
Business 4720 - Class 15
Neural Networks using Python

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 51

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Deep Learning Concepts

▶ Neural Network
▶ Activation Functions
▶ Gradients
▶ Backpropagation
▶ Regularization with Dropouts

▶ Deep Learning in Python using Tensoflow
▶ Tensors
▶ Models
▶ Training

2 / 51

Based On

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani:
An Introduction to Statistical Learning with Applications in R. 2nd
edition, corrected printing, June 2023. (ISLR2)
https://www.statlearning.com

Chapter 10

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction.
MIT Press 2022.
https://probml.github.io/pml-book/book1.html

Chapter 13, 14, 15

Tensorflow Guides
https://www.tensorflow.org/guide

3 / 51

https://www.statlearning.com
https://probml.github.io/pml-book/book1.html
https://www.tensorflow.org/guide

Resources

Implementations are available on the following GitHub repo:
https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-ml.git

4 / 51

https://github.com/jevermann/busi4720-ml
https://github.com/jevermann/busi4720-ml.git

Resources

Tensorflow Playground: https://playground.tensorflow.org

5 / 51

https://playground.tensorflow.org

Biological Neuron

▶ Brain cell
▶ Connected to other brain cells
▶ Receives, modulates and emits electro-chemical stimulus

(”activation”)

https://commons.wikimedia.org/wiki/File:
Blausen_0657_MultipolarNeuron.png

6 / 51

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

Artificial Neuron

y = ψ(b +
∑

i

wixi)

▶ Multiple input connections xi

▶ Weighted using weights wi

▶ Add a bias term b
▶ Apply nonlinear activation function ψ

7 / 51

Popular Activation Functions
Sigmoid σ(z) = ez

1+ez

Hyperbolic tangent tanh(z) = sinh(z)
cosh(z) =

ez−e−z

ez+e−z = 2σ(2z)− 1

Softplus σ+(z) = log(1 + ea)

Rectified linear unit ReLU(z) = max(a, 0)

Leaky ReLU LReLU(z) = max(z, 0) + αmin(z, 0)

Exponential linear unit ELU(z) = max(z, 0) + min(α(ez − 1), 0)

Swish, Sigmoid linear unit SiLU(z) = zσ(z)

Gaussian error linear unit GeLU(z) = zΦ(z)

Source:
Murphy,
Fig.
13.14

8 / 51

Fully Connected Hidden Layer

Source: ISLR2 Figure 10.1

9 / 51

Fully Connected Multilayer Network

Source: ISLR2 Figure 10.4

Multiple Outputs
either
▶ Multi-objective

learning
▶ Multi-class

classification

”Softmax” activation

Pr(Y = m|X) =
eZm∑n
l=0 eZl

10 / 51

Estimating Parameters

Typical Loss Functions
▶ Regression: MSE, MAE, Huber
▶ Classification: Cross-Entropy or KL-Divergence after softmax on

multiple output nodes

Parameters
▶ Parameter vector θ = (w , b) with weights w and biases b.

Optimization
▶ (Stochastic) gradient descent (SGD)

Regularization
▶ ”Dropout”
▶ L1 and/or L2 penalization (as in lasso, ridge)
▶ Early stopping

11 / 51

Gradient Descent

1 Begin with initial parameter values
2 Repeat until convergence

2.1 Find direction of descent (decrease in loss function value,
given by the gradient vector ∇L of partial derivatives)

2.2 Move a step in that direction (adjust parameters, step size
determined by learning rate)

Consider the loss L at a certain input
X as a function of parameter values θ.
Then, at each step t , update
parameters θ using learning rate γ:

θt+1 = θt − γ∇L(θ)|θt ,X

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg

12 / 51

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg

Optimization Problems

▶ Slow convergence
▶ No convergence (oscillations)
▶ Premature convergence (local optimimum)

Murphy, Figure 8.11

13 / 51

Optimization Options

Learning Rate
▶ Fixed step size
▶ Adaptive learning rate λt

▶ Momentum methods
▶ Optimal learning rate (”line search”)

14 / 51

Training Neural Networks – Epochs and Minibatches

▶ Using the full training set for every update step is
expensive (or impossible)

▶ Approximate true gradient by using a small sample of the
training set for each step, the minibatch
▶ Average gradients over minibatch
▶ Minibatch should be independent and random
▶ Minibatch size should not be ”too small”

▶ Multiple passes over the training set until convergence (a
local or global optimimum is found), the epochs
▶ Avoid repetition by shuffling the training set before each

epoch
▶ Early stopping for regularization

15 / 51

Optimization Options – Stochastic Gradient Descent

▶ Random inputs X to gradients by random draws from
training set

θt+1 = θt − λt∇L(θ)|θt ,X

▶ Requires adaptive learning rate
▶ Typical learning rate schedules: Piecewise constant,

exponential decay, polynomial decay

Source: Murphy Figure 8.18

16 / 51

Optimization Options – AdaGrad
Adaptive Gradient

▶ Originally developed for sparse gradient vectors
▶ Adapt by previous squared gradients
▶ Overall learning rate λt is adapted
▶ Typically: λt = λ0

θt+1 = θt − λt
1√

st + ϵ
∇L(θ)|θt ,X

st =
t∑

τ=1

(
∇L(θ)|θτ ,X

)2 Sum of squared gradients

17 / 51

Optimization Options – RMSProp

▶ Exponentially weighted moving average of the past
(instead of the sum as in AdaGrad)

▶ Prevents too early learning rate reduction

st+1 = βst + (1 − β)
(
∇L(θ)|θt ,X

)2

18 / 51

Optimization Options – AdaDelta

▶ Maintains exponentially weighted average of previous
updates δ

θt+1 = θt +∆θt

∆θt = −λt

√
δt−1 + ϵ
√

st + ϵ
∇L(θ)|θt ,X

δt = βδt−1 + (1 − β)(∆θt)
2

19 / 51

Optimization Options – Momentum Methods

▶ Intuition: Keep going in the direction that was previously
good, avoid ”sharp turns”

▶ Standard momentum:

mt+1 = βmt −∇L(θ)|θt ,X Momentum
θt+1 = θt − λmt+1 Parameter update

Typical β is ≈ 0.9

▶ Nesterov Momentum: Looks ahead and evaluates gradient
at approximate next parameter values

mt+1 = βmt − λt∇L(θ)|θt+βmt ,X Nesterov Momentum
θt+1 = θt + mt+1 Parameter update

20 / 51

Optimization Options – AdaM
Adaptive Moment Estimation

▶ Combine adaptive learning rate with momentum

mt = β1mt−1 + (1 − β1)∇L(θ)|θt ,X

st = β2st−1 + (1 − β2) (∇L(θ)|θt ,x)
2

θt+1 = θt − λt
1√

st + ϵ
mt

21 / 51

Training Neural Networks – Vanishing Gradients

Problem
▶ Sigmoid and tanh functions are bounded for large positive

or negative pre-activation values (”saturating activation
functions”)

▶ Long chains of neurons (e.g. in stacked fully-connected
layers) can diminish the ”error signal”, i.e. the gradient

Possible Solutions
▶ Use non-saturating activation functions, e.g. ReLU, leaky

ReLU, ELU, etc.
▶ Use additive rather multiplicative architectures, e.g.

”ResNet” (residual networks)
▶ Standardize activations at every layer
▶ Carefully choose initial parameter values

22 / 51

Training Neural Networks – ResNet Architecture

▶ Allows gradients to bypass a layer that suffers from lack of
learning (vanishing gradient, saturated activation)

Source: Murphy, Figure 13.15

23 / 51

Training Neural Networks – Exploding Gradients

Problem
▶ Long chains of neurons can vastly increase the error

Possible Solution
▶ Gradient clipping

g′ = min(1,
1

||c||2
)g

24 / 51

Training Neural Networks – Parameter Initialization
Heuristics

▶ Random values from normal distribution: θ ∼ N(0, σ2)
▶ ”Xavier Initialization”/”Glorot Initialization”

σ2 =
2

nin + nout

where nin is the number of incoming connections and nout
is the number of outgoing connections from each neuron

▶ ”LeCun Initialization”

σ2 =
1

nin

▶ ”He Initialization”

σ2 =
2

nin

25 / 51

Regularization – Dropout

▶ Randomly (per observation) remove a fraction of units in a
layer, or equivalently,

▶ Randomly set the output of a fraction of units to 0
▶ Typically only done at train time, not test time

Source: Murphy, Figure 1.318

26 / 51

Tensorflow

▶ Originally developed by Google, Version
1.0 in 2017

▶ Automatic differentiation/gradients
▶ Distributed computing
▶ Parallel computing on multiple GPU
▶ Wide range of loss functions
▶ Wide range of optimizers
▶ Wide range of neural network types and

activation functions

27 / 51

Keras

▶ Originally developed as a user-friendly,
high-level abstraction layer for different
ML frameworks, including Tensorflow,
Theano, PyTorch

▶ Wide range of standard neural network
layers

▶ Simplified training loops

28 / 51

Regression using Keras

Import required packages:

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

Read a CSV file:

Use the Boston housing data set
boston_data = \

pd.read_csv("https://evermann.ca/busi4720/boston.csv")

Separate features and target:

boston_features = boston_data.copy()
boston_labels = boston_features.pop('medv')

29 / 51

Regression using Keras [cont’d]

Define the NN model with one hidden fully-connected layer (64
neurons) and one fully-connected output layer (1 neuron) in
sequence. No activation function is given, so this is a linear
regression model:

boston_model = tf.keras.Sequential([
layers.Dense(64, activation=None),
layers.Dense(1, activation=None)

])

Set the loss function and the optimizer:

boston_model.compile(
loss = tf.keras.losses.MeanSquaredError(),
optimizer = tf.keras.optimizers.Adam())

Fit/train the model for 25 epochs:

boston_model.fit(boston_features,
boston_labels, epochs=25)

boston_model.summary()

30 / 51

Regression in Keras [cont’d]

The Normalization layer normalizes numeric features:

norm_layer = layers.Normalization()

The adapt() function computes means and variances of the
data so the layer can normalize the data when the model is fit.
Requires numpy array.

norm_layer.adapt(boston_features.to_numpy())

Add the normalization layer to the model. A ReLU activation is
used that makes this a non-linear regression model:

norm_boston_model = tf.keras.Sequential([
norm_layer,
layers.Dense(64, activation='relu'),
layers.Dense(1, activation=None)

])

31 / 51

Regression in Keras [cont’d]

Set loss and optimizer and ask Keras to keep track of the MSE
and MAE metrics.

norm_boston_model.compile(
loss = tf.keras.losses.MeanSquaredError(),
optimizer = tf.keras.optimizers.Adam(),
metrics = ['mse', 'mae'])

The fit function returns a history of the metrics we asked for:

train_hist = \
norm_boston_model.fit(

boston_features,
boston_labels,
batch_size=20,
epochs=50,
validation_split=0.33)

32 / 51

Regression in Keras [cont’d]

Plot the training history using Plotly Express

import plotly.express as px

hist = pd.DataFrame({
'training': train_hist.history['mse'],
'validation': train_hist.history['val_mse']})

hist['epoch'] = np.arange(hist.shape[0])
hist = pd.melt(hist,

id_vars='epoch',
value_vars=['training', 'validation'])

fig = px.line(hist, x='epoch', y='value',
color='variable')

fig.show()

33 / 51

Hands-On Exercises

▶ Modify the above code to include different activation
functions, e.g. "tanh", "sigmoid", or "elu". Comment
on the learning progress and loss function values.

▶ Modify the above code to change the number of neurons in
the "Dense" layer. Comment on the learning progress
and loss function values.

▶ Modify the architecture to add one or more "Dense"
layers with different numbers of units. Comment on the
learning progress and loss function values.

34 / 51

Classification in Keras

The Wage dataset from the ISLR2 library for R has been
adapted to include a column wagequart, the quartile of the
wage. Many features are categorical.

Read data and separate features from target labels
wage_data = \

pd.read_csv("https://evermann.ca/wage.csv")

wage_features = wage_data.copy()
wage_labels = wage_features.pop('wagequart') - 1

35 / 51

Classification in Keras [cont’d]

Treat each categorical string feature and convert to one-hot
encoding.

One-hot encoding is similar to binary dummy variables
(contrasts) in linear models, but have no default level; a feature
with n different categories requires n binary variables (not n − 1
as in linear model contrasts).

Keep track of the inputs and the pre-processed inputs:

inputs = {}
preproc_inputs = []

36 / 51

Classification in Keras [cont’d]

for cat_feature in ['maritl', 'race', 'education', \
'jobclass', 'health', 'health_ins']:

An Input variable is a placeholder that
accepts data input when training or predicting
input = tf.keras.Input(shape=(1,),

name=cat_feature,
dtype=tf.string)

This StringLookup layer accepts a string and
outputs its category as a one-hot vector
lookup = layers.StringLookup(

name=cat_feature+"_lookup",
output_mode="one_hot")

Adapt it to the different strings in the data
lookup.adapt(wage_features[cat_feature])
And tie the input to this layer
onehot = lookup(input)

inputs[cat_feature] = input
preproc_inputs.append(onehot)

37 / 51

Classification in Keras [cont’d]

Define and input and a Normalizaton layer for the numerical
variable age:

age_input = tf.keras.Input(shape=(1,),
name="age",
dtype="float32")

norm_layer = layers.Normalization(name="age_norm")
norm_layer.adapt(wage_features["age"])
age_norm = norm_layer(age_input)

inputs["age"] = age_input
preproc_inputs.append(age_norm)

38 / 51

Classification in Keras [cont’d]

Define and input and a one-hot encoding IntegerLookup
layer for the numeric variable year:

year_input = tf.keras.Input(shape=(1,),
name="year",
dtype="int32")

lookup = layers.IntegerLookup(name="year_lookup",
output_mode="one_hot")

lookup.adapt(wage_features["year"])
year_onehot = lookup(year_input)

inputs["year"] = year_input
preproc_inputs.append(year_onehot)

39 / 51

Classification in Keras [cont’d]

Concatenate the pre-processing outputs to one long vector with
a Concatenate layer. Call this layer with the list of
prec-processed inputs:

preprocessed_inputs = \
layers.Concatenate(name="concat")(preproc_inputs)

Build a pre-processing model whose inputs is the dict of Input
variables, and whose output are the results of calling the layers:

preproc_model = tf.keras.Model(inputs,
preprocessed_inputs,
name="preproc")

preproc_model.summary()

40 / 51

Classification in Keras [cont’d]

Build the classification model as a Sequential model:

class_model = tf.keras.Sequential(name="classification")
class_model.add(layers.Dense(64, activation="relu"))
class_model.add(layers.Dropout(0.25))
class_model.add(layers.Dense(32, activation="relu"))
class_model.add(layers.Dropout(0.25))
class_model.add(layers.Dense(4, activation="softmax"))

Alternatively:
class_model.add(layers.Dense(4, activation=None))
class_model.add(layers.Softmax())

41 / 51

Classification in Keras [cont’d]

The output of the pre-processing model is the input to the
classification model:

class_results = class_model(preproc_model(inputs))
class_model.summary()

The final model takes the inputs, and has the classification
model results as outputs:

wage_model = tf.keras.Model(inputs, class_results,
name="wage_model")

wage_model.summary()

42 / 51

Classification in Keras [cont’d]

Compile the model with loss function, optimizer and request
training metrics:

wage_model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=False),
optimizer=tf.keras.optimizers.Adam(

learning_rate=0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07),

metrics=[
tf.keras.metrics.SparseCategoricalAccuracy(),
tf.keras.metrics.KLDivergence()])

Note: Specifying from_logits=True for the loss can save
the softmax activation or layer at the bottom of the sequential
classification model.

43 / 51

Classification in Keras [cont’d]

Create the input data as a dict of numpy arrays to match the
Input variables:

import numpy as np
wage_feature_dict = \

{name: np.array(value) for \
name, value in wage_features.items()}

Write log information to a directory for loading into
Tensorboard:

import datetime
log_dir = "./tensorboard_logs/" + \

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = \

tf.keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=0)

44 / 51

TensorBoard

TensorBoard is a tool to visualize neural network models and
their trainging and validation data/performance.

https://commons.wikimedia.org/wiki/File:Tensorboard_1.jpg

45 / 51

https://commons.wikimedia.org/wiki/File:Tensorboard_1.jpg

Classification in Keras [cont’d]

Train the model for 25 epochs:

wage_hist = wage_model.fit(
x = wage_feature_dict,
y = wage_labels,
validation_split=0.333,
batch_size=20,
epochs = 25,
callbacks=[tensorboard_callback])

46 / 51

Classification in Keras [cont’d]

Plot the training history using Plotly Express

import plotly.express as px

hist = pd.DataFrame({
'training': \

wage_hist.history['sparse_categorical_accuracy'],
'validation': \

wage_hist.history['val_sparse_categorical_accuracy']})
hist['epoch'] = np.arange(hist.shape[0])
hist = pd.melt(hist,

id_vars='epoch',
value_vars=['training', 'validation'])

fig = px.line(hist, x='epoch', y='value',
color='variable')

fig.show()

47 / 51

Classification in Keras [cont’d]

Call TensorBoard from the terminal, providing the log directory

tensorboard --logdir tensorboard_logs

Then go to http://localhost:6006 in your web browser.

48 / 51

http://localhost:6006

TensorBoard

49 / 51

Early Stopping

Another useful callback function:

earlystop_callback = tf.keras.callbacks.EarlyStopping(
monitor = 'val_loss',
patience = 3,
mode = 'min',
or 'max' or 'auto' depending on monitor metric
restore_best_weights = True)

50 / 51

Hands-On Exercises

▶ Examine the model summaries for the pre-processing, the
classification, and the complete wage model. Explain the
number of trainable and total parameters, and also explain
the output shapes of each layer.

▶ Make the ”wage” prediction a binary classification problem:

1 Modify the wage_labels and combine classes 0, 1 and
classes 2, 3 (class numbers should be 0 or 1)

2 Modify the classification network to have a single output
node

3 Use the BinaryCrossentropy loss
4 Return the following metrics as part of the training history:

▶ Precision
▶ Recall
▶ AUC

5 Plot the metrics after training

51 / 51

	Introduction

