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This Class

What You Will Learn:
▶ Reinforcement Learning

▶ Action-value approximation
▶ Policy approximation
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Based On

Richard S. Sutton and Andrew G. Barto (2018) Reinforcement
Learning – An Introduction. 2nd edition, The MIT Press,
Cambridge, MA. (SB)

http://incompleteideas.net/book/the-book.html

Chapters 9–13

Sudharsan Ravichandiran (2020) Deep Reinforcement
Learning with Python. 2nd edition. Packt Publishing,
Birmingham, UK.

Chapters 9–11
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Resources

Implementations are available on the following GitHub repo:
https://github.com/jevermann/busi4720-rl

The project can be cloned from this URL:
https://github.com/jevermann/busi4720-rl.git
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Function Approximation

Previously
▶ Tabular methods only suitable for small state space and

discrete actions

Now
▶ Approximate the state-value function v by parameterized

function v̂ :
v̂(s) = v̂(s, θ) ≈ vπ(s)

▶ Approximate the action-value function q by a
parameterized function q̂:

q̂(s,a) = q̂(s,a, θ) ≈ qπ(s,a)
▶ Approximate policy π by a parameterized function π̂:

π̂(a|s) = π̂(a|s, θ) ≈ π(a|s)
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Function Approximation

Advantages
▶ Continuous states and/or actions
▶ Tractable problems despite large state space
▶ Flexible functions (linear, trees, neural networks)
▶ Generalization to related states

▶ Changing θ changes the values of multiple states
▶ Applicable to partially observable problems

▶ State function may not depend on complete state
information
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Stochastic Gradient Methods

Assume a MSE value error:

V̄E =
∑
s∈S

µ(s) [qπ(s,a)− q̂(s,a, θ)]2

Follow the steepest slope (”gradient”; vector of partial
derivatives) of the function to update parameters:

θt+1 = θt −
1
2
α∇ [qπ(St ,At)− q̂(St ,At , θt)]

2

= θt + α [qπ(St ,At)− q̂(St ,At , θt)]∇q̂(St ,At , θt)

True value qπ(St ,At) generally unknown; use an unbiased
estimate Ut = Rt + γq̂(St+1,At+1, θ) instead:

θt+1 = θt + α [Ut − q̂(St ,At , θt)]∇q̂(St ,At , θt)

Replace update to Q with update to θ
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Example – Semi-gradient SARSA

Initialize θ ∈ Rd arbitrarily
Loop for each episode:

Initialize S0

Choose A as a function of q̂(S0, ., θ) e.g., ϵ-greedy
Loop for each step of episode:

Take action A, observe R,S′

Choose A′ as a function of q̂(S′, ., θ) e.g., ϵ-greedy
θ ← θ + α[R + γq̂(S′,A′, θ)− q̂(S,A, θ)]∇q̂(S,A, θ)
S ← S′;A← A′

until S is terminal
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”The Deadly Triad”

Instability and Divergence arise when combining all three
elements:
▶ Function approximation: Generalizing from a state space

using linear functions or neural networks
▶ Bootstrapping: Targets include existing estimates (e.g.

SARSA) rather than actual rewards only (e.g. MC
methods)

▶ Off-policy training: Training on a distribution of transitions
other than that produced by the target policy
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DQN – Double Q Network

Experience Replay
▶ Store sequences S,A,R,S′,A′ in replay buffer
▶ FIFO queue of limited size
▶ Sample from replay buffer for each batch
▶ Removes/limits correlation of states within batches
▶ Smoothes data distribution changes

Target Network
▶ Maintain stable targets during updates
▶ Periodic update from ”main” network
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DQN – Algorithm

Init replay buffer D ← ∅
Init main action-value function approximation q̂M with random parameters θM

Init target action-value function approximation q̂T with paramaters θT = θM

Loop for each episode:

Initialize S

For each step of the episode:

Select action A using an ϵ-greedy policy based on q̂M

Take action A and observe R,St+1

Store transition (St ,At ,Rt ,St+1) in D

Sample minibatch (Sj ,Aj ,Rj ,Sj+1) from D

Target yj ←

{
rj if Sj+1 is terminal
rj + γmaxA′ q̂T (Sj+1,A′; θ−) otherwise

θ ← θ + α[yj − q̂M(Sj ,Aj , θM)]∇q̂M(Sj ,Aj , θM)

Every C steps, update q̂T ← q̂M by setting θT ← θM
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DQN – Algorithm

▶ In practice, S is a function ϕ(X ) of inputs X through
feature-extraction and pre-processing

▶ In practice, the update yj −Q(Sj ,aj , θ) is clipped to [−1,1]
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DQN Example – Cart Pole
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DQN Example – Cart Pole
Action Space:

0 Push cart to the left
1 Push cart to the right

State/feature space:

Num Observation Min Max
0 Cart position -4.8 4.8
1 Cart velocity -Inf Inf
2 Pole angle -24 deg 24 deg
3 Pole angular velocity -Inf Inf

Rewards are +1 for every step taken

Termination occurs either:

▶ Pole angle is greater than ±12 deg

▶ Cart position is greater than ±2.4

▶ Episode length is grater than 200
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DQN in Python

Use the ”CartPole” environment from
https://gymnasium.farama.org/:

import math
import random
import keras
from keras import layers
import gymnasium as gym
import tensorflow as tf
import numpy as np
import pygame

env = gym.make("CartPole-v1", render_mode="human")

Actions = range(0, env.action_space.n)
Ssize = env.observation_space.shape[0]
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DQN in Python [cont’d]

Neural network and RL hyperparameters:

# Neural net parameters
batch_size = 8
dropout = 0.25
activation = 'relu'

epsilon = 0.8 # initial epsilon
gamma = 0.9 # discount factor
neps = 1000 # dicreasing epsilon factor
C = 50*batch_size # When to update weights

# Replay buffer D
D = collections.deque(maxlen=5000)

16 / 40



DQN in Python [cont’d]

Define the neural networks:

# Main network, used to select actions
Q = keras.Sequential([

layers.InputLayer(input_shape=(Ssize+1),
batch_size=batch_size,
dtype=tf.float32),

layers.Dense(Ssize*4, activation=activation),
layers.Dropout(rate=dropout),
layers.Dense(Ssize*2, activation=activation),
layers.Dropout(rate=dropout),
layers.Dense(1, activation='linear')

])
Q.compile(loss='huber', optimizer='adam')

# Target network, used to compute targets
Qhat = keras.models.clone_model(Q)
Qhat.compile(loss='huber', optimizer='adam')
Qhat.set_weights(Q.get_weights())
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DQN in Python [cont’d]

Getting a Q(s,a) value involves predicting from the neural net:

def getQ(Q, s, a):
return Q.predict(np.expand_dims(np.array( \

s.tolist()+[a]), axis=0), verbose=0)[0][0]

Max/Argmax operator for Q(s,a) using prediction from main or
target network:

def maxQ(Q, s, arg):
maxq = -np.inf
maxa = None
for a in Actions:

q = getQ(Q, s, a)
if q > maxq:

maxq = q
maxa = a

return maxa if arg else maxq
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DQN in Python [cont’d]

ϵ-greedy policy piϵ(s)

def pi(s, epsilon):
if random.random() < epsilon:

return random.choice(Actions)
else:

return maxQ(Q, s, True)

Update target for DQN:

def target_DQN(Q, Qhat, a, r, sprime):
return r + gamma * maxQ(Qhat, sprime, False)

Update target for DDQN:

def target_DDQN(Q, Qhat, a, r, sprime):
return r + gamma * getQ(Qhat, sprime, \

maxQ(Q, sprime, False))
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DQN in Python [cont’d]

Creating x and y data for training:

def training_xy(batch, ddqn=False):
x = np.zeros((batch_size, Ssize+1))
y = np.zeros(batch_size)
for i, (s, a, r, t, sprime) in enumerate(batch):

x[i] = list(s) + [a]
if t == 1:

y[i] = r
else:

if ddqn:
y[i]=target_DDQN(Q, Qhat, a, r, sprime)

else:
y[i]=target_DQN(Q, Qhat, a, r, sprime)

return x, y
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DQN in Python [cont’d]

DQN/DDQN code:

for t in range(max_steps):
s = env.reset()[0]
a = pi(s, epsilon*math.exp(-t/neps))
sprime, r, terminal, _, _ = env.step(a)
G += r
D.append((s, a, r, int(terminal), sprime))
s = sprime
if t >= batch_size:

batch = random.sample(D, batch_size)
x, y = training_xy(batch, ddqn=True)
loss = Q.train_on_batch(x=x, y=y)

if t % C == 0:
Qhat.set_weights(Q.get_weights())

Complete code at
https://evermann.ca/busi4720/DDQN_tuples.py
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DQN Extensions

Prioritized Experience Replay (PEX)
▶ Important actions are sampled with higher probability
▶ Use absolute TD error as priorities
▶ Faster learning

Double DQN
▶ Based on Double Q-Learning
▶ Uses target network Q̂ as second Q function
▶ Removes upwards bias from using max() functions as

estimator

22 / 40



Advantage Function

A(s,a) = Q(s,a)− V (s)

Advantage of action a in state s over the average action in
state s

Rewrite as:

Q(s,a) = V (s) + A(s,a)
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Dueling DQN

▶ Neural network from features x for value function V (s)
(”value stream”)

▶ Neural network from features x for advantage function
A(s,a) (”advantage stream”)

▶ Typically, value stream and advantage stream follow one or
more common layers

▶ Aggregate to compute Q(s,a)

Q(s,a, θ, α, β) = V (s, θ, β) +
(

A(s,a, θ, α)− a
|A|

A(s,a′, θ, α)

)
Where θ are shared neural-network parameters, β are
parameters only for the ”value-stream” neural network, and α
are parameters only for the ”advantage-stream” neural network
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Policy Gradient Methods

Idea
Learn a parameterized policy :

π(s,a) = π(s,a, θ) = Pr(At = a|St = s, θt = θ)

Optimize:

J(θ) = vπθ
(so)
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Policy Gradient Methods

Advantages
▶ Simpler to approximate than action-value function
▶ Selection of actions with arbitrary probabilities
▶ Can better approach deterministic policy than ϵ-greedy

action selection over action values
▶ Suitable for large and continuous action spaces
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Policy Gradient Methods

REINFORCE update:

θt+1 = θt + αGt
∇π(At |St , θ)

π(At |St , θt)

▶ Update proportional to return Gt

▶ Update inversely proportional to action probability π
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Policy Gradient Methods

REINFORCE: Monte-Carlo Control (episodic)

Input: A differentiable policy π(a|s, θ); step size α > 0

Initialize policy parameters θ ∈ Rd arbitrarily
Loop forever (for each episode):

Generate an episode S0,A0,R1, . . .ST−1,AT−1,RT ,

Loop for each step of the episode t = 0,1, . . . ,T − 1 :

G←
∑T

k=t+1
γk−t−1Rk

θ ← θ + αG∇ lnπ(At |St , θ)
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Policy Gradient Methods

REINFORCE with a baseline b(St):

θt+1 = θt + α(Gt − b(St))
∇π(At |St , θ)

π(At |St , θt)

Choose b(St) = v̂(St) the state-value function:

θt+1 = θt + α(Gt − v̂(St))
∇π(At |St , θ)

π(At |St , θt)

▶ Baseline leaves the expected value unchanged (unbiased)
▶ Can significantly reduce the variance
▶ Can improve speed of learning
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Policy Gradient Methods

REINFORCE with Baseline (episodic)

Input: A policy π(a|s, θ); step size αθ > 0
Input: A state-value function v̂(s,w); step size αw > 0

Initialize parameters θ ∈ Rd , w ∈ Rd arbitrarily
Loop forever (for each episode):

Generate an episode S0,A0,R1, . . .ST−1,AT−1,RT ,

Loop for each step of the episode t = 0,1, . . . ,T − 1 :

G←
∑T

k=t+1
γk−t−1Rk

δ ← G − v̂(St ,w)

w ← w + αwδ∇v̂(St ,w)

θ ← θ + αθγ
tG∇ lnπ(At |St , θ)
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Policy Gradient Methods

One-Step Actor-Critic:

θt+1 = θt + α(Gt − v̂(St))
∇π(At |St , θ)

π(At |St , θt)

= θt + α(Rt+1 + γv̂(St+1,w)− v̂(St ,w))
∇π(At |St , θ)

π(At |St , θt)

= θt + αδt
∇π(At |St , θ)

π(At |St , θt)

▶ Analogous to TD, SARSA and Q-Learning for tabular
methods

▶ Improve on slow learning of MC methods
▶ Useful for non-episodic, continuous problems
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Policy Gradient Methods

One-Step Actor-Critic

Input: A policy π(a|s, θ); step size αθ > 0
Input: A state-value function v̂(s,w); step size αw > 0

Initialize parameters θ ∈ Rd , w ∈ Rd arbitrarily
Loop forever (for each episode):

Initialize S (first state of episode); I ← 1
Loop while S not terminal (for each time step):

Sample A from π(.|S, θ)

Take action A, observe S′,R
δ ← R + γv̂(S′,w)− v̂(S,w)

w ← w + αwδ∇v̂(St ,w)

θ ← θ + αθG∇ lnπ(At |St , θ)

S ← S′; I ← γI
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Reference Implementations

Stable Baselines
▶ Reference Python implementation of RL algorithms

▶ Pre-trained agents (”Baselines Zoo”)

▶ Originally developed at OpenAI

▶ Pointers to additional learning materials

https://stable-baselines.readthedocs.io/en/master/

Gymnasium
▶ A standard programming interface (API) for RL environments

▶ Collection of reference environments

▶ Originally developed at OpenAI

https://gymnasium.farama.org/index.html
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AlphaGo

https://www.alphagomovie.com

Google’s DeepMind division became
famous in 2017 when it trained a computer
to beat the human world champion at the
game of Go. An award-winning full-length
documentary has been made about this
achievement.

https://www.alphagomovie.com
https://www.youtube.com/watch?
v=WXuK6gekU1Y

The introductory paper by David Silver
and others in Nature should be easy to
understand: ”Mastering the game of Go
without human knowledge”. Nature. 550
(7676): 354–359
https://www.nature.com/
articles/nature24270
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Additional Materials I

David Silver, UCL and Google DeepMind
Dr. Silver (https://www.davidsilver.uk/) of University College
London has an excellent introductory course on reinforcement learning with
class materials (from 2015) and lectures in a YouTube playlist. Updated
courses (2018, 2021) are available on the DeepMind YouTube channel. The
2021 course include topics on deep reinforcement learning.

https://www.davidsilver.uk/teaching/

https://www.youtube.com/playlist?list=
PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ.

https://www.youtube.com/@Google_DeepMind/playlists.
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Additional Materials II

UC Berkeley
UC Berkeley hosted a Deep RL Bootcamp in 2017 with slides and lecture
videos available online. Additionally, UC Berkeley’s course on Deep RL is
available online, with lecture slides and videos of past years.
https://sites.google.com/view/deep-rl-bootcamp/lectures

https://rail.eecs.berkeley.edu/deeprlcourse/

Denny Britz
Formerly at the Google AI team, Denny Britz applied RL algorithms to
financial markets and trading. He has a interesting blog, and a GitHub
repository with resources and algorithm implementations of popular RL
algorithms.

https://dennybritz.com/
https://github.com/dennybritz/reinforcement-learning
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Additional Materials III

Massimiliano Patacchiola, Cambridge University
Dr. Patacchiola is a postdoc at Cambridge University. He has written a series
of excellent blog posts on reinforcement based on the book ”Artificial
Intelligence – A Modern Approach” by Russell and Norvig. There are lots of
illustrations and pointers to implementation and code in multiple languages.

https://github.com/mpatacchiola/
dissecting-reinforcement-learning

Pascal Poupart, University of Waterloo
Dr. Poupart has made available videos and all course materials for all
lectures for a course on reinforcement learning at UWaterloo.

https://www.youtube.com/playlist?list=
PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc

https://cs.uwaterloo.ca/~ppoupart/teaching/
cs885-spring18/schedule.html
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Additional Materials IV

Andrew Ng, Stanford University
Dr. Ng (https://www.andrewng.org/) has taught an introductory class
on reinforcement learning, as part of a broader course on machine learning.

https://www.youtube.com/watch?v=RtxI449ZjSc

https://www.youtube.com/playlist?list=PLA89DCFA6ADACE599

Andrei Karpathy, OpenAI, formerly Tesla
Andrei Karpathy (https://karpathy.ai/ was a founding member of
OpenAI (makers of ChatGPT and Dall-E) and later became the Tesla lead for
their Autopilot program. An early blog post by Andrei Karpathy on RL is at the
introductory level.

https://karpathy.github.io/2016/05/31/rl/
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Additional Materials V

Lilian Weng, OpenAI
Dr. Weng (https://lilianweng.github.io/) is a lead researchers at
OpenAI (makers of ChatGPT and Dall-E). She has written an early blog post
on RL and another one on policy gradient algorithms.

https:
//lilianweng.github.io/posts/2018-02-19-rl-overview/

https:
//lilianweng.github.io/posts/2018-04-08-policy-gradient/
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Additional Materials VI

OpenAI
OpenAI (https://openai.com; makers of ChatGPT and Dall-E) post
regularly on their blog, on all things deep learning and also reinforcement
learning. The blog posts are easy introduction to a variety of analytics topics.

https://openai.com/blog/openai-baselines-ppo/

https://openai.com/blog/evolved-policy-gradients/

https://openai.com/blog/evolution-strategies/
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