
Business 4720 - Class 2
Data Types and Data Sources

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 81

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Different data types
▶ Data quality and provenance
▶ Internal and external data sources

2 / 81

Primitive Data Types

char Individual Characters
string A string of characters
byte 1 byte, −128 . . . 127 or one Ascii characters
int (16 bit) ”Short”, Integer numbers, −32,768 . . . 32,767
int (32 bit) ”Long”, Integer numbers,

−2,147,483,648 . . . 2,147,483,647
int (64 bit) Integer numbers, −9,223,372,036,854,775,808 . . .

9,223,372,036,854,775
float Decimal numbers, 6 to 7 significant digits
double Decimal numbers, 15 to 16 significant digits
boolean Logical, true/false, 1 or 0

Not all tools use the same names, and not all tools make the same
distinctions. For example, the R system uses numeric (which is
actually a double type) and integer (which is a 32 bit integer).

3 / 81

Missing Values

▶ Depends on software tool
▶ Different meanings (such as not applicable, not available)

R NA

Python None

SQL Null

4 / 81

Floating Point Numbers (IEEE 754 Standard)

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

(−1)sign(1.b51b50 . . . b0)2 × 2exp−1023

(−1)sign

(
1 +

52∑
i=1

b52−i2−i

)
× 2exp−1023

float 4 bytes, 1 bit for sign, 8 bits for exponent, 23 bits for significand,
±3.40282347e + 38

double 8 bytes, 1 bit for sign, 11 bits for exponent, 52 bits for significand,
±1.79769313486231570e + 308

5 / 81

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Floating Point Serialization to Text

Idiosyncrasies
▶ Thousands separator, grouping
▶ Negatives in brackets
▶ ”Scientific notation”

-1023476.56
-1023476,56 some locales use comma as decimal sep

-1,023,476.56 some locales use comma for grouping
-1.023.475,56 some locales use comma as sep and points to group

(1,023,476.56) some applications use brackets for neg
-1 023 476.56 some locales use space for grouping

-1.02347656e+06 ”scientific notation”
-1023.47656e+03 also ”scientific notation”

. . .

6 / 81

Characters (Unicode ISO/IEC 8859)

▶ Covers all major alphabets and writing systems
▶ 149,813 symbols (V15.1), incl 3782 emojis, for 161 scripts

UTF-8
▶ Most widely used Unicode encoding standard

▶ Standardized 1998 as RFC 2277

▶ 1 to 4 byte variable length encoding for each character

▶ Initial 127 bytes backwards compatible with ASCII character set

Roman alphabet: Inuktitut

Written Inuktitut:
Unicode characters: \u1403 \u14c4 \u1483

\u144e \u1450 \u1466
UTF-8 Encoding: 0xE1 0x90 0x83 0xE1 0x93 0x84

0xE1 0x92 0x83 0xE1 0x91 0x8E
0xE1 0x91 0x90 0xE1 0x91 0xA6

7 / 81

Unicode

Source: https://xkcd.com (CC license)
8 / 81

https://xkcd.com

Hands-On Exercise

▶ Choose your favourite emoji
▶ Determine its Unicode number (”codepage”)
▶ Determine its UTF-8 encoding

9 / 81

Dates and Times

Complexities
▶ Calendar formats (written)

▶ DMY, YMD, MDY, YDM with different separators (”.”, ”-”, ”/”)
▶ Not all software or data sets comply with standards
▶ Difficult to parse and validate

▶ 12 hour (AM/PM) and 24 hour time formats
▶ Time zones
▶ Leap seconds, leap years
▶ Week numbering
▶ Precision (milliseconds, nanoseconds)
▶ Different written formats
▶ Arithmetic involving years, months, days

10 / 81

Dates and Times

Source: https://xkcd.com (CC license)

11 / 81

https://xkcd.com

ISO 8601 and RFC 3339 Date Format

Calendar dates YYYY-MM-DD

Ordinal dates YYYY-DDD (not in RFC 3339)

Week dates YYYY-Www-d (not in RFC 3339)

Times

Thh:mm:ss.sss (or Thhmmss.ss)
Thh:mm:ss (or Thhmmss)
Thh:mm.mmm or Thhmm.mmm
Thh:mm or Thhmm
Thh.hhh

Time Zones
<time>Z or <time>±hh:mm or
(<time>±hhmm or <time>±hh)

Combined <date>T<time>
Periods PnYnMnDTnHnMnS or P<date>T<time>

Leap Year Rule
(year % 4 == 0) and (year % 100 != 0 or year % 400 == 0)

12 / 81

Hands-On-Exercises

The territory of Nunavut was created on April 1st, 1999.

▶ Express the date in RFC 3339
▶ Calculate the number of days since the creation of Nunavut
▶ Assume that a ceremony took place at 3PM that day in

Iqaluit and express this date-time in RFC 3339
▶ Assume the ceremony lasted for 125 minutes and express

this duration in RFC 3339

13 / 81

Complex/Structured Data Types

Python
▶ list, [1, 2, "a", "b", 2], mutable, ordered

▶ tuple, (1, 2, "a", "b", 2), immutable

▶ set, {1, 2, "a", "b"}, mutable, unordered

▶ dict, {"make": "Ford", "year": 2023}, mutable

R
▶ list, list(1, 2, "a", "b", 2), mutable, ordered

▶ vector, c(1, 2, 3), mutable, same primitive type

▶ factor, as.factor(c("Hot", "Med", "Cold"))

▶ matrix, matrix(c(1, 2, 3, 4), nrow=2)

▶ array, array(c(1, 2, 3), c(4, 5, 6))

14 / 81

Data Types in Analytics

Structured Data
▶ Tables
▶ Key-Value pairs
▶ Documents (JSON, XML)
▶ Graphs

Unstructured Data
▶ Text
▶ Image
▶ Video

15 / 81

Tables

▶ Columns, represent different variables
▶ Each column is a vector, typically named

▶ Rows, represents values for different observations
▶ Cells, may be primitive or complex, e.g. sets or lists or

tables

Name Area Population

Canada 9,984,670 38,781,292

Nigeria 923,768 223,804,632

Germany 357,600 83,294,633

16 / 81

Table Interchange/Serialization

CSV format (RFC 4180)
▶ Plain text, Ascii or UTF-8 Unicode
▶ One record per line
▶ Fields separated by delimiter (typically: ”,”)
▶ Fields must be primitive
▶ Optional header with column/field names
▶ Fields may be enclosed by double quotes (” " ”)

"Name", "Area", "Population" <LF>
"Canada", "9984670", "38781292" <LF>
"Nigeria", "923768", "223804632" <LF>
"Germany", "357600", "83294633" <LF>

17 / 81

Table Interchange/Serialization [cont’d]

Potential Problems with CSV Files
▶ Different delimiters (”,”, ”tab”, ”;”, ” ˆ ”, etc.)
▶ Different line endings/terminators (CR/LF for Windows, LF

for Mac & Unix)
▶ Different or inconsistent quoting
▶ Different decimal and thousand delimiters for numerics

(depending on locale)
▶ Different date formats (depending on locale)

18 / 81

Hands-On Exercise

▶ Search the internet for a CSV file of the population and
areas of all countries of the world

▶ Examine the CSV file and answer the following questions:
▶ What is the delimiter?
▶ Which fields are quoted, and how?
▶ What is the line ending character(s)?
▶ What is the number format?
▶ What is the date format (if there are dates)?

▶ Import the CSV file into your favourite spreadsheet tool
▶ Does it recognize all information correctly? If not, what is

not imported well?
▶ Export the CSV file from your tool under a different name.

▶ Do you get an identical file to the one you imported? If not,
what has changed?

19 / 81

Relational Databases

Characteristics
▶ Records (”rows”) in tables (”relations”)
▶ Columns/fields are typed
▶ Records are identified by ”primary keys”
▶ Records can refer to other records, in the same or different

relation/table

https://commons.wikimedia.org/wiki/File:Relational_key_SVG.svg

20 / 81

https://commons.wikimedia.org/wiki/File:Relational_key_SVG.svg

Relational Databases [cont’d]

Advantages
▶ Normalization reduces redundancy, increases data

integrity
▶ Enforcement of contraints such as types, referential

integrity, non-nulls, etc. increases data integrity
▶ Intuitive schemas and queries

Prominent Examples
▶ On-premises: Oracle DBMS
▶ Open source: PostgreSQL
▶ Cloud: Amazon RDS, Google Cloud Database, Azure SQL

21 / 81

Key-Value Data Stores

Characteristics
▶ Records are sets of key-value pairs
▶ Key has multiple components (ordered list, ”minor keys”)
▶ Value is uninterpreted

https://commons.wikimedia.org/wiki/File:KeyValue.PNG

22 / 81

https://commons.wikimedia.org/wiki/File:KeyValue.PNG

Key-Value Data Stores [cont’d]

Advantages
▶ Fast retrieval/insertion/updating
▶ No relationships between entities/records
▶ Less memory use (does not store empty table cells)
▶ Untyped and no fixed schema increases flexibility
▶ Easy scalability and distribution

Prominent Examples
▶ On-premises, open-source: Apache Cassandra, Facebook

RocksDB, Redis
▶ Cloud: AWS DynamoDB, Google LevelDB, Azure

CosmosDB

23 / 81

Documents (JSON)

JavaScript Object Notation (RFC 8259)
▶ Plain text, UTF-8
▶ Primitive Types:

▶ Strings (in single or double quotations)
▶ Number
▶ Boolean
▶ Null

▶ Structured Types:
▶ Objects

▶ unordered collection of zero or more name/value pairs)
▶ Delimited by ”{” and ”}”

▶ Arrays
▶ Ordered sequence of zero or more values
▶ Delimited by ”[” and ”]”

24 / 81

JSON Example – Complex Object

{
"Image": {
"Width": 1060,
"Height": 400,
"Title": "Skyline of Iqualuit, Nunavut",
"Url":

"https://upload.wikimedia.org/wikipedia/commons/b/b4/Iqaluit_skyline.jpg",
"Legal": {
"Copyrighted": true,
"License": "GNU Free Documentation License",
"Inception": "2010-03-24",
"Author": "Aaron Lloyd"
},

}
}

25 / 81

JSON Example – List of Objects

[
{
"Latitude": 56.536389,
"Longitude": -61.718889,
"City": "Nain",
"Province": "NL",
"Postal": "A0P",
"Country": "Canada"

},
{
"Latitude": 53.512778,
"Longitude": -60.135556,
"City": "Sheshatshiu",
"Province": "NL",
"Postal": "A0P",
"Country": "Canada"

}
]

26 / 81

Hands-On Exercise

Document yourself in a JSON object
▶ Identify information about yourself, such as names,

addresses, dates, relationships (work, school, uni), etc.
▶ Structure the information in JSON Objects and Arrays
▶ Use nested structures, e.g. objects in arrays, or arrays in

objects, or objects in objects, etc.

27 / 81

Document Databases I

What makes them special
▶ Nested key-value data store
▶ All keys are strings
▶ No fixed schema, increases flexibility

Applications
▶ Content management
▶ Catalogs and product data
▶ Log and event data (IoT, sensors)

28 / 81

Document Databases II

Prominent Examples
▶ On-premises: MongoDB, ArangoDB
▶ Open source: Apache CouchDB
▶ Cloud: AWS DocumentDB, Azure CosmosDB

29 / 81

Extensible Markup Language – XML

▶ Document serialization format for structured data
▶ Nested elements
▶ Elements described by opening and closing tag
▶ Elements may have attributes, defined in opening tag
▶ Attributes can only hold simple data, elements can contain

structured data.
▶ Arbitrary element and attribute names unqiuely defined

within namespaces (typically URI, Uniform Resource
Identifier)

▶ Element and attribute are defined using XML Schema

30 / 81

XML Example

<People
xmlns="https://www.example.com/peoples"
xmlns:geo="http://www.example.com/geo"
xmlns:hist="http://www.example.com/history">

<GeneralInformation
Name="Innu" Language="Innu-aimun">

<geo:Location geo:Country="Canada"
geo:Regions="Labrador, Quebec" />

</GeneralInformation>
<hist:History>

<hist:Period hist:era="Pre-Colonial">
<Description>

Nomadic lifestyle, primarily
hunting and fishing.

</Description>
</hist:Period>

31 / 81

XML Example [cont’d]

<hist:Period hist:era="Post-Colonial">
<Description>

Impact of colonization,
including displacement and
cultural changes.

</Description>
</hist:Period>

</hist:History>
<Culture>

<Traditions>
<Tradition>

Hunting and fishing as cultural
and subsistence activities.

</Tradition>
<Tradition>

Use of the tepee for temporary
shelter.

</Tradition>
</Traditions>

32 / 81

XML Example [cont’d]

<Art>
<Form>Drum making</Form>
<Form>Clothing with intricate beadwork
</Form>

</Art>
</Culture>
<Challenges>

Issues like land rights, cultural preservation
</Challenges>

</People>

33 / 81

XML Example – Key Points

▶ The xmlns:geo and xmlns:hist are namespace
declarations. They are used to distinguish between geographical
(geo) and historical (hist) data. Notice how element and attribute
names may be prefixed by a namespace.

▶ The xmlns is the default namespace and applies to all elements
and attributes without an explicit namespace.

▶ The GeneralInformation element has attributes for Name
and Language. Attributes must be character strings

▶ The Location element includes attributes for Country and
Regions, using the geo namespace.

▶ The Location does not include other elements and is defined
with just one tag.

▶ Each Period element in the History element has an attribute
hist:era to specify the era.

▶ Multiple elements with the same name can follow each other.

34 / 81

Equivalent JSON Example

{ "Innu": {
"GeneralInformation": {

"Location": {
"Country": "Canada",
"Regions": "Labrador, Quebec"

}
},
"History": {
"Period": [

{
"era": "Pre-Colonial",
"Description": "Nomadic lifestyle,

primarily hunting and fishing."
},
{
"era": "Post-Colonial",
"Description": "Impact of colonization, ..."

}
]

},

35 / 81

XML — JSON

▶ Both are human and machine readable
▶ Both are system/language independent
▶ XML is more verbose/lengthy and very self-descriptive
▶ JSON is more compact/lightweight but not as descriptive
▶ XML supports more complex structures than JSON

through
▶ Attributes
▶ Namspaces
▶ More datatypes

▶ XML can be strictly defined using XML Schema, JSON
always remains flexible

36 / 81

Hands-On Exercise

Document yourself in an XML document
▶ Identify information about yourself, such as names,

addresses, dates, relationships (work, school, uni), etc.
▶ Structure the information in Elements and Attributes
▶ Use nested elements where appropriate

37 / 81

Graphs

Characteristics
▶ Nodes (also called ”vertices”)
▶ Edges (also called ”arcs”, ”relationships”) that connect

vertices
▶ Directed or undirected

▶ Vertices and Edges may be typed

Applications
▶ Social networks
▶ Logistics networks
▶ Financial networks
▶ Biological networks
▶ Resource descriptions (RDF)

38 / 81

Property Graphs

▶ Vertices and Edges may have properties (e.g. key/value
pairs of simple or complex data types, e.g. JSON objects)

https://commons.wikimedia.org/wiki/File:GraphDatabase_PropertyGraph.png

39 / 81

https://commons.wikimedia.org/wiki/File:GraphDatabase_PropertyGraph.png

RDF Graphs

▶ Resource Description Framework
▶ Subject – Verb/Predicate – Object triples

https://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png

40 / 81

https://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png

Graphs

Graph Queries
▶ Path queries: Reachability, shortest-path, regular path
▶ Subgraph queries: Exact match, approximate match
▶ Aggregate queries
▶ Similarity search: path-based approaches, graph

embedding-based approaches
▶ Keyword search: tree-based sematnics, subgraph-based

semantics

Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph
queries. World Wide Web, 24, 297-346.

41 / 81

Graph Queries

Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph
queries. World Wide Web, 24, 297-346.

42 / 81

Graph Databases

Prominent Examples
▶ On-premises: ArangoDB, Neo4J, OrientDB
▶ Open-source: JanusGraph
▶ Cloud: AWS Neptune, Azure CosmosDB

43 / 81

PG-JSON Example

{
"nodes":[
{
"id":101,
"labels":["Person"],
"properties":{"name":["Alice"], "age":[15], "country":["United States"]}
},
{
"id":102,
"labels":["Person", "Student"],
"properties":{"name":["Bob"], "country":["Japan", "Germany"]}
}

],
"edges":[
{
"from":101,
"to":102,
"undirected":true,
"labels":["sameSchool", "sameClass"],
"properties":{"since":[2012]}
},
{
"from":102,
"to":101,
"labels":["likes"],
"properties":{"since":[2015]}
}

]
}

44 / 81

GraphSON Example

{
"graph": {

"mode":"NORMAL",
"vertices": [
{
"name": "lop",
"lang": "java",
"_id": "3",
"_type": "vertex"

},
{
"name": "vadas",
"age": 27,
"_id": "2",
"_type": "vertex"

},
{
"name": "marko",
"age": 29,
"_id": "1",
"_type": "vertex"

},
{
"name": "peter",
"age": 35,
"_id": "6",
"_type": "vertex"

},
...

45 / 81

GraphSON Example [cont’d]

"edges": [
{
"weight": 1,
"_id": "10",
"_type": "edge",
"_outV": "4",
"_inV": "5",
"_label": "created"

},
{
"weight": 0.5,
"_id": "7",
"_type": "edge",
"_outV": "1",
"_inV": "2",
"_label": "knows"

},
{
"weight": 0.4000000059604645,
"_id": "9",
"_type": "edge",
"_outV": "1",
"_inV": "3",
"_label": "created"

},
...

46 / 81

N-Triples

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#fullName>
"Eric Miller" .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#mailbox>
<mailto:e.miller123(at)example> .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#personalTitle>
"Dr." .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/10/swap/pim/contact#Person> .

47 / 81

Turtle Example (Terse RDF Triples)

@prefix eric: <http://www.w3.org/People/EM/contact#> .
@prefix contact: <http://www.w3.org/2000/10/swap/pim/contact#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

eric:me contact:fullName "Eric Miller" .
eric:me contact:mailbox <mailto:e.miller123(at)example> .
eric:me contact:personalTitle "Dr." .
eric:me rdf:type contact:Person .

48 / 81

Hands-On Exercise

Document yourself in a Turtle
▶ Identify information about yourself, such as names,

addresses, dates, relationships (work, school, uni), etc.
▶ Structure the information in Turtle triples
▶ Make up approppriate prefixes and appropriate

verbs/predicates

49 / 81

RDF/XML

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"
xmlns:eric="http://www.w3.org/People/EM/contact#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:mailbox rdf:resource="mailto:e.miller123(at)example"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:personalTitle>Dr.</contact:personalTitle>

</rdf:Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">
<rdf:type rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#Person"/>

</rdf:Description>
</rdf:RDF>

50 / 81

Text Mining I

Example Text Analysis Tasks
▶ Named entity recognition
▶ Document clustering/similarity detection
▶ Co-reference analysis
▶ Relationship, fact, event extraction
▶ Sentiment analysis

Approaches
▶ Symbolic (1950s – 1990s)
▶ Statistical (1990s – 2010s)
▶ Neural networks (present)

51 / 81

Text Mining II

Business Applications
▶ Marketing
▶ Customer relationship management
▶ Finance
▶ . . .

Hands-On Exercise
1 Identify a specific business problem that can be addressed

by analyzing text data
2 What text data would you need to address the problem?
3 What would you wish to do with the text data?
4 Where might you get this text data?

52 / 81

Regular Expressions (RegEx)

▶ Important tool in analyzing text
▶ Sequence of characters specifying a match pattern in text
▶ Example (matches any number):

[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?.

https://en.wikipedia.org/wiki/Regular_expression

53 / 81

https://en.wikipedia.org/wiki/Regular_expression

Basic RegEx

Metacharacter Description

ˆ Matches start of text

. Matches any character; matches the dot character within
brackets

[] Matches any of the characters in the brackets; - can be
used to specify ranges

[ˆ] Matches any character not in the brackets

$ Matches the end of text

() Marked subexpression

\n Matches the n-th marked subexpression

* Matches the preceding element zero or more times

{m,n} Matches the preceding element at least m and not more
than n times

All others are treated as literals
54 / 81

Basic RegEx Examples

RegEx Matches

.at ”hat”, ”cat”, ”bat”, ”4at”, etc.

[hc]at ”hat”, ”cat”

[ˆb] all strings matched by .at except ”bat”

[ˆbc] all strings matched by .at except ”bat” and ”cat”

ˆ[bc]at ”bat” and ”cat” at start of text

[bc]at$ ”bat” and ”cat” at end of text

\[.\] any single charater surrounded by [and], e.g. ”[a]”, ”[7]”, etc.

s.* character ”s” followed by zero or more characters, e.g. ”s”, ”saw”,
”s3w96.7”, etc.

55 / 81

Extended RegEx

Metacharacter Description

? Matches preceding element zero or one time

+ Matches preceeding element one or more times

| Matches either the expression before or after the choice
operator

56 / 81

Extended RegEx Examples

RegEx Matches

[hc]?at ”at”, ”hat”, ”cat”

[hc]*at ”at”, ”hat”, ”cat”, ”chat”, ”chchchat”, etc.

[hc]+at ”hat”, ”cat”, ”chat”, ”chchchat”, etc.

cat|dog ”cat” or ”dog”

57 / 81

Different Types of RegEx

Differences
▶ Posix BRE requires () { } to be escaped, ERE does not
▶ Perl RegEx is a popular ”dialect”
▶ Some RegEx dialects provide characterclasses

Perl/Vim ASCII Posix

Digits \d [0-9] [:digit:]
Non-digits \D [^0-9]
Lowercase letters \l [a-z] [:lower:]
Uppdercase letters \u [A-Z] [:upper:]
Alphanumeric chars \w [A-Za-z0-9_]
Non-word chars \W [^A-Za-z0-0_]
Whitespace \s [\t\r\n\v\f] [:space:]
Non-whitespace \S [^ \t\r\n\v\f]

58 / 81

Hands-On Exercises

1 Specify a RegEx to match Canadian postal codes

https://www.canadapost-postescanada.ca/cpc/en/
support/articles/addressing-guidelines/
postal-codes.page

2 Specify a RegEx to match a RFC 3339 date with timezone,
such as ”2023-11-14T20:42:53-04:30”

59 / 81

https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page
https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page
https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page

Levenshtein Distance

▶ Text similarity
▶ Type of string–edit distance
▶ Counts insertion, deletion, substitution operations to

transform one text into the other
▶ May use differential cost for the operations

https://en.wikipedia.org/wiki/Levenshtein_distance

60 / 81

https://en.wikipedia.org/wiki/Levenshtein_distance

Hands-On Exercise

Determine the Levenshtein distances between the following:
1 Last five digits of your student number and ”12345”
2 The words ”Nunavut” and ”Nunatsiavut”
3 The words ”Inuktitut” and ”Innuttitut”
4 The words ”Mikak” and ”Micock”

61 / 81

Image Data

Vector Formats
▶ Examples are SVG, EPS, PDF
▶ Describe images in terms of graphics primitives such as

rectangles, curves, polygons
▶ Infinitely scalable

Raster formats
▶ Describe images in terms of pixels and their colours
▶ Lossy compression formats such as PNG, JPEG
▶ Lossless compression formats such as TIFF
▶ Based on specific colorspace such as RGB (3 bytes) or

CMYK (4 bytes) and resolution
▶ Conceptually a 3 × X × Y array of RGB values between

0. . . 255 (or 0. . . 1)

62 / 81

Image Analysis

https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg

Tasks
▶ Object detection and counting
▶ Object classification
▶ Image segmentation
▶ Image retrieval
▶ . . . 63 / 81

https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg

Image Analysis

Applications
▶ Robotics
▶ Character and handwriting recognition (process

automation)
▶ Security (identity verification, fraud detection, etc.)
▶ Manufacturing (defect detection, etc.)
▶ . . .

Hands-On Exercise
1 Identify a specific business problem that can be addressed

by analyzing image data
2 What image data would you need to address the problem?
3 What would you wish to do with the image data?
4 Where might you get this image data?

64 / 81

Video Data

Codecs and Container Formats
▶ Conceptually a series of image frames in raster image

format, i.e. a T × 3 × X × Y array of RGB values between
0. . . 255 (or 0. . . 1)

▶ Codecs (”coder/decoder”) such as H.264, H.265, AVC,
AV1 describe how frames are encoded in computer bytes
and compressed

▶ Containers such as MPEG-4, Matroska, AVI, VOB, WebM
describe how multiple video, audio, and text (subtitle)
streams are arranged in a file

65 / 81

Video Analytics

Typical Tasks
▶ Object detection
▶ Object recognition
▶ Object motion detection
▶ Object or background dynamic masking/blurring
▶ Event detection and classification (errors, exceptions)
▶ Activity detection and classification

Hands-On Exercise
1 Identify a specific business problem that can be addressed

by analyzing video data
2 What video data would you need to address the problem?
3 What would you wish to do with the video data?
4 Where might you get this video data?

66 / 81

Metadata

▶ Data about data
▶ Embedded in data or external
▶ Examples

▶ Authorship & ownership
▶ Licensing & legal information
▶ Information about collection (when, who, where, how, what)
▶ Information about processing (when, who, where, how,

what)
▶ Technical information (e.g. encoding, serialization format,

etc.)

67 / 81

Hands-On Exercise

1 With your cell phone camera, take a selfie
2 Identify the meta-data for this photo

68 / 81

Data Quality

Dimensions
▶ Accuracy (error rate)
▶ Availability (cost, ease of retrieval or collection, licensing)
▶ Completeness (omissions, bias)
▶ Conformity (with external standards)
▶ Consistency (no contradictions)
▶ Integrity (relationships within the data)
▶ Precision (measurement precision of values)
▶ Relevance (usefulness)
▶ Reliability (consistency of repeated data points)
▶ Timeliness (latency, currency, ”age”)
▶ Traceability (auditable provenance, verifiable source)

Based in part on Richard Y. Wang & Diane M. Strong (1996) Beyond Accuracy: What Data Quality Means
to Data Consumers, Journal of Management Information Systems, 12:4, 5-33,
DOI: 10.1080/07421222.1996.11518099

69 / 81

Data Provenance and Validity

https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png

70 / 81

https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png

Data Provenance and Validity [cont’d]

urlhttps://www.w3.org/TR/prov-dm/#dfn-provenance

71 / 81

Data Provenance and Validity [cont’d]

Collection
▶ How was the data collected? What errors could have

happened?
▶ Who collected the data? Is it a trustworthy source?
▶ When were the data collected? Are they still valid?
▶ Are all the data collected? Are the data biased?
▶ Can the collection be verified/audited/repeated?

Processing
▶ How was the data processed? What mistakes could have

been made?
▶ Was anything omitted or added?
▶ Who processed the data? Is it a trustworthy party?
▶ Can the processing be verified/audited/repeated?

72 / 81

Data Provenance and Validity [cont’d]

▶ What do different data fields mean?
▶ What are the units of measure?
▶ What is the level of aggregation?
▶ Were data sources combined? Are the different sources

consistent with each other and of the same quality?
▶ Are the data accurate? How high are the error rates and

the levels of precision?
▶ Can the data be validated? What are the validation rules

for the data? Was the data validated?
▶ How can errors be detected and/or corrected?
▶ Are the data usable in a technical and legal way?

73 / 81

Internal Data Sources

Examples
▶ Operational computer systems (HR, Payroll, Accounting,

Logistics, Manufacturing, Sales, etc.)
▶ Data-rich products (IoT; e.g. sensors in sold products)
▶ Computer system technical logs (including web servers)
▶ Message data (from/to suppliers, customers, etc.; e-mails,

customer service chat, call center audio, etc.)
▶ Surveys (employee surveys, customer surveys, etc.)
▶ . . .

74 / 81

Public External Data Sources (Examples) I

Government Agencies
▶ Statistics Canada

https://www.statcan.gc.ca/en/start

▶ Open Government Canada
https://search.open.canada.ca/opendata/

▶ US Census Bureau https://www.census.gov/

▶ US Bureau of Labor Statistics https://www.bls.gov/
▶ . . .

75 / 81

https://www.statcan.gc.ca/en/start
https://search.open.canada.ca/opendata/
https://www.census.gov/
https://www.bls.gov/

Public External Data Sources (Examples) II

International Institutions
▶ OECD https://data.oecd.org/

▶ Worldbank https://data.worldbank.org/
▶ EU https://data.europa.eu/en

▶ WHO https://www.who.int/data

Data Set Searches
▶ Google Dataset Search

https://datasetsearch.research.google.com/

▶ GitHub Data Set Search https://github.com/
search?q=datasets&type=repositories

76 / 81

https://data.oecd.org/
https://data.worldbank.org/
https://data.europa.eu/en
https://www.who.int/data
https://datasetsearch.research.google.com/
https://github.com/search?q=datasets&type=repositories
https://github.com/search?q=datasets&type=repositories

Public External Data Sources (Examples) III

Social Media Companies
▶ X https://help.twitter.com/en/

rules-and-policies/x-api

▶ Google https://developers.google.com/gdata

▶ Facebook/Meta https://developers.facebook.
com/docs/graph-api/overview/

77 / 81

https://help.twitter.com/en/rules-and-policies/x-api
https://help.twitter.com/en/rules-and-policies/x-api
https://developers.google.com/gdata
https://developers.facebook.com/docs/graph-api/overview/
https://developers.facebook.com/docs/graph-api/overview/

Public External Data Sources (Examples) IV

ML/AI Project Communities
▶ Kaggle https://www.kaggle.com/

▶ HuggingFace https://huggingface.co/datasets

▶ Google Cloud
https://console.cloud.google.com/
marketplace/browse?filter=solution-type:
dataset&hl=en&pli=1

▶ Google Research
https://research.google/resources/datasets/

▶ AWS Data Sets https://registry.opendata.aws/
▶ Azure Data Sets https://azure.microsoft.com/

en-ca/products/open-datasets

78 / 81

https://www.kaggle.com/
https://huggingface.co/datasets
https://console.cloud.google.com/marketplace/browse?filter=solution-type:dataset&hl=en&pli=1
https://console.cloud.google.com/marketplace/browse?filter=solution-type:dataset&hl=en&pli=1
https://console.cloud.google.com/marketplace/browse?filter=solution-type:dataset&hl=en&pli=1
https://research.google/resources/datasets/
https://registry.opendata.aws/
https://azure.microsoft.com/en-ca/products/open-datasets
https://azure.microsoft.com/en-ca/products/open-datasets

Private External Data Sources (Examples)

Services Companies
▶ Financial services institutions, e.g. Bloomberg

https://www.bloomberg.com/professional/product/data/

▶ Telecommunications providers, e.g. Telus Insights
https://www.telus.com/en/business/medium-large/

enterprise-solutions/big-data-analytics

▶ Mobile applications, e.g. The Weather Network
https://www.pelmorex.com/en/data/

Data Brokers
▶ LiveRamp (formerly Acxiom) http://www.liveramp.com/

▶ Experian https://www.experian.com/

▶ CoreLogic http://corelogic.com/

▶ Nielsen http://nielsen.com/

▶ DataAxleCanada https://www.dataaxlecanada.ca/
79 / 81

https://www.bloomberg.com/professional/product/data/
https://www.telus.com/en/business/medium-large/enterprise-solutions/big-data-analytics
https://www.telus.com/en/business/medium-large/enterprise-solutions/big-data-analytics
https://www.pelmorex.com/en/data/
http://www.liveramp.com/
https://www.experian.com/
http://corelogic.com/
http://nielsen.com/
https://www.dataaxlecanada.ca/

Data Licensing

▶ Always ensure you are allowed to use the data for the
intended purpose

▶ Do not assume permission
▶ Check meta-data or web-site
▶ Request permission
▶ Purchase license
▶ Negotiate custom data licensing agreement

80 / 81

Hands-On Exercises

1 Identify data on the consumer price index (excluding living
and transportation expenses) for Newfoundland &
Labrador for the last 10 years
▶ How was it collected? By who? When?
▶ How was it processed? By who? What was done to it?
▶ Is there meta-data available for it?
▶ How do you assess the quality of the data on the data

quality dimensions?
▶ Under what license is it available to you to use?

2 Identify some IoT devices or sensors in your household
▶ What information can they measure?
▶ How and when is the information being collected? By who?
▶ How could the information be erroneous or biased?
▶ How would you assess the quality of the data?

81 / 81

	Introduction
	Data Types
	Structured Data Types
	Data Quality and Provenance

