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This Class

What You Will Learn:
▶ Introduction to Statistical Learning
▶ Introduction to Regression Models
▶ Introduction to Classification Models
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Based On

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani:
An Introduction to Statistical Learning with Applications in R. 2nd
edition, corrected printing, June 2023. (ISLR2)
https://www.statlearning.com

Chapters 2, 3, 4, 5

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The
Elements of Statistical Learning. 2nd edition, 12th corrected printing,
2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapters 2, 3, 4, 7

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction.
MIT Press 2022.
https://probml.github.io/pml-book/book1.html

Chapters 4, 6, 9, 10, 11
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Supervised Learning

▶ Inputs x (”predictors”, ”independent variables”, ”features”)
can predict Output y (”target”, ”response”, ”dependent
variable”)
▶ May assume a functional relationship y = f (x) + ϵ

▶ Train a statistical model using data where both inputs and
outputs are known (”training data”)
▶ Approximate f by some function f̂
▶ ”Fit” a model to data

▶ Parametric (”model-based”) methods learn the
parameters of a model for optimal prediction. They
assume a functional form for f̂

▶ Non-parametric methods do not assume a functional form
and are more flexible

▶ Predict outputs of new observations using trained model f̂
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Regression

▶ Predicts quantitative output values
▶ Model quality measured by difference between actual and

predicted
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Classification

▶ Predicts categorical or qualitative output values
▶ Model quality measured by proportion of mis-classification
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Regression Methods – Examples

Parametric Methods
▶ Linear Regression
▶ Ridge and Lasso Regression
▶ Principal components regression
▶ Non-linear regression

Non-Parametric Methods
▶ K-Nearest-Neighbours (KNN)
▶ Regression trees
▶ Smoothing splines
▶ Multivariate adaptive regression splines
▶ Kernel regression
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Classification Methods – Examples

▶ Decision trees
▶ Random forests
▶ Bayesian networks
▶ Support vector machines
▶ Neural networks
▶ Logistic regression
▶ Naive Bayes
▶ Probit model
▶ Genetic programming
▶ K-Nearest-Neighbours (KNN)
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Prediction and Explanation

Explanation
▶ Identifying causal mechanisms
▶ Testing causal hypotheses or explanations
▶ Inference to population parameters (points, intervals)
▶ Form of relationship between inputs and outputs is

important (parsimony, ease of interpretation)

Prediction
▶ Predict outputs for new observations
▶ Point or interval predictions, predictive distributions
▶ Focus on specific observations/cases
▶ Form of relationship between inputs and outputs is not

important (may be complex, difficult to interpret)
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Prediction and Explanation [cont’d]

Explanation Prediction

Causation Association

Theory Data

Retrospective Prospective

Bias Variance

Based on: Shmueli, G. (2010). To Explain or To Predict?. Statistical
Science, 25, 289-310.
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Hands-On Exercises

For each of the following problems, decide if it is a prediction or
inference/explanation problem:

1 How do real estate prices vary with location and age?
2 What is the most important predictor of real estate prices?
3 What is the expected sales price for a house at 310

Elizabeth Ave?
4 Is the month of the sale an important predictor of real

estate prices?
5 Calculate the difference in expected sales prices for the

house at 310 Elizabeth Avenue when sold in August and
February

6 When should a house be sold to achieve the best price?
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Model Quality — Regression

▶ MSE (mean squared error) or MAE (mean absolute error)

MSE =
1
n

n∑
i=1

(yi − f̂ (xi))
2 MAE =

1
n

n∑
i=1

|yi − f̂ (xi)|

▶ Evaluation focus is on unseen test data, not training data
▶ Train on past stock market info, but predict future stock

performance
▶ Train on previous patient info, but predict future patient

outcomes
▶ Train on past real estate prices, but predict future prices

▶ Separate training data from test data to evaluate model
quality (”holdout sample”)

▶ Low training error does NOT imply low testing error
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Quality of Fit
Between model and data

Degrees of Freedom
▶ How much a function can be adapted to fit training data
▶ Number of independently (”freely”) adjustable parameters

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Source: ISLR2 Fig 2.9
13 / 63



Quality of Fit [cont’d]

Overfitting
▶ Small training error
▶ Large testing error
▶ Model exploits random idiosyncrasies of the data set

Underfitting
▶ Large training error
▶ Large testing error
▶ Model is insufficiently able to fit true pattern in data (too

simple, inflexible)
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Overfitting with Polynomial Expansions

Source: Murphy Figure 1.7
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Bias and Variance

Recall: Expected Value

E [X ] =
∞∑

i=1

xipi discrete random variable

E [X ] =

∫ ∞

−∞
xf (x)dx continuous random variable

(for uniform distributions or unweighted observations
pi = pj ∀i , j so that E [X ] = 1

n
∑∞

i=1 xi , i.e. expectation = mean)

Recall: Variance

Var [X ] = E [(X − E [X ])2] = E [X 2]− E [X ]2

(for zero-centered variables E [X ] = 0 so that Var [X ] = E [X 2])
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Bias and Variance Decomposition
Example using mean squared error loss

MSE = E [(y − f̂ )2] (unweighted)

= E [y2 − 2y f̂ + f̂ 2]

= E [y2]− 2E [y f̂ ] + E [f̂ 2]

E [f̂ 2] = E [f̂ 2]− E [f̂ ]2 + E [f̂ ]2

= Var [f̂ ] + E [f̂ ]2

E [y2] = E [(f + ϵ)2]

= E [f 2] + 2E [f ϵ] + E [ϵ2]

= f 2 + 2f · 0 + σ2 (f is not random and E [ϵ] = 0)

= f 2 + σ2

17 / 63



Bias and Variance Decomposition [cont’d]

Example using mean squared error loss

E [y f̂ ] = E [(f + ϵ)f̂ ]

= E [f f̂ ] + E [ϵf̂ ]

= E [f f̂ ] + E [ϵ]E [f̂ ]

= E [f f̂ ] + 0 · E [f̂ ]

= fE [f̂ ]

MSE = f 2 + σ2 − 2fE [f̂ ] + Var [f̂ ] + E [f̂ ]2

= (f − E [f̂ ])2 + σ2 + Var [f̂ ]

= Bias[f̂ ]2 + σ2 + Var [f̂ ]
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Bias and Variance Trade-Off

https://commons.wikimedia.org/wiki/File:
Bias_and_variance_contributing_to_total_error.svg
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Bias and Variance Trade-Off

Bias
▶ Model (assumptions) error
▶ Bias[f̂ ] is the error introduced by a wrong/simplified model
▶ High bias: Model is too simple to represent true

relationship → Underfitting

Variance
▶ Training data error due to model complexity
▶ Var [f̂ ] is the variability between training data sets

(samples)
▶ High variance: Model is too complex and exploits random

noise in training data → Overfitting
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Bias and Variance Trade-Off [cont’d]

Irreducible Error
▶ Unmeasured variables
▶ Measurement error
▶ σ2 cannot be predicted from xi so cannot be reduced.
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Bias and Variance Trade-Off [cont’d]

▶ Explanation focuses on bias reduction
(i.e. find the ”true” functional form)

▶ Prediction focuses on variance reduction
(functional form is irrelevant).

▶ High variance models are complex, but complex models
need not have high variance.

▶ High bias (simple models) does not imply large prediction
error

▶ Lower prediction error does not imply low bias (simple
models)
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Review Questions – Bias and Variance

1 Define bias and variance in the context of machine
learning models.

2 Explain the bias-variance tradeoff with an example. You
may use a simple regression model as a reference.

3 Describe a scenario where a high-bias model would be
more appropriate than a low-bias model.

4 Given the following scenarios, identify whether the model
is likely suffering from high bias, high variance, or is
well-balanced:
▶ A model that performs well on training data but poorly on

unseen test data.
▶ A simple linear regression model that is unable to capture

the complexities of the data, resulting in poor performance
on both training and test data.

▶ A model that performs equally well on training and test data.
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Review Questions – Bias and Variance [cont’d]

5 Describe techniques to reduce bias in a machine learning
model.

6 Given a dataset where the relationship between features
and target is non-linear and complex, propose a strategy to
improve a model that initially has high bias (e.g., linear
regression).

7 List and explain strategies to reduce variance in a machine
learning model.

8 Imagine you have a deep learning model that performs
exceptionally well on the training data but poorly on the
validation data. What steps would you take to address this
issue?
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Model Quality — Classification

Error Rate

1
n

n∑
i=1

I(yi ̸= ŷi)

where I(·) is the identity function that is 1 if its argument is true, 0 otherwise.

▶ Training error rates
▶ Testing error rates
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Bayes Classifier

Classifier
Assign each observation to the most likely class given its predictor
values

argmax
j

Pr(Y = j |X = x0)

Error Rate

1 − E

(
argmax

j
Pr(Y = j |X )

)
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Bayes Decision Boundary
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Bayes Classifier [cont’d]

▶ Bayes classifier is an ideal classifier
▶ Bayes error rate is lower bound, irreducible error
▶ Conditional probabilities are unknown in practice
▶ Estimation introduces error
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Example — K-Nearest-Neighbour (KNN)

▶ Identify set of K points closest to observation x0 called N0

Pr(Y = j |X = x0) =
1
K

∑
i∈N0

I(yi = j)

where I(·) is the identity function that is 1 if its argument is
true, and 0 otherwise.

▶ Classify in class of highest probability
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KNN and Bayes Classifier
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KNN Quality
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KNN Error Rates
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Hands-On Exercise – KNN
The table below provides a training data set containing six
observations, three predictors, and one qualitative response variable

Obs. X1 X2 X3 Y
1 0 3 0 Blue
2 2 0 0 Blue
3 0 1 3 Blue
4 0 1 2 Yellow
5 -1 0 1 Yellow
6 -1 1 1 Blue

Suppose we wish to use this data set to make a prediction for Y when
X1 = X2 = X3 = 0 using K-nearest neighbours.

1 Compute the Euclidean distance (”l2-norm”) between each
observation and the test point

2 What are your prediction with K = 1? With K = 3? Why?

3 If the Bayes decision boundary is highly non-linear, would you
expect the best value for K to be large or small? Why?

Adapted from ISLR Exercise 2.7
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Binary Classification Model Quality — Confusion
Matrix

Pr(default=Yes|X = x) > 0.5 (Bayes)

True default status

No Yes Total

Predicted No 9644 252 9896

default status Yes 23 81 104

Total 9667 333 10000

Source: ISLR2 Table 4.4

▶ Overall error rate: 2.75%
▶ Of the defaulters, only 24.3% were correctly predicted

(”sensitivity”) (81/333), error rate 75.7%
▶ Of the non-defaulters, 99.8% were correctly predicted

(”specificity”), error rate 0.02%
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Confusion Matrix – Adjusting Thresholds [cont’d]

Pr(default=Yes|X = x) > 0.2

True default status

No Yes Total

Predicted No 9432 138 9570

default status Yes 235 195 430

Total 9667 333 10000

Source: ISLR2 Table 4.5

▶ Overall error rate: 3.73%
▶ Sensitivity = 58.6%;
▶ Specificity = 97.6%
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Confusion Matrix [cont’d]

True class
No (-) Yes (+) Total

Predicted No (-) True Neg. (TN) False Neg. (FN) N∗

class Yes (+) False Pos. (FP) True Pos. (TP) P∗

Total N P
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Binary Classification Model Quality

▶ Sensitivity, Recall, Hit Rate, True Positive Rate

TPR =
TP
P

=
TP

TP + FN
= 1 − FNR

▶ Specificity, Selectvitity, True Negative Rate

TNR =
TN
N

=
TN

TN + FP
= 1 − FPR

▶ Precision, Positive Predictive Value

PPV =
TP

TP + FP
= 1 − FDR

▶ Negative Predictive Value

NPV =
TN

TN + FN
= 1 − FOR
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Binary Classification Model Quality [cont’d]

▶ Miss Rate, False Negative Rate

FNR =
FN
P

=
FN

FN + TP
= 1 − TPR

▶ Fall-out, False Positive Rate

FPR =
FP
N

=
FP

FP + TN
= 1 − TNR

▶ False Discovery Rate

FDR =
FP

FP + TP
= 1 − PPV

▶ False Omission Rate

FOR =
FN

FN + TN
= 1 − NPV
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Binary Classification Model Quality [cont’d]

▶ Accuracy (= 1 - Error Rate)

ACC =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

▶ F1 Score (harmonic mean of precision and recall)

F1 = 2 × PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN

▶ False Discovery Rate

FDR =
FP

FP + TP
= 1 − PPV

▶ False Omission Rate

FOR =
FN

FN + TN
= 1 − NPV
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Binary Classification Model Quality [cont’d]

ROC: Receiver Operating Characteristic

https://commons.wikimedia.org/wiki/File:Roc_curve.svg
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Binary Classification Model Quality [cont’d]

AUC: Area Under (ROC) Curve

https://commons.wikimedia.org/wiki/File:
ROC_curve_example_highlighting_sub-area_with_low_sensitivity_

and_low_specificity.png
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Hands-On Exercise – Basic Calculations

1 Compute Precision and Recall for the two confusion
matrixes above

2 Computer Accuracy and F1 values for the two confusion
matrixes above

3 Plot the two points for this classifier in an ROC
space/diagram. Are they above or below the diagonal?
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Hands-On Exercise – Interpretation Challenge

Given the following results from a machine learning model:
▶ Precision: 0.75
▶ Recall: 0.60
▶ Accuracy: 0.80

Answer the following questions:
1 What percentage of identified positives are actually

positive?
2 What percentage of actual positives are identified by the

model?
3 What percentage of the total classifications were correct?
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Hands-On Exercise – Adjusting Thresholds

Consider a binary classification task with the following
confusion matrix at a certain threshold:
▶ TP: 150, FP: 50
▶ FN: 30, TN: 200

Discuss how adjusting the classification threshold might affect
precision, recall, and accuracy. What happens if the threshold
is increased or decreased?
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Multi-Class Classification Model Quality

True class
0 1 2 Prob

Predicted
Class

0 4 2 0 q0 = 6/24 = .25
1 1 5 2 q1 = 8/24 = .33
2 2 0 8 q2 = 10/24 = .42

Prob p0 p1 p2

= 7/24 = 7/24 = 10/24
= .29 = .29 = .42

▶ Overall Accuracy: sum(diag(.)) / sum(.) = 17/24 = .71
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Multi-Class Classification Model Quality

Reduction to Binary Classification
▶ ”One vs. Rest” (OvR), ”One vs. All” (OvA), ”One against

All” (OaA)
▶ Consider each class in turn as ”positive” class, consider all

others as ”negative” class
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Multi-Class Classification Model Quality [cont’d]

Micro-Averaging
▶ Count and sum TP, FP, FN over all classes
▶ Use the total TP, FP, FN to calculate Precision and Recall

▶ Gives equal weight to each instance
▶ May overemphasize performance of a majority class when

it dominates the data set

For multi-class classification, micro-average preci-
sion equals micro-average recall and equals accu-
rary
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Multi-Class Classification Model Quality [cont’d]

Macro-Averaging
▶ Calculate precision and recall for each class (OvR)
▶ Average precision and recall, optionally weighting each

class by its true count of instances

▶ Appropriate when all classes are equally important
▶ Appropriate for imbalanced data sets so all classes

contribute
▶ May mask poor performance on important minority classes
▶ May lower overall performance due to low performance on

small or unimportant classes
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Hands-On Exercises

For the multi-class confusion matrix above,
1 Compute precision and recall for each class
2 Compute the macro-averages of precision and recall
3 Compute the micro-averages of precision and recall and

show that they equal the accuracy
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Multi-Class Classification Model Quality [cont’d]

▶ Dissimilarity between two probability distributions
(information theoretic motivation)
▶ True probability distribution over classes pi
▶ Predicted probability distribution over classes qi

▶ Cross-entropy:

H(p,q) = −
∑

i

pi log qi

▶ Kullback-Leibler (KL) divergence:

DKL(P||Q) =
∑

i

pi log

(
pi

qi

)
=
∑

i

pi log pi −
∑

i

pi log qi

= −H(p,p) + H(p,q)
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Hands-On Exercises – Cross-Entropy & KL
Divergence

https://commons.wikimedia.org/wiki/File:Kullback-Leibler_distributions_example_1.svg

Tip: Binomial distribution: Pr(P = k) = n!
k!(n−k)!p

k (1 − p)n−k

1 Calculate the cross-entropy of P and Q
2 Calculate the entropy of P
3 Calculate the KL divergence of P and Q
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Hands-On Exercises – Cross-Entropy

4 Calculate the cross-entropy and KL-divergence for the
multi-class confusion matrix above

5 Given two probability distributions P and Q over a discrete
set of events, where P = [0.1,0.4,0.5] and
Q = [0.2,0.3,0.5], calculate the cross-entropy H(P,Q) and
the KL-divergence DKL(P||Q).
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Hands-On Exercise – Cross-Entropy in Binary
Classification

In a binary classification task, you have the following probability
distributions for the actual labels (P) and predicted labels (Q):
▶ P = [1, 0] (the actual class is positive)
▶ Q = [0.7, 0.3] (the model predicts a 70% chance of being

positive)

Calculate the cross-entropy loss for this scenario.
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Hands-On Exercise – KL Divergence in Practice

Consider a scenario where you are comparing two models
predicting weather conditions (sunny, cloudy, rainy). The actual
distribution of weather conditions (P) and the predictions made
by two models (Q1 and Q2) over a week are as follows:
▶ P = [0.5, 0.3, 0.2]
▶ Q1 = [0.4, 0.4, 0.2]
▶ Q2 = [0.6, 0.2, 0.2]

1 Calculate the KL divergence for both models relative to the
actual distribution.

2 Which model is closer to the actual distribution based on
the KL divergence?

55 / 63



Review Questions – Cross-Entroy & KL Divergence

1 Define cross-entropy and explain its significance in
machine learning, especially in classification tasks.

2 Discuss how cross-entropy can be used to evaluate the
performance of a classification model.

3 Define Kullback-Leibler divergence and explain its
relationship with cross-entropy.

4 Discuss how KL divergence is used in machine learning
models, especially in the context of model optimization and
feature selection.
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Resampling Methods

Goals
▶ Unbiased assessment of true classification error
▶ Generalization to unseen values

Model Selection
Estimate the predictive performance (error) of different models
in order to choose the best one

Model Assessment
Having chosen a final model, estimate is prediction error on
new data (generalizability)
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Validation Set Approach (”Holdout” Method)

Procedure
▶ Randomly divide data:

▶ Training data: Train each model
▶ Validation data: Test each trained model
▶ Test data: Evaluate the selected final model

▶ Typical split: 50% Training, 25% Validation, 25% Testing

Characteristics
▶ Validation error can be highly variable, depending on the

split of data
▶ Validation error may overestimate actual error (bias),

because of the smaller training set
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Validation Set Approach (”Holdout” Method)

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Source: ISLR2 Figure 5.2
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Leave One Out Cross-Validation (LOOCV)

Procedure
1 Select one test observation
2 Train model with remaining n − 1 observations
3 Test the trained model on selected test observation
4 Repeat steps 1–3 n times with different test observations

CV =
1
n

∑n

i=1
Erri

Characteristics
▶ Computationally expensive
▶ Stable results, no randomness
▶ Less overestimation (bias) of error rate
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k-Fold Cross-Validation

Procedure
1 Randomly divide data into k sub-samples (”folds”)
2 Select one fold as test data
3 Train model on remaining k − 1 folds
4 Test the trained model on test data fold
5 Repeat steps 2–4 k times using each fold as test data

CV = 1/k
∑k

i=1
Erri

Characteristics
▶ Compromise between holdout method and LOOCV in

terms of stability and computational expense
▶ Higher bias but lower variance of error estimate than

LOOCV but lower variance than LOOCV
▶ Typical k = 5 to k = 10 61 / 63



k-Fold Cross-Validation

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Source: ISLR2 Figure 5.4

62 / 63



Cross-Validation

To prevent ”information leakage” from training to test or
validation data:

Important
▶ Initial analysis and predictor/feature selection must be

done for each training set
▶ Data pre-processing (centering, scaling, outlier removal,

etc.) must be done on each training set
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