
Business 4720 - Class 5
Data Management in R using Tidyverse

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 48

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Introduction to R
▶ Introduction to the Tidyverse set of packages

▶ ”Tidy” data
▶ Manipulating & clearning data
▶ Joining data
▶ Summarizing and reporting data

▶ Data cleaning

2 / 48

Intro to R

What is R?
▶ System for statistical analyses
▶ Created in 1993
▶ R programming language
▶ Open-source, cross-platform
▶ Widely used, popular
▶ Extensible, thousands of packages
▶ Scripting and programming

Intro Tutorial: https://cran.r-project.org/doc/
manuals/r-release/R-intro.pdf

3 / 48

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

R

4 / 48

My First R Command

R can do math:

> 1+1
[1] 2

R knows variables:

> a <- 3
> b <- 2
> print(a * b)
[1] 6

Note: You can also assign using ”=”

5 / 48

R Basics

R does vector math:

> v <- c(1, 2, 3, 4)
> v*3
[1] 3 6 9 12

Note: No print statement needed in interactive mode

> s <- seq(0, 6, by=.5)
> print(s)
> r <- rep(3.5, 5)
> print(r)

6 / 48

R Basics [cont’d]

More basic functions on vectors:

> length(v)
> max(v)
> min(v)
> sqrt(vv)
> var(v)
> sd(v)
> vv <- c(v, c(7, 8, 9), v)
> print(vv)

7 / 48

R Basics [cont’d]

Vector indexing:

> vv[vv < 5]
> vv[vv < 5] <- vv[vv < 5] + 5
> vv[3:7]
> vv[-(3:7)]

8 / 48

R Basics [cont’d]

R knows if its not a number:

> 2 / 0
[1] Inf
> 0 / 0
[1] NaN

9 / 48

R Basics [cont’d]

R knows NA:

> v[3] <- NA
> v*3
[1] 3 6 NA 12
> is.na(v)
[1] FALSE FALSE TRUE FALSE
> sum(v)
[1] NA

Note: R indexes start at 1!
Note: TRUE and FALSE can be abbreviated T and F

10 / 48

R Basics [cont’d]

R knows boolean logic:

> TRUE & FALSE
FALSE
> TRUE | FALSE
TRUE

R know character strings:

> label1 = 'I Love R'
> label2 = 'and BUSI 4760'
> paste(label1, label2, sep=' ')
> strsplit('Hello World! My first string', ' ')

11 / 48

R Basics [cont’d]

R types and type coercion:

> is.numeric(vv)
> is.integer(vv)
> mode(vv)
> as.character(vv)
> is.character(as.character(vv))
> as.factor(as.character(vv))
> levels(as.factor(as.character(vv)))

12 / 48

R Environment

R can manipulate its objects (”workspace”)

> ls()
[1] "a" "b" "v"
> rm(v)
> ls()
[1] "a" "b"

13 / 48

R Basics [cont’d]

R knows Regex:

> grep('^([0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$',
c('709 864 5000', 'abc def 9999', '709-865-5000'))

[1] 1 3
> grep('[A-V][0-9][A-V] [0-9][A-V][0-9]',

c('A0P 1L0', '0AB L2K', 'A0X 1Z0'))
[1] 1

R knows Levenshtein distances:

> agrep('apple',
c('apricot', 'banana', 'grape', 'pineapple'),
max.distance=3)

[1] 1 3 4

14 / 48

R Environment [cont’d]

R can help:

> help()
> help(lm)
> ?lm
> ??lm
> help.start()

15 / 48

R Environment [cont’d]

R knows files and directories:

> getwd()
[1] "/home/busi4720"
> setwd('DataSets')
> getwd()
[1] "/home/busi4720/DataSets"
> list.files()

Note: Strings may be enclosed in double or single quotes.

16 / 48

R Environment [cont’d]

R uses packages:

> search()
> library(matrixcalc)
> search()
> library()
> install.packages('lavaan')
> library()
> installed.packages()

R can read your command files:

> source('MyFirstScript.R')

Note: Sourcing a script turns off auto-printing, you must use
explicit print() commands

17 / 48

R Environment [cont’d]

Say goodbye to R:

> quit()

R stores its workspace in each directory in a file called
”.RData” and will read it when restarted. R stores its command
history in each directory in a file called ”.Rhsitory” and will read
it when restarted.

18 / 48

R Arrays and Matrices

Arrays and matrices have dimensions:

> a <- array(1:20, dim=c(4,5))
> a

[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> a[,2]
> a[,2:4]
> a[3,2:4]
> a[3:1,2:4]
> i <- array(c(1:3,3:1), dim=c(3,2))
> a[i] <- 0
> a

19 / 48

R Arrays and Matrices [cont’d]

> b <- matrix(20:1, nrow=5, byrow=T)
> b

[,1] [,2] [,3] [,4]
[1,] 20 19 18 17
[2,] 16 15 14 13
[3,] 12 11 10 9
[4,] 8 7 6 5
[5,] 4 3 2 1
> is.matrix(b)
> is.matrix(a)
> t(b)
> cbind(a, t(b))
> rbind(t(a), b)

20 / 48

R Lists

R knows lists:

> l <- list('a', 3, 'b', 2, TRUE)
> l[[2]]
> l[2]
> is.list(l)
> is.list(l[[2]])
> is.list(l[2])
> as.list(vv)

Vectors are not lists: Lists can contain elements of different
types, vectors cannot:

> c(3, 'a', TRUE)
> c(3, FALSE, TRUE)

21 / 48

Data Frames

A dataframe is a special type of list:

> x <- rnorm(50)
> y <- 2*x + rnorm(50)
> data <- data.frame(x, y)
> colnames(data)
> colnames(data) <- c('Pred', 'Crit')
> nrow(data)
> ncol(data)
> data$Pred
> data$Crit
> summary(data)
> head(data)
> tail(data)
> cov(data)

22 / 48

Data Frames [cont’d]

Writing data to CSV:

> write.csv(data, 'data.csv', row.names=FALSE)

Reading data from CSV:

> new.data <- read.csv('data.csv')
> colnames(new.data)

23 / 48

Tips for Working with R

▶ Use the up-arrow key to retrieve earlier commands
▶ The history() function shows your command history
▶ Use a notepad app to assemble your commands, then

copy/paste to R
▶ Use a notepad app for your results, copy/paste from R
▶ The Ubuntu terminal window uses SHIFT-CTRL-X ,

SHIFT-CTRL-C , SHIFT-CTRL-V
▶ Use multiple R windows (e.g. one for executing commands,

one for reading help documentation or listing files)
▶ Don’t update packages in the middle of a project
▶ Ensure you have a repeatable, automatable script for your

entire data analysis at the end of a project

24 / 48

Hands-On Exercise

1 Consider the last five digits of your student ID and label
those digits A–E
▶ Example: Student ID=12453 ⇒ A=1, B=2, C=4, D=5, E=3

2 Create a data frame with (A + 1) columns and 10 ∗ (B + 1)
rows of random numbers with mean of C and standard
deviation of (D + 1) (use the rnorm() function)

3 Name the columns with letters from ”A”–”K”
4 ”Clip” the values so that all values lie between −(E + 1)

and +(E + 1)
5 Summarize the data and print the pairwise covariance

matrix of the variables in the data frame
6 Save the data frame in a CSV file using your first name as

file name (file ending ’.csv’)
7 Save your script in an R file using your first name as file

name (file ending ’.R’)

25 / 48

Tidyverse

Intro books: https://r4ds.hadley.nz/

26 / 48

https://r4ds.hadley.nz/

Tidyverse

dplyr Manipulate data

forcats Work with categorical variables (factors)

ggplot2 Grammar of Graphics

lubridate Date and time parsing and arithmetic

purrr Functional programming

readr Read files in various formats

stringr Work with character strings

tibble A tibble is better than a table

tidyr Make data tidy

27 / 48

Pagila Database in R

Read into a tibble:

rentals <- read_csv('rentals.csv')
head(rentals)
summary(rentals)

Fix the column datatypes:

attach(rentals)
rating <- as.factor(rating)
language <- as.factor(language)
customer_address <- as.integer(customer_address)
customer_store <- as.integer(customer_store)
rental_staff <- as.integer(rental_staff)
payment_staff <- as.integer(payment_staff)
rental_duration <- as.integer(rental_duration)
detach(rentals)
summary(rentals)

28 / 48

Pagila Database in R [cont’d]

Examine the NA’s:

rentals |>
filter(if_any(everything(), is.na)) |>
select(last_name, rental_date, return_date,

title, amount) |>
print(n=Inf, width=Inf)

Interpretation:
▶ Some films have not been rented
▶ Some rentals have not been returned

Notes:
▶ The pipe symbol (R native pipes |> or magrittr pipes %>%)
▶ No quoting of column names

29 / 48

Pagila Database in R [cont’d]

Find all films and the actors that appeared in them, ordered by
film category and year, for those films that are rated PG:

actors <- read_csv('actors.categories.csv')

rentals |>
full_join(actors,

by='title',
suffix=c('_customer', '_actor'),
relationship='many-to-many') |>

filter(rating == 'PG') |>
mutate(actor =

paste(last_name_actor, ', ',
first_name_actor, sep='')) |>

rename(year=release_year) |>
select(actor, title, category, year) |>
distinct(actor, title, category, year) |>
group_by(category, year, title) |>
nest() |>
arrange(category, year, title) |>
relocate(category, year, title) |>
print(n=Inf, width=Inf)

30 / 48

Summary of DPlyr ”Verbs” so far

full_join outer join (also left_join, inner_join, right_join)

filter filters by row

select selects columns to retain

mutate creates new columns

rename renames columns

distinct finds unique values

group_by groups data

nest nests data, tibbles in tibbles

arrange sorts data rows

relocate moves data columns

print prints a tibble

31 / 48

Pagila Database in R [cont’d]

Find the most popular actors in the rentals in each city:

addresses <- read_csv('addresses.csv')
addresses$phone <- as.character(addresses$phone)

rentals |>
inner_join(addresses,

by=c('customer_address'='address_id')) |>
inner_join(actors,

by='title',
suffix=c('_customer', '_actor'),
relationship='many-to-many') |>

mutate(actor =
paste(last_name_actor, ', ',
first_name_actor, sep='')) |>

group_by(city, actor) |>
summarize(count=n()) |>
mutate(ranking = min_rank(desc(count))) |>
filter(ranking < 4) |>
arrange(city, ranking, actor) |>
print(n=25)

Note: Use rank() to break ties, dense_rank() for no gaps
32 / 48

Pagila Database in R [cont’d]

Find the customers who spend the most on rentals, with their
phone numbers and cities, and the number of rentals with the
higest total rental payments for each category grouped by
rental duration.

full_data <-
rentals |>
inner_join(addresses,
by=c('customer_address'='address_id')) |>

inner_join(actors,
by='title',
suffix=c('_customer', '_actor'),
relationship='many-to-many')

33 / 48

Pagila Database in R [cont’d]

full_data |>
mutate(customer=
paste(first_name_customer, last_name_customer)) |>

select(customer, amount, rental_duration,
category, phone, city) |>

group_by(category, rental_duration, customer) |>
mutate(payments=sum(amount), num_rentals=n()) |>
select(-amount) |>
group_by(category, rental_duration) |>
mutate(ranking = min_rank(desc(payments))) |>
slice(which.min(ranking)) |>
print(n=Inf, width=Inf)

▶ No summarize()

▶ ”Negative” select()
▶ Multiple group_by()

▶ Uses slice()

34 / 48

Pagila Database in R [cont’d]

Get the total rental revenue, number of rentals, and the mean
and standard deviation of the rental amounts for each country.

full_data |>
group_by(country) |>
summarize(revenue=sum(amount),

numrentals=n(),
mean_amount=mean(amount),
sd_amount=sd(amount)) |>

arrange(desc(mean_amount),
desc(revenue)) |>

print(n=Inf, width=Inf)

35 / 48

Pagila Database in R [cont’d]

Get the top 5 and the bottom 5 grossing customers for each
quarter.

full_data |>
mutate(customer=
paste(first_name_customer,last_name_customer)) |>
mutate(q=
as.character(quarter(rental_date, with_year=T))) |>
select(customer, q, amount, rental_date) |>
group_by(q, customer) |>
mutate(payments=sum(amount)) |>
select(-amount) |>
distinct(customer, q, payments) |>
group_by(q) |>
mutate(rank_top = min_rank(desc(payments))) |>
mutate(rank_bot = min_rank(payments)) |>
filter(rank_top < 6 | rank_bot < 6) |>

36 / 48

Pagila Database in R [cont’d]

Continued from previous slide . . .

arrange(q, desc(payments)) |>
relocate(q, customer, payments,

rank_top, rank_bot) |>
print(n=Inf, width=Inf)

▶ No summarize()

▶ Uses quarter() function from package lubridate

▶ Uses filter() instead of slice slice()

37 / 48

Pagila Database in R [cont’d]

Find the set of film titles by rental customer and the total
number rentals for each customer

full_data |>
mutate(customer=

paste(first_name_customer,last_name_customer)) |>
select(customer, title) |>
nest(titles=title) |>
rowwise() |>
mutate(rentals=nrow(titles)) |>
mutate(unique_titles=list(distinct(titles))) |>
select(-titles) |>
arrange(customer)

▶ Work with nested data using nest and rowwise

38 / 48

Hands-On Exercises

1 Find all films with a rating of ’PG’
2 List all customers who live in Canada (with their address)
3 Find the average actual rental duration for all films

▶ This requires date arithmetic, use the lubridate package
4 Find the average overdue time for each customer

▶ This requires date arithmetic, use the lubridate package

5 List all films that have never been rented
6 List the names of actors who have played in more than 15

films

39 / 48

R knows SQL

The sqldf Package
▶ Set up an in-memory SQLite database (or use existing

database connection)
▶ Move dataframes to database tables
▶ Run SQL query against database
▶ Move result set to R dataframe
▶ Tear down the in-memory database (optional)

Example

library(sqldf)
result_df <-

sqldf('select distinct(title) from full_data')

40 / 48

SQL Databases versus R/Tidyverse

Consider:
▶ Size of data: R is memory limited, RDBMS scale

massively larger
▶ Access speed: RDBMS have sophisticated indexes and

query planners
▶ Currency: Operational system RDBMS has live data
▶ Transactions: RDBMS ensure consistent views of data

across multi-user, concurrent updates
▶ Impact: Queries impact transaction processing (updates

of data) performance in RDBMS
▶ Tools: R has tools for statistical analysis and visualization,

beyond mere reporting

41 / 48

SQL Databases versus R/Tidyverse [cont’d]

Recommendations:
▶ Do not ”hit” operational RDBMS for heavy-weight or

frequent analytics
▶ Regularly export consistent data from RDBMS
▶ Use separate in-memory or on-disk RDBMS for analytics

(e.g. with sqldf) if desired/required
▶ If size of data is large, consider distributed tools such as

Hadoop/Spark

42 / 48

Data Cleaning

Overview
▶ Critical step in the data analysis process
▶ Identification and rectification of errors and inconsistencies
▶ Improve data quality

43 / 48

Data Cleaning

▶ Critical step in the data analysis process
▶ Identify and ”fix” errors and inconsistencies
▶ Improve data quality

Activities
1 Auditing: Identify anomalies and inconsistencies
2 Validation: Ensure data conforms to rules and constraints
3 Cleaning: Transform and correct data
4 Duplicate Removal: Ensure uniqueness of data.
5 Harmonization: Merge datasets from different sources

and ensure consistent formats and scales.
6 Standardization: Bring data into a standard format.
7 Quality Assessment: Ensure cleaning has been effective.

44 / 48

Data Validation

▶ Coding/serialization rules, e.g. with Regex
▶ Example Are all phone numbers of the format:

^([0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$

▶ Data type constraints
▶ Example: Are all sales prices numbers?

▶ Range constraints
▶ Examples: Are prices > 0? Are sales number < 1000?

▶ Cross-field validation
▶ Example: If province is NL, then area code must be 709

▶ Uniformity of measures/scales
▶ Example: All weights must be in kg, not pounds

45 / 48

Data Validation [cont’d]

▶ Uniqueness constraints
▶ Real duplicates and synonyms
▶ Example: Rebekah Uqi Williams

(Commissioner of Nunavut (2020–2021)
▶ Abbreviations:

Rebekah U. Williams; Rebekah Williams, R.U. Williams
▶ Order:

Williams, Rebekah Uqi; Williams, Rebekah U.; Williams, R.
▶ Spelling:

Rebekah; Rebecca; Rebeccah; Rebeckah; Rebecka
▶ Misspellings:

Reebkah, Rebkah, Wililams, Willaims, . . .
▶ . . .

46 / 48

Data cleaning

▶ Data Transformation, into proper format or structure.
▶ One row for each observation, case, event, . . .
▶ Requires case or event identifiers

▶ Data Imputation, replacing missing values with estimated
or default values, or removing missing values
▶ Different meanings of missing values
▶ Removal may bias data
▶ Estimating values may be error-prone

▶ Data Correction, or removal of erroneous data.
▶ Requires access to correct data

47 / 48

Data Cleaning

Important
Cleaning, transformation, and correction of data is subjective
and requires expert knowledge of the data, the validation rules,
the metadata, and the application domain.

The 80/20 Rule of Data Science
Cleaning, transformation, and correction of data takes 80% of
of the time, data analysis takes 20% of the time.

48 / 48

	Introduction
	R
	The R Environment
	Tidyverse

