
Business 4720 - Class 3
Relational Data

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 37

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ The relational data model
▶ Creating tables and constraints
▶ Querying data for descriptive analytics with SQL

2 / 37

The Relational Data Model

Basics
▶ Tables have columns/fields
▶ Fields are of a primitive data type

Columns Constraints
▶ NOT NULL: Field must not be empty
▶ UNIQUE: All values in columns must be different

Table Constraints
▶ CHECK: All values satisfy certain conditions
▶ PRIMARY KEY: Set of fields must uniquely identify a row
▶ FOREIGN KEY: Set of fields whose values must exist in

the primary key of another table

3 / 37

Foreign Key Constraints

▶ Express relationships between tables
▶ May reference the same table (”unary relationship”) or

another table (”binary relationship”)
▶ Represent ”1:1”, ”1:Many”, or ”Many:Many” relationships

(”cardinality”)
▶ Together with NOT NULL contraints, can represent

optional relationships

4 / 37

Basic SQL Commands

CREATE TABLE Creates a new table with specified
columns and constraints

DROP TABLE Deletes a table and all its contents

INSERT Inserts a row of data values into a table

UPDATE Updates/modifies data values in a table

SELECT Retrieves data values from one or more ta-
bles

5 / 37

Basic SQL Commands

More Information
▶ This course covers only basic information
▶ Further information in PostgreSQL documentation

Data Definition https://www.postgresql.org/docs/
current/ddl.html

Data Types https://www.postgresql.org/docs/
current/datatype.html

Data Manipulation https://www.postgresql.org/docs/
current/dml.html

Data Queries https://www.postgresql.org/docs/
current/queries.html

Functions https://www.postgresql.org/docs/
current/functions.html

6 / 37

https://www.postgresql.org/docs/current/ddl.html
https://www.postgresql.org/docs/current/ddl.html
https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/docs/current/dml.html
https://www.postgresql.org/docs/current/dml.html
https://www.postgresql.org/docs/current/queries.html
https://www.postgresql.org/docs/current/queries.html
https://www.postgresql.org/docs/current/functions.html
https://www.postgresql.org/docs/current/functions.html

Let’s Play with SQL

▶ PostgreSQL RDBMS installed in the course
virtual machine

▶ Access options
1 psql command line access
2 DBeaver graphical user interface
3 pgAdmin administration application

7 / 37

PostgreSQL Database Management System

▶ A DBMS is a background program without user interface
▶ Runs on one computer (”server”) or distributed across a

cluster of multiple computers
▶ The name of the local computer is called ”localhost”

▶ Administration tools allow basic manual interaction
▶ pgAdmin offers easy tools for creating tables and querying

data, but we will use the SQL language instead
▶ A DBMS can manage multiple databases

▶ Your database is called ”busi4720”
▶ A database may have multiple schema

▶ A schema is a grouping of tables and related info
▶ The default schema is called ”public”

▶ A schema may contain multiple tables (and related
information)

8 / 37

PSQL

▶ Type psql in a terminal window
▶ The psql command \conninfo shows connection info
▶ Quit psql using \q

▶ You should be connected to the ”busi4720” database
▶ Tip: Use a notepad application to assemble your SQL

commands to paste into psql

9 / 37

DBeaver

▶ Navigate to and select the ”busi4720” database in the
navigator on the left

▶ In the toolbar, press the ”SQL” button

10 / 37

PostgreSQL Hands-On with pgAdmin

▶ Navigate to and select the ”busi4720” database in the
object explorer on the left

▶ From the ”Tools” menu, select the ”Query tool”

11 / 37

PostgreSQL Hands-On

▶ Enter the following query:
▶ In psql, just press RETURN to execute
▶ In DBeaver, press CTRL-RETURN to execute
▶ In pgadmin, press F5 to execute

CREATE TABLE products (
pcode integer,
name varchar(100),
price float4,
PRIMARY KEY (pcode));

Tips
▶ All SQL commands must end with a semicolon
▶ Capitilization does not matter

12 / 37

PostgreSQL Hands-On

▶ Create a table for the suppliers as well:

CREATE TABLE suppliers (
scode integer,
name varchar(100),
city varchar(100),
PRIMARY KEY (scode));

▶ Insert some data into the tables:

INSERT INTO products VALUES (1, 'Hex Bolt', 1.99);
INSERT INTO products VALUES (2, 'Round Bolt', 2.99);

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers

VALUES (2, 'Hardware Co', 'Cartwright');

13 / 37

PostgreSQL Hands-On

▶ Check that the data is there:

SELECT * FROM products;
SELECT * FROM suppliers;

▶ Can we capture which supplier supplies which product?
▶ We need a foreign key!
▶ Let’s delete our ”products” table and rework it

DROP TABLE products;

14 / 37

PostgreSQL Hands-On

▶ Assumption: Suppliers supply many products, a product
may be supplied by only one supplier

CREATE TABLE products (
pcode integer,
name varchar(100),
price float4,
supplier integer,
PRIMARY KEY (pcode),
FOREIGN KEY (supplier) REFERENCES suppliers);

15 / 37

PostgreSQL Hands-On

▶ Insert some product data:

INSERT INTO products VALUES(1, 'Hex Bolt', 1.99, 1);
INSERT INTO products VALUES(2, 'Round Bolt', 2.99, 1);
INSERT INTO products

VALUES(3, 'Square Bolt', 3.99, NULL);

▶ There are products that have no supplier (the ”square bolt”)
▶ There are suppliers that supply many products (supplier 1)
▶ There are suppliers that do not supply products (supplier 2)
▶ We cannot record multiple suppliers for each product!

16 / 37

PostgreSQL Hands-On

▶ Make sure that every product has a supplier:

DROP TABLE IF EXISTS products;

CREATE TABLE products (
pcode integer,
name varchar(100),
price float4,
supplier integer NOT NULL,
PRIMARY KEY (pcode),
FOREIGN KEY (supplier) REFERENCES suppliers);

17 / 37

PostgreSQL Hands-On

▶ Can products be supplied by multiple suppliers?
▶ We need another table, representing the ”supplies”

relationship, a ”Many:Many” relationship
▶ Let’s drop everything and start again!

DROP TABLE IF EXISTS products;
DROP TABLE IF EXISTS suppliers;

▶ Tip: Must drop tables in correct order because of foreign
keys!

18 / 37

PostgreSQL Hand-On

CREATE TABLE products (
pcode integer,
name varchar(100),
PRIMARY KEY (pcode));

CREATE TABLE suppliers (
scode integer,
name varchar(100),
city varchar(100),
PRIMARY KEY (scode));

CREATE TABLE supplies (
scode integer NOT NULL,
pcode integer NOT NULL,
price float4 NOT NULL,
PRIMARY KEY (scode, pcode),
FOREIGN KEY (scode) REFERENCES suppliers,
FOREIGN KEY (pcode) REFERENCES products);

19 / 37

PostgreSQL Hand-On

INSERT INTO products VALUES (1, 'Hex Bolt');
INSERT INTO products VALUES (2, 'Round Bolt');

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers

VALUES (2, 'Hardware Co', 'Cartwright');

INSERT INTO supplies VALUES(1, 1, 1.99);
INSERT INTO supplies VALUES(1, 2, 2.49);
INSERT INTO supplies VALUES(2, 1, 2.99);
INSERT INTO supplies VALUES(2, 2, 1.79);

20 / 37

Foreign Key Summary

1:Many Relationship
▶ Requires a foreign key from the ”many” table into the ”one” table

▶ Example: A supplier supplies many products but a product has
one supplier (or none, depending on NOT NULL constraint)

Many:Many Relationship
▶ Requires a table that represents the relationship

▶ Foreign keys from this table reference the ”main” tables

▶ Example: A supplier supplies many products and a product can
be supplied by many suppliers

▶ Can be extended to relationships between three or more tables

▶ Example: A supplier supplies many products from multiple
warehouses

21 / 37

Hands-On Exercise

1 Consider the following:

▶ A book has an ISBN number and a title.
▶ An author has a name and an address.
▶ An author can write many books, and a book can be written

by multiple authors. A book is written in a certain year.

2 Write the CREATE TABLE statements with the necessary
FOREIGN KEY statements, and execute them on PostgreSQL

▶ Use appropriate datatypes for the columns
▶ Create an appropriate PRIMARY KEY for all tables

3 Use INSERT statements to create some example data

4 Use SELECT statements to ensure your data exists

22 / 37

Relational Diagrams

▶ Graphically show the relationships in a database model
▶ Often called ”Entity-Relationship diagram” (but that is not

quite correct)
▶ Useful for understanding the structure of the data
▶ Useful for writing queries
▶ Can be automatically created from an existing database

▶ In the pgAdmin Object Explorer, right-click on the
”busi4720” database, select ”ERD for Database”

▶ In the DBeaver Navigator, select the ”busi4720”, then the
”public” schema, then right click and select ”View Diagram”

23 / 37

Relational Diagram for the Pagila Database

24 / 37

The Pagila Demo Database

▶ Based on the Sakila database1, ported to PostgreSQL2

▶ Pre-installed in the course virtual machine
▶ DVD rental case with main tables:

▶ Film: has many categories, is in inventory at many stores
▶ Store: has many films in inventory, has a staff manager
▶ Customer: may have many rentals, associated with a store
▶ Actor: may appear in many films, films have many actors
▶ Inventory: stores have many films in inventory, and film

may be in inventory in many stores
▶ Rental: Inventory is rented by customer through staff
▶ Staff: Staff are associated with a store
▶ Address: Stores, customers, and staff have an addresses

1https://dev.mysql.com/doc/sakila/en/,
https://dev.mysql.com/doc/sakila/en/sakila-license.html

2https://github.com/devrimgunduz/pagila,
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

25 / 37

https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/sakila-license.html
https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

Querying Data with SQL

Parts of the SELECT statement
▶ SELECT: which columns to query
▶ FROM: which tables to query from
▶ JOIN: how to combine data from multiple tables
▶ WHERE: conditions on field values
▶ GROUP BY: groups within which to aggregate data
▶ HAVING: conditions on group aggregate values
▶ ORDER BY: how to sort the result
▶ LIMIT: how many results to return

26 / 37

Querying Data with SQL

Find all actors and the films they appeared in, ordered by film
category and year, for those films that are rated PG:

SELECT concat(left(actor.first_name, 1),
'. ', actor.last_name) AS Actor,

category.name AS Category,
film.title,
film.release_year

FROM film_actor
INNER JOIN actor USING (actor_id)
INNER JOIN film USING (film_id)
INNER JOIN film_category USING (film_id)
INNER JOIN category USING (category_id)
WHERE film.rating = 'PG'
ORDER BY actor.last_name,

actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;

27 / 37

Querying Data with SQL

Equivalent alternative without using JOIN:

SELECT concat(left(actor.first_name, 1),
'. ', actor.last_name) AS Actor,

category.name AS Category,
film.title,
film.release_year

FROM film_actor, film, actor, film_category, category
WHERE actor.actor_id = film_actor.actor_id AND

film.film_id = film_actor.film_id AND
film_category.film_id = film.film_id AND
category.category_id =

film_category.category_id AND
film.rating = 'PG'

ORDER BY actor.last_name,
actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;

28 / 37

Querying Data with SQL

Find the most popular actors in the rentals in each city:

SELECT city.city,
concat(actor.first_name, '. ',

actor.last_name) AS actor_name,
count(concat(actor.first_name, '. ',

actor.last_name)) AS Number_Rentals
FROM rental
INNER JOIN inventory USING (inventory_id)
INNER JOIN store USING (store_id)
INNER JOIN address USING (address_id)
INNER JOIN city USING (city_id)
INNER JOIN film USING (film_id)
INNER JOIN film_actor USING (film_id)
INNER JOIN actor USING (actor_id)
GROUP BY city.city, actor.actor_id
HAVING count(rental.rental_id) >= 300
ORDER BY city ASC,

Number_Rentals DESC,
actor_name ASC;

29 / 37

Querying Data with SQL
Find the customers who spent the most, with their phone
numbers and cities, the cities their store is in, and the number
of rentals with the highest total rental payments for each
category grouped by city of the rental store:

SELECT category.name AS category_name,
store_city.city AS store_city,
customer.customer_id,
concat(customer.first_name, ' ',

customer.last_name) AS customer_name,
cust_city.city AS customer_city,
cust_address.phone AS customer_phone,
count(rental.rental_id) AS num_rentals,
sum(amount) AS total_amount

FROM city AS cust_city, city AS store_city,
address AS cust_address, address AS store_address,
store, rental

INNER JOIN payment USING (customer_id)
INNER JOIN customer USING (customer_id)
INNER JOIN inventory USING (inventory_id)
INNER JOIN film USING (film_id)
INNER JOIN film_category USING (film_id)
INNER JOIN category USING (category_id)

30 / 37

Cont’d

WHERE store.store_id = inventory.store_id
AND store_address.address_id = store.address_id
AND store_city.city_id = store_address.city_id
AND cust_address.address_id = customer.address_id
AND cust_city.city_id = cust_address.city_id

GROUP BY category.name, customer.customer_id,
cust_address.address_id, cust_city.city,
store_city.city

HAVING sum(amount) IN (
SELECT sum(amount) AS maxamount
FROM store, address, city AS inner_city, rental
INNER JOIN payment USING (customer_id)
INNER JOIN customer USING (customer_id)
INNER JOIN inventory USING (inventory_id)
INNER JOIN film USING (film_id)
INNER JOIN film_category USING (film_id)
INNER JOIN category AS inner_category USING (category_id)

31 / 37

Cont’d

WHERE inner_category.name = category.name AND
inner_city.city = store_city.city AND
store.store_id = inventory.store_id AND
address.address_id = store.address_id AND
inner_city.city_id = address.city_id

GROUP BY inner_category.name,
inner_city.city,
customer.customer_id

ORDER BY inner_category.name ASC,
inner_city.city,
maxamount DESC

LIMIT 1)
ORDER BY category.name ASC, store_city ASC;

32 / 37

Querying Data with SQL

Get the total rental revenue and number of rentals for each
store by month:

SELECT city.city,
extract(year from payment_date) AS year,
extract(month from payment_date) AS month,
sum(amount) as dollars,
count(rental.rental_id) as rentals

FROM payment, rental, inventory, store, address, city
WHERE payment.rental_id = rental.rental_id AND

rental.inventory_id = inventory.inventory_id AND
inventory.store_id = store.store_id AND
store.address_id = address.address_id AND
address.city_id = city.city_id

GROUP BY city.city,
extract(year from payment_date),
extract(month from payment_date)

ORDER BY city.city,
extract(year from payment_date),
extract(month from payment_date);

33 / 37

Querying Data with SQL
Get the top 5 and the bottom 5 grossing customers by year

(SELECT concat(customer.first_name, ' ',
customer.last_name) AS customer_name,

extract(year from payment_date) AS year,
sum(amount) as dollars,
'Top-5' as note

FROM payment, customer
WHERE payment.customer_id = customer.customer_id
GROUP BY extract(year from payment_date),customer.customer_id
ORDER BY dollars DESC LIMIT 5
) UNION (
SELECT concat(customer.first_name, ' ',

customer.last_name) AS customer_name,
extract(year from payment_date) AS year,
sum(amount) as dollars,
'Bottom-5' as note

FROM payment, customer
WHERE payment.customer_id = customer.customer_id
GROUP BY extract(year from payment_date),customer.customer_id
ORDER BY dollars ASC LIMIT 5)
ORDER BY dollars DESC;

34 / 37

Tips on Querying Data with SQL

▶ Subqueries are intuitive but not efficient
▶ Use CTEs (common table expressions) (WITH) in order to

simplify queries
▶ Resursive CTEs (WITH RECURSIVE) for self-referencing

queries
▶ Use set operations to combine results from multiple

queries (UNION, INTERSECT, EXCEPT)
▶ Use DISTINCT to query unique values
▶ Postgres can import/export from/to CSV and JSON files

35 / 37

Hands-On Exercises

1 Find the names and the rental numbers of the top 5
customers who rented the most films
▶ Tip: Join tables ”rental”, ”customer”, use ”group by” and the

”count()” function
2 Calculate the rental revenue per customer. Who are the

top 5? Bottom 5?
▶ Tip: Join tables ”rental”, ”customer”, ”payment”, use ”group

by” and the ”sum()” function
3 Calculate the average rental revenue per customer for

each store
▶ Tip: Join tables ”rental”, ”customer”, ”payment”, ”inventory”,

use ”group by” and the ”avg()” function

36 / 37

Hands-On Exercises [cont’d]

4 Calculate the rental counts for each country of customer.
Are there countries with no rentals?
▶ Tip: Join tables ”rental”, ”customer”, ”address”, ”city”,

”country”, use ”group by” and the ”count()” function
5 Find all films with a single actor

▶ Tip: Join tables ”film”, ”film_actor”, use ”group by” and the
”count()” function with a HAVING clause

6 Create tables to represent a part-of hiearchy. For example,
a product may be a part of another product, and prodcuts
may have multiple parts.
▶ Tip: You need only one table

37 / 37

	Introduction
	The Relational Data Model

