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This Class

What You Will Learn:
» Querying Property Graphs with Neo4J and Cypher J
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Use Cases
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Fraud detection

IT infrastructure monitoring
Recommender engines

Master data management

Social media and social network analytics
Supply chain management

Financial services

Life sciences
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Graph Query Languages

» SPARQL SPARQL Protocol and RDF Query Language
(W3C, 2008, 2013)

» Gremlin (Apache Tinkerpop 2009, 2023)
» Cypher (Neo4d 2011, openCypher 2015)
» GraphQL (Facebook, 2015, 2021)
» GQL (ISO/IEC, forthcoming 2023)
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Graph Analytics with Neo4J and Cypher

» Neo4J Community Edition installed in course virtual
machine

» Browseto http://localhost:7474

» Username neodj password busi4720

Activities

® Firefoxweb Bro Nov2g 09:19

PN @ Neosj Browser x| + v

a2  PostgresQL: Docume... 8 Neod] Browser

EL L

® D E

« c O D locathost:7474/browser/ % K 8o &=

Databasa acoass not avalabe. lease use (SRR to e<t2bish connection, There's a graph waitng for you.
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http://localhost:7474

Neo4dJ Property Graphs

Nodes
» May be labelled with zero, one or more labels
» Labels group nodes into sets
» Can have key—value pairs ("properties”)

Relationships
» Directed, named connection between two nodes
» Typed with one relationship type
» Can have key—value pairs ("properties”)
» Can be navigated in any direction

Path
» Sequence of alternating nodes and relationships
» Starts and ends at a node
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The Cypher Language

Basic Ideas
» Declarative (styled after SQL)
» Pattern matching (styled after SPARQL)
» Cypher query has multiple clauses ("query pipelines”)
» Read and write in a single Cypher statement
» Queries must return data
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Cypher and Graph Concepts
(@\. Loves (@

Dan Ann

Node Node
| |

MATCH( : Person{name:“Dan”})-[ :LOVES]—( :Person{name: “Ann”"})
T T T |
LABEL PROPERTY LABEL PROPERTY

https://neodj.com/docs/getting-started/_images/sample-cypher.svg
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https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

Cypher Syntax

Graph Nodes
(variable : Label)
» Optional variable name, optional label

Relationships

() - [variable : Label] - ()
() - [variable : Label] —> ()
() <— [variable : Label] - ()
0O --0
0 - -0
O<=-0
» Optional variable name, optional label

» Directionality matters for querying and must match that of
the relationship as created

UNTVERSITY

9/37



Cypher Syntax [contd]

Node Properties
(v:L { propertyName: propertyValue } )

Relationship Properties
[r:L { propertyName: propertyValue } ]

Pattern
(n1:L1 {pl:vl})-[r:L2 {p2:v2}]1->(n2:L2 {p3:v3 })

» Can be complex or simple

» Must be used with a keyword like MATCH for querying or like
CREATE or MERGE for data definition
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Defining Graphs in Cypher

name: 'John' name: 'Sally'
age: 27 age: 32
IS_FRIENDS_WITH

since: 01/09/2013
Person > Person

title: 'Graph Databases'

authors: 'Jim Webber, lan Robinson' m
https://neo4j.com/docs/getting-started/_images/modeling_johnsally properties-arrl VIORIA
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https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

Defining Graphs in Cypher

MERGE (j:Person {name: 'John'})
ON CREATE SET j.age = 27
MERGE (s:Person {name: 'Sally'})
ON CREATE SET s.age = 32
MERGE (b:Book {title: 'Graph Databases'})

ON CREATE SET b.authors = ['Jim Webber', 'Ian Robinson']
MERGE (j)-[rell:IS_FRIENDS_WITH]->(s)
ON CREATE SET rell.since = '01/09/2013"

MERGE (j)-[rel2:HAS_READ]-> (b)
ON CREATE SET rel2.on = '02/03/2013', rel2.rated = 5
MERGE (s)-[rel3:HAS_READ]-> (b)
ON CREATE SET rel3.on = '02/09/2013', rel3.rated

Il
=

MERGE ensures a node or relationship exists in the graph, creating it
if necessary; CREATE creates a node or relationship

MATCH (n) RETURN n ‘

MATCH searches the graph for a pattern m
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Defining Graphs in Cypher

Node properties ©

w2
author (im °
s Webbenian
Robinson]
= Graph \S_READ title  Graph ©
Data...
Databases
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Hands-On Exercises

Define a graph in Cypher that represents the following
statement:

You are completing the course BUSI 4720 in this semester with a
final grade of 100. BUSI 4720 is part of the BCom program where
it is offered in the 4th year. BUSI 4720 carries 3 credit hours of
academic credit. It is a course on the topic of Business Analytics.

Identify nodes, relationships, and properties of nodes and
relationships

Use CREATE or MERGE statements to create nodes first,
then relationships

Use MATCH to verify your graph is correct.

1u|!ul¢l:|l;||
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Clean-Up

To remove Persons and Books and relationships between
them:

MATCH (:Person|Book)-[r]-(:Person|Book) DELETE r;
MATCH (n:Person|Book) DELETE nj;

Similar for other types of relationships or labels.

To remove all relationships and nodes use:

MATCH ()-[relationship]-() DELETE relationship;
MATCH (node) DELETE node;

1u|!ul¢l:|l;||
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Property or Relationship?

//find the genres for

// a particular movie

MATCH (m:Movie {title:"The Matrix"})
genre: 'Action’, 'Sci-Fi' RETURN m.genre;

Movie //find which movies share genres
MATCH (ml:Movie), (m2:Movie)
WHERE any (x IN ml.genre

WHERE x IN m2.genre)
AND ml <> m2
RETURN ml, m2;

https://neodj.com/docs/getting-started/_images/modeling_genre_property-arr.svg
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https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg

Property or Relationship?

//find the genres for a
name: Action! //particular movie
MATCH (m:Movie {title:"The Matrix"}),
6@«% (m) = [ :IN_GENRE] -> (g:Genre)
/ RETURN g.name;
i MN_Geng, name: 'Sci-Fi
— //find which movies share genres
MATCH (ml:Movie)-[:IN_GENRE]->(g:Genre)
(m2:Movie) - [ :IN_GENRE]-> (g)
RETURN ml, m2, g

https://neodj.com/docs/getting-started/_images/modeling_genre_node-arr.svg
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https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg

Flexible Data Modeling

name: string name: string
code: string code: string

Airport _— Airport
D FvNeTo D

code: string

airline: string
departure: long
arrival: long
distance: long

https://neod4j.com/docs/getting-started/ images/modeling airport flights-arr.svg

name: string name: string
code: string code: string

~ >
O, code: string en
é” airline: string ‘\S:D
o' departure: long ©
bl . \
o arrival: long (=2
~ . >
distance: long
‘HAS_FLIGHT :DESTINATION
AirportDay = ——m———————— Flight - AirportDay
date: long date: long MO A
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Graph Data versus Relational Data

Employees Dept_Members Departments

815

815, A1 T Im s

T 119 posts

815 18— > g a2

Associative Entity,
JOIN Table,
or Lookup Table
https://neo4j.com/docs/getting-started/ images/relational model.svg
deptName: '4FUTURE'

Department

<0
name: "Alice’ .BELO“GS/

deptName: 'P0815"

Department

Department

MOR

deptName: 'A42' M
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Graph Data versus Relational Data

Conversion
> Tables to Node Labels
» Rows to Nodes
» Columns to Node Properties
» Foreign keys to Relationships
» Join tables to Relationships
» Remove NULL and default values

1u|!ul¢l:|l;||
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The Pagila Database for Neo4J

Import the Pagila Datase (This may take ten or more minutes;
already done in the course Virtual Machine):

CALL apoc.cypher.readFile (
'file:///import-pagila-from-csv.cypher')

Verify some data

MATCH (n:Actor) RETURN n LIMIT 25

1n|!ul¢l:|l;||
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Explore the Pagila Graph

neo4j$ MATCH (n:Actor) RETURN n LIMIT 25 I

Overview

Node labels

DD D

Relationship types

o]
s
[T
[
[

Displaying 75 nodes, 104 relationships.
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Explore the Pagila Schema

| CALL db.schema.visualization ()

call db.schema.visualization()

&
£
3

& %
3
é\o %):7( 'z~ STORE ADDR
2 S ESS —
& 5 Address.
> ) \
(s}
5 = %\ .
& e ° o€
) «

. e
e (SONTRY_OF iy __
5 £

Overview 2
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Relationship types

&
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- INVENTORY (1)

Iﬂ"jﬂzll 0] _lnmu [0)

Displaying 13 nodes, 18 relationships.
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Cypher Query Examples

Find actors by last name, limitto 10

MATCH (a:Actor)

RETURN a.firstName, a.lastName
ORDER BY a.lastName DESC
LIMIT 10;

Find films whose title starts with a "T’ and that have a rental rate
less than 3, sort by film title, limit to 10

MATCH (f:Film {rating: 'PG'})

WHERE (f.title STARTS WITH 'T') AND (f.rentalRate < 3)
RETURN f.title, f.rating, f.rentalRate

ORDER BY f.title ASC LIMIT 10;

1u|!ul¢l:|l;||
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Cypher Query Examples [contd]

Find rental customers that live in India

MATCH (r:Rental)
- [:RENTAL_CUSTOMER] -> (c)

— [:CUSTOMER_ADDRESS] -> ()

— [:ADDRESS_CITY] -> ()

— [:COUNTRY_OF_CITY] -> (ct {country: 'India'})
RETURN c.firstName, c.lastName, r.rentalDate LIMIT 5

UNIVERSITY
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Hands-On Exercise

Find all customers that have rented a film with rating "PG”

Explore the graph visually in Neo4J browser, note the
relationship types

Consider the path from customer to film via rental and
inventory

Design a pattern that starts with a customer node and
ends with a film node

Define an appropriate WHERE clause of property
restrictions in node patterns

1u|!ul¢l:|l;||
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Hands-On Exercise

TCH (n:Custoner) RETURN D
Node properties 0 >
renalbate 20220618134601.0230 >

reumdste 20220623 1510010230

e
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Cypher Query Examples [contd]

Aggregation: Find the mean and standard deviation of rental
payments by country

MATCH (p:Payment)
— [:PAYMENT_RENTAL] -> (r:Rental)

[ :RENTAL_CUSTOMER] —-> (c)
[ :CUSTOMER_ADDRESS] -> ()
[:ADDRESS_CITY] —-> ()
[ :COUNTRY_OF_CITY] —-> (ct)
WITH ct,

avg (p.amount) AS amountMean,

stDev (p.amount) AS amountSD
RETURN ct.country, amountMean, amountSD
ORDER BY amountMean DESC LIMIT 5

https:

//neo4j.com/docs/cypher—-manual/current/functions/aggregating/
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Cypher Query Examples [contd]

Collection: Find the sets of last names of the movie cast, and
the total number of actors

MATCH (a:Actor) - [:ACTS_IN] —-> (f:Film)
RETURN f.title,
collect (a.lastName) AS cast,
count (x) AS numActors;

Collection: Find the set ofs of film title by rental customer and
the number of rentals

MATCH (f:Film) - [:FILM_INVENTORY]
- () — [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]

—> (c:Customer)
RETURN c.lastName,
collect (f.title) AS filmRentals,
count (x) AS numRentals;

https://neodj.com/docs/getting-started/cypher-intro/results/ m
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https://neo4j.com/docs/getting-started/cypher-intro/results/

Cypher Query Examples [contd]

Collection: Find the set of rental customers for each film and
the rental count

MATCH (f:Film) - [:FILM_INVENTORY]
- () — [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]

—> (c:Customer)
RETURN DISTINCT f.title,
collect (c.lastName+' '+left (c.firstName,1l)+'.")
AS custNames,
count (x) as rentalCount

1n|!ul¢l:|l;||
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Cypher Query Examples [contd]

Sub-Query: Find the customers who rent films that are in
inventory at multiple stores

MATCH (c:Customer)<-[:RENTAL_CUSTOMER]
—(r:Rental) - [ :RENTAL_INVENTORY]
—()-[:FILM_INVENTORY]

—(f:Film)

WITH c, count/{

MATCH (f)-[:FILM_INVENTORY]
—()—[:STORE_INVENTORY]
- (s:Store)

RETURN DISTINCT s.storelID
} AS storeNum
where storeNum > 1
RETURN DISTINCT
c.lastName
4o
+left (c.firstName, 1)
+'.' AS custName,
storeNum
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Cypher Query Examples [contd]

Christian Akroyd’s co-actors

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})

- [:ACTS_IN]
- (f:Film)
<- [:ACTS_IN]
— (coActors)
RETURN coActors.firstName + ' ' +

coActors.lastName AS Name;

Quantified Relationships: Movies and actors up to 2 "hops”
away from Christian Akroyd

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})
— [:ACTS_IN%1..2]
— (others)
RETURN distinct others;

]ul!ul’lill;ll
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Cypher Query Examples [contd]

Built-In Function: The shortest path of an acts-in relationship
between Christian Akroyd and Charlize Dench

MATCH path=shortestPath (
(al: Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})
— [:ACTS_INx]
- (a2: Actor {firstName: 'CHARLIZE',
lastName: 'DENCH'}))
RETURN path;

1n|!ul¢l:|l;||

UNIVERSITY

33/37



Cypher Query Examples [contd]

Pattern in WHERE clause, multiple MATCH patterns Find
actors that Christian Akroyd hasn’t yet worked with, but his
co-actors have. Extend Christian Akroyd’s co-actors, to find
co-co-actors who haven’t worked with him.

MATCH (al:Actor {firstName:'CHRISTIAN',
lastName: "AKROYD'})

- [:ACTS_IN] —-> (m) <-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]->(m2)<-[:ACTS_IN] - (cocoActors)
WHERE NOT (al)-[:ACTS_IN]->()<-[:ACTS_IN]- (cocoActors)

AND al <> cocoActors
RETURN cocoActors.firstName+' '+
cocoActors.lastName AS Recommended,
count (*) AS Strength
ORDER BY Strength DESC

1u|!ul¢l:|l;||
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Cypher Query Examples [contd]

Find someone who can introduce Christian Akroyd to Susan
Davis

MATCH (al:Actor {firstName:'CHRISTIAN',
lastName: "AKROYD'})
—[:ACTS_IN]—->(m)<-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]—>(m2)
<-[:ACTS_IN]-(a2:Actor {firstName:'SUSAN',
lastName: 'DAVIS'})
RETURN al, m, coActors, m2, a2

1n|!ul¢l:|l;||
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Further Information

Getting Started

Cypher Manual

Graph Data Science

APQOC Library
Use Cases

Resources

https://neo4j.com/docs/
getting-started/

https://neo4j.com/docs/cypher-manual

https://neo4j.com/docs/
graph-data-science

https://neodj.com/docs/apoc/current/
https://neo4j.com/use-cases/

https://neodj.com/resources/
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Hands-On Exercises

Are there two customers that have the same address?
Which customers have rented the same set of films?
Find all films with a single actor

Calculate the rental revenue per customer. Who are the
top 57 Bottom 5?

Calculate the rental counts for each country of customer.
Are there countries with no rentals?

A Create a graph that represents a product hierarchy.
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