len(weights) == 0 or sum(weights) == 0:
return random.choice(Actions)

else:
return random.choices(Actions, weights)[0]

def pi(s):
a = argmaxQ(s)
if a is None:

return random.choice(Actions)
else:

return a

49 / 61

Off-Policy MC Control in Python – Policies
Racetrack example revisited

def bprob(a, s):
if (s, a) not in Q:

return 1
weights = []
for aa in Actions:

if (s, aa) in Q:
weights.append(math.exp(Q[(s, aa)]))

if len(weights) == 0 or sum(weights) == 0:
return 1

else:
return math.exp(Q[(s, a)]) / sum(weights)

50 / 61

Off-Policy MC Control in Python – Learning
Racetrack example revisited

for e in range(0, 10000+1):
S, A, R, T = env.generate_episode_b()
G = 0
W = 1
for t in reversed(range(0, T-1)):

G = gamma*G + R[t+1]
C[(S[t], A[t])] = getC(S[t], A[t]) + W
Q[(S[t], A[t])] = getQ(S[t], A[t]) + \

W/getC(S[t], A[t]) * (G-getQ(S[t],A[t]))
if A[t] != pi(S[t]):

break
else:

W = W * 1/bprob(A[t], S[t])

Full example at
https://evermann.ca/busi4720/racetrack_off_policy.py

51 / 61

https://evermann.ca/busi4720/racetrack_off_policy.py

Temporal-Difference Learning

MC Control
▶ Waits until end of episode before updating Q
▶ Updates based on target (discounted) return Gt

Q(St ,a)← Q(St ,a) + α [Gt −Q(St ,a)]

TD Control
▶ Why wait?
▶ Updates based on target of reward plus discounted future

expected return under the optimal action:

Q(St ,a)← Q(St ,a) + α
[
Rt+1 + γQ(St+1,a∗

t+1)−Q(St ,a)
]

52 / 61

On-Policy TD Learning – SARSA

Initialize Q(s,a) for all s ∈ S+ , arbitrarily
Loop for each episode:

Initialize S
Choose A from S using policy derived from Q
Loop for each step of episode:

Take action A, observe R,S′

Choose A′ from S′ using policy derived from Q
Q(S,A)← Q(S,A) + α

[
R + γQ(S′,A′)−Q(S,A)

]
S ← S′;A← A′

until S is terminal

53 / 61

SARSA Example – Windyworld

Source: SB Chapter 6

▶ Non-discounted (γ = 1)
▶ Rewards are -1 until termination
▶ No penalties for moving off-world

54 / 61

SARSA Example – Windyworld

Define states
States = []
for i in range(nrow):

for j in range(ncol):
States.append((i, j))

Define actions
Actions = range(0, 4)
Initialize Q
Q = dict()
for s in States:

for a in Actions:
Q[(s, a)] = random.random()

Define pi
def pi(s):

if random.random() < epsilon:
return random.choice(Actions)

else:
return argmaxQ(s)

55 / 61

SARSA Example – Windyworld

for e in range(0, 100):
terminal = False
S = windy.reset()
A = pi(S)
step = 0
while terminal is False:

Sprime, R, terminal = windy.step(A)
Aprime = pi(Sprime)
Q[(S,A)] = Q[(S,A)] + alpha*(R + \

gamma * Q[(Sprime, Aprime)] - Q[(S, A)])
S = Sprime
A = Aprime

Complete example at https:
//evermann.ca/busi4720/windyworld_sarsa.py

56 / 61

https://evermann.ca/busi4720/windyworld_sarsa.py
https://evermann.ca/busi4720/windyworld_sarsa.py

Generalizing SARSA to n-Step TD Control

TD Error (1-Step Error):

δTD = Rt+1 + Q(St+1,at+1)−Q(St ,a)

Recall that:

Q(St ,At) = E[Gt |St ,At] and Gt = Rt+1 + γGt+1

TD Error (2-Step Error):

δTD = Rt+1 + γRt+2 + γ2Q(St+2,at+2)−Q(St ,a)

· · ·

TD Error (n-Step Error):

δTD = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQ(St+n,at+1)−Q(St ,a)

57 / 61

Generalizing SARSA to n-Step TD Control

Source: SB Figure 7.4

58 / 61

Off-Policy TD Learning – Q-Learning

Initialize Q(s,a) for all s ∈ S+ , arbitrarily
Loop for each episode:

Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q
Take action A, observe R,S′

Q(S,A)← Q(S,A) + α
[
R + γmax

a
Q(S′,A′)−Q(S,A)

]
S ← S′

until S is terminal

59 / 61

Q-Learning Example – Windyworld

for e in range(0, 1000):
terminal = False
S = windy.reset()
step = 0
while terminal is False:

A = pi(S)
Sprime, R, terminal = windy.step(A)
Q[(S,A)] = Q[(S,A)] + alpha*(R + \

gamma * maxQ(Sprime) - Q[(S, A)])
S = Sprime

Complete example at https://evermann.ca/busi4720/
windyworld_q_learning.py

60 / 61

https://evermann.ca/busi4720/windyworld_q_learning.py
https://evermann.ca/busi4720/windyworld_q_learning.py

SARSA and Q-Learning Results on Windyworld

Steps per episode to termination:

SARSA Q-Learning

61 / 61

	Introduction

