
Business 4720 - Class 9
Process Analytics

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 51

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This Class

What You Will Learn:
▶ Introduction to Process Data
▶ Introduction to Process Analytics

▶ Process Discovery
▶ Process Conformance Analysis
▶ Process Performance Analysis

2 / 51



Business Processes

▶ Sequence of activities in a defined order
▶ Models describe processes
▶ Typically related to the processing of one type of business

object
▶ e.g. an order, a prescription, a complaint, etc.

▶ Standard notation: BPMN (”Business Process Modeling
Notation”)

Basic BPMN
▶ Events (circles)
▶ Activities (boxes)
▶ Gateways (diamonds)

▶ Exclusive (”X”) split and merge
▶ Parallel (”+”) split and merge
▶ Inclusive (”O”) split and merge

3 / 51



BPMN Example Process Model

4 / 51



Business Process Instances and Process Data

Case
▶ One instance of a business process
▶ Related to one particular business object (e.g. order 123,

prescription R456, complaint C6789, etc.)

Trace
▶ Event data sequence for one case
▶ May includes attributes for the case and for each event
▶ May include resource information for each event
▶ May include timestamps for events

Event Log
▶ Set of traces for one process
▶ May include incomplete cases, may be sampled, etc.

5 / 51



Activity Lifecycle – Example

https://www.tf-pm.org/resources/xes-standard/about-xes/

standard-extensions/lifecycle/standard

6 / 51

https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/lifecycle/standard
https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/lifecycle/standard


Event Log Data

Sources
▶ Process aware information systems
▶ Web server data
▶ . . .

Formats
▶ CSV (one line per event)
▶ MXML (older XML format)
▶ XES (”eXtensible Event Stream”) (current XML format)

Challenges
▶ Event correlation from multiple systems
▶ Noise, incompleteness
▶ Timestamping, batch processing
▶ Abstraction levels

7 / 51



Process Analytics

/Event log

Discovered model

Automated
discovery

Conformance 
checking

Variants
analysis

Difference
diagnostics

Performance 
mining

Input model

Event log'

Enhanced
process 
model

C

B

D EA

C DA B E

C

1.5h

B

15h

D
E

2h

A

3m

35h 30h

15m

10m

10min

5m5m 10m30m

Source: Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers (2018)
”Fundamentals of Business Process Management”, 2nd edition, Springer Verlag,

Germany

8 / 51



Process Analytics

Purpose
▶ Discover actual operations
▶ Check actual process against desired process
▶ Identify operational (performance) problems
▶ Improve operational processes
▶ External compliance analysis and reporting
▶ Identify implicit or de-facto organizational groups and

relationships
▶ Support, reinforce, or break organizational relationships

9 / 51



Process Analytics in R

BupaR
▶ Hasselt University
▶ Open source R library
▶ Development since 2020
▶ Process visualization (DFG)

▶ Frequencies metrics
▶ Performance metrics

▶ Control flow analysis
▶ Rule-based conformance analysis
▶ Performance metrics
▶ Organizational analysis

https://bupar.net/

10 / 51

https://bupar.net/


Process Analytics in Python

PM4PY
▶ Fraunhofer Institute for Applied Information Technology
▶ Open source python package, since 2018
▶ Process discovery

▶ Techniques: Inductive miner, Heuristics miner, . . .
▶ Conformance checking

▶ Techniques: Token-based replay, Cost-based alignment, . . .
▶ Log–Model Comparison

▶ Metrics: Fitness, Precision, Generalization, Complexity, . . .
▶ Decision mining
▶ Trace clustering
▶ LTL checking
▶ Social network discovery

https://processintelligence.solutions/pm4py
11 / 51

https://processintelligence.solutions/pm4py


PM4PY Basics

Read a CSV dataset:

import pandas as pd
import pm4py

# Load the event log and parse date columns
log = pd.read_csv('https://evermann.ca/busi4720/\

PurchasingExample.csv',
parse_dates=['Start Timestamp', \

'Complete Timestamp'],
infer_datetime_format=True)

# Tell PM4PY about which columns represent case ID,
# activity name, and timestamp. Case ID and activity
# names must be string type
log['case:concept:name']=log['Case ID'].astype('string')
log['concept:name']=log['Activity'].astype('string')
log['time:timestamp']=log['Complete Timestamp']
log['org:resource']=log['Resource']

12 / 51



PM4PY Basics

Reading an XES file is easy:

log2 = pm4py.read_xes('BPI_Challenge_2012.xes.gz')

13 / 51



PM4PY Basic Statistics

num_cases = len(log['Case ID'].unique())
num_events = log.shape[0]

pm4py.get_start_activities(log)
pm4py.get_end_activities(log)

pm4py.get_all_case_durations(log)

# Useful only or XES-based event logs
pm4py.get_event_attributes(log)
pm4py.get_trace_attributes(log)

14 / 51



PM4PY Basic Statistics

▶ Variants are sets of traces with the same sequence of
events

pm4py.get_variants(log)

# Split the log into sub-logs
for variant, subdf in \
pm4py.split_by_process_variant(log):

print(variant)
print(subdf)

15 / 51



Process Discovery – DFG

Directly-Follows Graph
(Dependency Graph) (Process Map)
▶ Shows how often one activity directly follows another

dfg, start, end = pm4py.discover_dfg(log)

pm4py.view_dfg(dfg, start, end, rankdir='LR')

pm4py.save_vis_dfg(dfg=dfg,
start_activities=start,
end_activities=end,
file_path='dfg.png', rankdir='TB')

16 / 51



Process Discovery

17 / 51



Process Discovery – Inductive Miner

Principles
▶ Identifies subsets of activities by repeatedly ”cutting” the

DFG
▶ Filter infrequent activities to deal with noise
▶ Mines a process tree that can be transformed to BPMN

18 / 51



Process Discovery – Inductive Miner

Source: Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P. (2013). Discovering Block-Structured Process Models
from Event Logs - A Constructive Approach. In: Colom, JM., Desel, J. (eds) Application and Theory of Petri Nets
and Concurrency. PETRI NETS 2013. Lecture Notes in Computer Science, vol 7927. Springer, Berlin, Heidelberg.

19 / 51



Process Discovery – Inductive Miner

bpmn_model = \
pm4py.discover_bpmn_inductive(log,

noise_threshold=0.5)

pm4py.view_bpmn(bpmn_model, rankdir='LR')

pm4py.save_vis_bpmn(bpmn_model,
file_path='bpmn.png', rankdir='TB')

20 / 51



Process Discovery – Inductive Miner

21 / 51



Process Discovery – Heuristics Net

Principles
▶ Remove noise by frequency threshold on dependency

graph
▶ Identifies loops of length 1 and length 2
▶ Identifies long-distance dependencies
▶ Removes non-observable activities

Frequencies in DFG

a ⇒ b =

(
|a > b| − |b > a|

|a > b|+ |b > a|+ 1

)

22 / 51



Process Discovery – Heuristics Net

petri_net, initial_marking, final_marking = \
pm4py.discover_petri_net_heuristics(log,

dependency_threshold=0.6,
and_threshold=0.65,
loop_two_threshold=0.4)

pm4py.view_petri_net(petri_net)

bpmn_model2 = pm4py.convert_to_bpmn(
petri_net, initial_marking, final_marking)

pm4py.view_bpmn(bpmn_model2)
pm4py.save_vis_bpmn(bpmn_model2,

'bpmn2.png', rankdir='TB')

23 / 51



Process Discovery – Heuristics net

24 / 51



Process Discovery

Quality of Discovered Models
▶ Fitness: Can the model generate all traces in log?
▶ Precision: Does the model only generate traces in log?
▶ Generalization: Can the model generalize to ”sensible”

traces not seen in log?
▶ Complexity: Is the model too complex to understand?

25 / 51



Fitness & Precision

Token-Based Replay
▶ Replays each trace of an event log on a process model
▶ Discovers missing and surplus tokens, i.e. model activities

that cannot be executed, or model activities that are
executed too often

▶ Percentage of traces that fit perfectly, average fitness

Alignments
▶ Aligns traces to process model
▶ ”sync move”: Activity in both trace and model
▶ ”move on log”: Activity in trace but not in model
▶ ”mode on model”: Activity in model but not in trace
▶ Percentage of traces that fit perfectly, average fitness

26 / 51



Fitness

petri_net, initial_marking, final_marking = \
pm4py.discover_petri_net_inductive(log,

noise_threshold=0.5)

fitness_alignments = pm4py.fitness_alignments(log,
petri_net, initial_marking, final_marking)

print(fitness_alignments)

fitness_tbr = pm4py.fitness_token_based_replay(log,
petri_net, initial_marking, final_marking)

print(fitness_tbr)

27 / 51



Precision

precision_alignments = pm4py.precision_alignments(log,
petri_net, initial_marking, final_marking)

print(precision_alignments)

precision_tbr = pm4py.precision_token_based_replay(log,
petri_net, initial_marking, final_marking)

print(precision_tbr)

28 / 51



Log Filtering

▶ Focus on subsets of logs
▶ Identify differences
▶ Simplify discovered models

29 / 51



Example Filters

filter_activities_rework Keep cases where the specified
activity occurs at least n times

filter_case_size Keep cases having a length be-
tween n and m events

filter_case_performance Keep cases having a duration be-
tween n and m seconds

filter_directly_follows_relation Keep cases where A is followed
immediately by B

filter_end_activities Keep cases that end with the
specified activity

filter_event_attribute_values Keep cases or events in cases
that satisfy the specified condition

filter_eventually_follows_relation Keep cases where A is eventually
followed by B

filter_start_activities Keep cases that start with the
specified activity

filter_time_range Keep events occurring between
two timestamps

filter_trace_attribute_values Keep cases that satisfy the speci-
fied condition

30 / 51



Hands-On Exercises

1 What are the types of activities in the log?
▶ Use unique()

2 How often does each activity occur in the log?
▶ Use value_counts()

3 Filter complete cases, that is, cases that end with activity
”Pay invoice”
▶ Use pm4py.filtering.filter_end_activities

4 Plot the case durations. What do you notice?
▶ Use pm4py.stats.get_all_case_durations
▶ Put case durations into a pd.DataFrame
▶ 1 day = 86400 seconds
▶ Use px.histogram or

pm4py.vis.view_case_duration_graph

31 / 51

https://pandas.pydata.org/docs/reference/api/pandas.unique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_end_activities.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.stats.get_all_case_durations.html
https://plotly.com/python/histograms/
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.vis.view_case_duration_graph.html


Hands-On Exercises [cont’d]

5 What is the mean case duration?
▶ Use mean()

6 Split the log on the mean case duration
▶ Use pm4py.filtering.filter_case_performance

7 Create BPMN models for each partial log and compare
them. How do they differ?

8 Create a BPMN model for the total log. Compare the
fitness and precision values compared to the partial logs.

32 / 51

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_case_performance.html


Hands-On Exercises

9 What is the activity with the longest mean time?
▶ Activities taking a long time may be bottle-neck in the

process flow
▶ Create a new column as the difference between the

’Complete Timestamp’ and ’start_timestamp’ columns
▶ Use groupby() and mean() on the data frame

10 What is the mean number of activities for each case?
▶ Long cases may indicate problems
▶ Calculate the number of activities for each case using

groupby() and count() on the dataframe

33 / 51

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html


Hands-On Exercises

11 Which activities are carried out more than once for some
case
▶ Repeated activities may indicate re-work or fixing of

mistakes
▶ Calculate the number of instances for each case for each

activity using groupby() and count() on the dataframe
12 Are there cases that contain activity ’Pay invoice’ but do

not contain activity ’Send invoice’?
▶ Non-compliant cases may represent a problem with

controls and compiance
▶ Use

pm4py.filtering.filter_eventually_follows_relationship

34 / 51

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_eventually_follows_relation.html


Performance Mining — DFG

▶ Identify median (mean, min, max, sum, stdev) waiting
times

perf_dfg, start_activities, end_activities = \
pm4py.discover_performance_dfg(log)

pm4py.view_performance_dfg(perf_dfg,
start_activities, end_activities,
aggregation_measure='median')

pm4py.save_vis_performance_dfg(perf_dfg,
start_activities, end_activities,
file_path='perfdfg.png', rankdir='TB')

35 / 51



Performance Mining — DFG

36 / 51



Performance Mining — Dotted Chart

▶ Identify batching of activities
▶ Identify different variants
▶ Case arrival and case finishing rates

pm4py.view_dotted_chart(log, show_legend=False)
pm4py.save_vis_dotted_chart(log,

'dottedchart.png', show_legend=False)

37 / 51



Performance Mining — Dotted Chart

38 / 51



Performance Mining — Performance Spectrum

▶ Identify variations in wait times

pm4py.view_performance_spectrum(log,
['Send invoice', 'Pay invoice'])

pm4py.save_vis_performance_spectrum(log,
['Send invoice', 'Pay invoice'],
'perfspectrum.png')

39 / 51



Performance Mining — Performance Spectrum

40 / 51



Performance Mining — Event Distribution

▶ Identify distribution of when events/activities occur

pm4py.view_events_distribution_graph(log, 'days_week')
pm4py.view_events_distribution_graph(log, 'days_month')
pm4py.view_events_distribution_graph(log, 'months')
pm4py.view_events_distribution_graph(log, 'weeks')

41 / 51



Performance Mining — Event Distribution

42 / 51



Performance Mining — Events per Time

pm4py.view_events_per_time_graph(log)
pm4py.save_vis_events_per_time_graph(

log, 'eventspertime.png')

43 / 51



Performance Mining — Events per Time

44 / 51



Organizational Mining

Activity-Based Resource Similarity
▶ Identify similar resources based on the set of activities they

perform

sna_graph = \
pm4py.discover_activity_based_resource_similarity(log)

pm4py.view_sna(sna_graph, variant_str='networkx')
pm4py.view_sna(sna_graph, variant_str='pyvis')

pm4py.save_vis_sna(sna_graph, 'ressimilarity.png',
variant_str='networkx')

45 / 51



Organizational Mining
Activity-Based Resource Similarity

46 / 51



Organizational Mining

Handover of Work Network
▶ Identify resources that pass work from one to another
▶ A DFG for resources instead of activities

dfg, start, end = pm4py.discover_dfg(log,
activity_key='Role')

pm4py.view_dfg(dfg, start, end, rankdir='LR')

pm4py.save_vis_dfg(dfg=dfg,
start_activities=start,
end_activities=end,
file_path='handover.png', rankdir='TB')

47 / 51



Organizational Mining
Handover of Work Network

48 / 51



Organizational Mining

Organizational Roles
▶ Identify similar resources based on the set of activities they

perform

roles = pm4py.discover_organizational_roles(log)
print(roles)

49 / 51



Organizational Mining

Working-Together Network
▶ Resources work together, if they collaborate on some trace

sna_graph = pm4py.discover_working_together_network(log,
resource_key='Role')

pm4py.view_sna(sna_graph, variant_str='pyvis')
pm4py.view_sna(sna_graph, variant_str='networkx')

50 / 51



Oganizational Mining
Working-Together Network

51 / 51


	Introduction
	BPMN

