Business 4720 - Class 4

Querying Graph and Document Databases

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland
jevermann@mun.ca

N0

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons
by-attribution non-commercial license (CC BY-NC 4.0) G

UNIVERSITY

1/37

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
» Querying Property Graphs with Neo4J and Cypher J

MEIVIORIA
UNIVERSITY

2/37

Use Cases

VVvvVvyVvVvYvVvyVvYVYyy

Fraud detection

IT infrastructure monitoring
Recommender engines

Master data management

Social media and social network analytics
Supply chain management

Financial services

Life sciences

MEIVIORIA

UNIVERSITY

3/37

Graph Query Languages

» SPARQL SPARQL Protocol and RDF Query Language
(W3C, 2008, 2013)

» Gremlin (Apache Tinkerpop 2009, 2023)
» Cypher (Neo4d 2011, openCypher 2015)
» GraphQL (Facebook, 2015, 2021)
» GQL (ISO/IEC, forthcoming 2023)

MEIVIORIA
UNIVERSITY

4/37

Graph Analytics with Neo4J and Cypher

» Neo4J Community Edition installed in course virtual
machine

» Browseto http://localhost:7474

» Username neodj password busi4720

Activities

® Firefoxweb Bro Nov2g 09:19

PN @ Neosj Browser x| + v

a2 PostgresQL: Docume... 8 Neod] Browser

EL L

® D E

« c O D locathost:7474/browser/ % K 8o &=

Databasa acoass not avalabe. lease use (SRR to e<t2bish connection, There's a graph waitng for you.

i
MEIVIORIA

UNIVERSITY

5/37

http://localhost:7474

Neo4dJ Property Graphs

Nodes
» May be labelled with zero, one or more labels
» Labels group nodes into sets
» Can have key—value pairs ("properties”)

Relationships
» Directed, named connection between two nodes
» Typed with one relationship type
» Can have key—value pairs ("properties”)
» Can be navigated in any direction

Path
» Sequence of alternating nodes and relationships
» Starts and ends at a node

6/37

The Cypher Language

Basic Ideas
» Declarative (styled after SQL)
» Pattern matching (styled after SPARQL)
» Cypher query has multiple clauses ("query pipelines”)
» Read and write in a single Cypher statement
» Queries must return data

MEIVIORIA
UNIVERSITY

7137

Cypher and Graph Concepts
(@\. Loves (@

Dan Ann

Node Node
| |

MATCH(: Person{name:“Dan”})-[:LOVES]—(:Person{name: “Ann”"})
T T T |
LABEL PROPERTY LABEL PROPERTY

https://neodj.com/docs/getting-started/_images/sample-cypher.svg

]nl!ul’lill;“

UNIVERSITY

8/37

https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

Cypher Syntax

Graph Nodes
(variable : Label)
» Optional variable name, optional label

Relationships

() - [variable : Label] - ()
() - [variable : Label] —> ()
() <— [variable : Label] - ()
0O --0
0 - -0
O<=-0
» Optional variable name, optional label

» Directionality matters for querying and must match that of
the relationship as created

UNTVERSITY

9/37

Cypher Syntax [contd]

Node Properties
(v:L { propertyName: propertyValue })

Relationship Properties
[r:L { propertyName: propertyValue }]

Pattern
(n1:L1 {pl:vl})-[r:L2 {p2:v2}]1->(n2:L2 {p3:v3 })

» Can be complex or simple

» Must be used with a keyword like MATCH for querying or like
CREATE or MERGE for data definition

1u|!ul¢l:|l;||

UNIVERSITY

10/37

Defining Graphs in Cypher

name: 'John' name: 'Sally'
age: 27 age: 32
IS_FRIENDS_WITH

since: 01/09/2013
Person > Person

title: 'Graph Databases'

authors: 'Jim Webber, lan Robinson' m
https://neo4j.com/docs/getting-started/_images/modeling_johnsally properties-arrl VIORIA

UNIVERSITY

11/37

https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

Defining Graphs in Cypher

MERGE (j:Person {name: 'John'})
ON CREATE SET j.age = 27
MERGE (s:Person {name: 'Sally'})
ON CREATE SET s.age = 32
MERGE (b:Book {title: 'Graph Databases'})

ON CREATE SET b.authors = ['Jim Webber', 'Ian Robinson']
MERGE (j)-[rell:IS_FRIENDS_WITH]->(s)
ON CREATE SET rell.since = '01/09/2013"

MERGE (j)-[rel2:HAS_READ]-> (b)
ON CREATE SET rel2.on = '02/03/2013', rel2.rated = 5
MERGE (s)-[rel3:HAS_READ]-> (b)
ON CREATE SET rel3.on = '02/09/2013', rel3.rated

Il
=

MERGE ensures a node or relationship exists in the graph, creating it
if necessary; CREATE creates a node or relationship

MATCH (n) RETURN n ‘

MATCH searches the graph for a pattern m

UNIVERSITY

12/37

Defining Graphs in Cypher

Node properties ©

w2
author (im °
s Webbenian
Robinson]
= Graph \S_READ title Graph ©
Data...
Databases

s
o
~
%,
e,
S,
2

s

MEIVIO R
UNIVER

SITY

13/37

Hands-On Exercises

Define a graph in Cypher that represents the following
statement:

You are completing the course BUSI 4720 in this semester with a
final grade of 100. BUSI 4720 is part of the BCom program where
it is offered in the 4th year. BUSI 4720 carries 3 credit hours of
academic credit. It is a course on the topic of Business Analytics.

Identify nodes, relationships, and properties of nodes and
relationships

Use CREATE or MERGE statements to create nodes first,
then relationships

Use MATCH to verify your graph is correct.

1u|!ul¢l:|l;||

UNIVERSITY

14/37

Clean-Up

To remove Persons and Books and relationships between
them:

MATCH (:Person|Book)-[r]-(:Person|Book) DELETE r;
MATCH (n:Person|Book) DELETE nj;

Similar for other types of relationships or labels.

To remove all relationships and nodes use:

MATCH ()-[relationship]-() DELETE relationship;
MATCH (node) DELETE node;

1u|!ul¢l:|l;||

UNIVERSITY

15/37

Property or Relationship?

//find the genres for

// a particular movie

MATCH (m:Movie {title:"The Matrix"})
genre: 'Action’, 'Sci-Fi' RETURN m.genre;

Movie //find which movies share genres
MATCH (ml:Movie), (m2:Movie)
WHERE any (x IN ml.genre

WHERE x IN m2.genre)
AND ml <> m2
RETURN ml, m2;

https://neodj.com/docs/getting-started/_images/modeling_genre_property-arr.svg

V1 O A

VERSITY

Vi
UNI

16/37

https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg

Property or Relationship?

//find the genres for a
name: Action! //particular movie
MATCH (m:Movie {title:"The Matrix"}),
6@«% (m) = [:IN_GENRE] -> (g:Genre)
/ RETURN g.name;
i MN_Geng, name: 'Sci-Fi
— //find which movies share genres
MATCH (ml:Movie)-[:IN_GENRE]->(g:Genre)
(m2:Movie) - [:IN_GENRE]-> (g)
RETURN ml, m2, g

https://neodj.com/docs/getting-started/_images/modeling_genre_node-arr.svg

V1 O A

VERSITY

Vi
UNI

17/37

https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg

Flexible Data Modeling

name: string name: string
code: string code: string

Airport _— Airport
D FvNeTo D

code: string

airline: string
departure: long
arrival: long
distance: long

https://neod4j.com/docs/getting-started/ images/modeling airport flights-arr.svg

name: string name: string
code: string code: string

~ >
O, code: string en
é” airline: string ‘\S:D
o' departure: long ©
bl . \
o arrival: long (=2
~ . >
distance: long
‘HAS_FLIGHT :DESTINATION
AirportDay = ——m———————— Flight - AirportDay
date: long date: long MO A

Vi
. UNIVERSITY
https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

18/37

https://neo4j.com/docs/getting-started/_images/modeling_airport_flights-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

Graph Data versus Relational Data

Employees Dept_Members Departments

815

815, A1 T Im s

T 119 posts

815 18— > g a2

Associative Entity,
JOIN Table,
or Lookup Table
https://neo4j.com/docs/getting-started/ images/relational model.svg
deptName: '4FUTURE'

Department

<0
name: "Alice’ .BELO“GS/

deptName: 'P0815"

Department

Department

MOR

deptName: 'A42' M
UNIVER
vg

SITY

https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.s

19/37

https://neo4j.com/docs/getting-started/_images/relational_model.svg
https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.svg

Graph Data versus Relational Data

Conversion
> Tables to Node Labels
» Rows to Nodes
» Columns to Node Properties
» Foreign keys to Relationships
» Join tables to Relationships
» Remove NULL and default values

1u|!ul¢l:|l;||

UNIVERSITY

20/37

The Pagila Database for Neo4J

Import the Pagila Datase (This may take ten or more minutes;
already done in the course Virtual Machine):

CALL apoc.cypher.readFile (
'file:///import-pagila-from-csv.cypher')

Verify some data

MATCH (n:Actor) RETURN n LIMIT 25

1n|!ul¢l:|l;||

UNIVERSITY

21/37

Explore the Pagila Graph

neo4j$ MATCH (n:Actor) RETURN n LIMIT 25 I

Overview

Node labels

DD D

Relationship types

o]
s
[T
[
[

Displaying 75 nodes, 104 relationships.

IWENTORY

BARRY...

(AN 3HOLS

o O

— RENTAL

NORIA

UNIVERSITY

22/37

Explore the Pagila Schema

| CALL db.schema.visualization ()

call db.schema.visualization()

&
£
3

& %
3
é\o %):7('z~ STORE ADDR
2 S ESS —
& 5 Address.
>) \
(s}
5 = %\ .
& e ° o€
) «

. e
e (SONTRY_OF iy __
5 £

Overview 2
Node labels

@ =D
D @D CID
CD G (Famentcn
=D D
D G

Relationship types

&
istonsusariy)

- INVENTORY (1)

Iﬂ"jﬂzll 0] _lnmu [0)

Displaying 13 nodes, 18 relationships.

UNIVERSITY

23/37

Cypher Query Examples

Find actors by last name, limitto 10

MATCH (a:Actor)

RETURN a.firstName, a.lastName
ORDER BY a.lastName DESC
LIMIT 10;

Find films whose title starts with a "T’ and that have a rental rate
less than 3, sort by film title, limit to 10

MATCH (f:Film {rating: 'PG'})

WHERE (f.title STARTS WITH 'T') AND (f.rentalRate < 3)
RETURN f.title, f.rating, f.rentalRate

ORDER BY f.title ASC LIMIT 10;

1u|!ul¢l:|l;||

UNIVERSITY

24/37

Cypher Query Examples [contd]

Find rental customers that live in India

MATCH (r:Rental)
- [:RENTAL_CUSTOMER] -> (c)

— [:CUSTOMER_ADDRESS] -> ()

— [:ADDRESS_CITY] -> ()

— [:COUNTRY_OF_CITY] -> (ct {country: 'India'})
RETURN c.firstName, c.lastName, r.rentalDate LIMIT 5

UNIVERSITY

25/37

Hands-On Exercise

Find all customers that have rented a film with rating "PG”

Explore the graph visually in Neo4J browser, note the
relationship types

Consider the path from customer to film via rental and
inventory

Design a pattern that starts with a customer node and
ends with a film node

Define an appropriate WHERE clause of property
restrictions in node patterns

1u|!ul¢l:|l;||

UNIVERSITY

26/37

Hands-On Exercise

TCH (n:Custoner) RETURN D
Node properties 0 >
renalbate 20220618134601.0230 >

reumdste 20220623 1510010230

e

MEIVIORIA
UNIVERSITY

27/37

Cypher Query Examples [contd]

Aggregation: Find the mean and standard deviation of rental
payments by country

MATCH (p:Payment)
— [:PAYMENT_RENTAL] -> (r:Rental)

[:RENTAL_CUSTOMER] —-> (c)
[:CUSTOMER_ADDRESS] -> ()
[:ADDRESS_CITY] —-> ()
[:COUNTRY_OF_CITY] —-> (ct)
WITH ct,

avg (p.amount) AS amountMean,

stDev (p.amount) AS amountSD
RETURN ct.country, amountMean, amountSD
ORDER BY amountMean DESC LIMIT 5

https:

//neo4j.com/docs/cypher—-manual/current/functions/aggregating/

UNIVERSITY

28/37

https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
https://neo4j.com/docs/cypher-manual/current/functions/aggregating/

Cypher Query Examples [contd]

Collection: Find the sets of last names of the movie cast, and
the total number of actors

MATCH (a:Actor) - [:ACTS_IN] —-> (f:Film)
RETURN f.title,
collect (a.lastName) AS cast,
count (x) AS numActors;

Collection: Find the set ofs of film title by rental customer and
the number of rentals

MATCH (f:Film) - [:FILM_INVENTORY]
- () — [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]

—> (c:Customer)
RETURN c.lastName,
collect (f.title) AS filmRentals,
count (x) AS numRentals;

https://neodj.com/docs/getting-started/cypher-intro/results/ m

UNIVERSITY

29/37

https://neo4j.com/docs/getting-started/cypher-intro/results/

Cypher Query Examples [contd]

Collection: Find the set of rental customers for each film and
the rental count

MATCH (f:Film) - [:FILM_INVENTORY]
- () — [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]

—> (c:Customer)
RETURN DISTINCT f.title,
collect (c.lastName+' '+left (c.firstName,1l)+'.")
AS custNames,
count (x) as rentalCount

1n|!ul¢l:|l;||

UNIVERSITY

30/37

Cypher Query Examples [contd]

Sub-Query: Find the customers who rent films that are in
inventory at multiple stores

MATCH (c:Customer)<-[:RENTAL_CUSTOMER]
—(r:Rental) - [:RENTAL_INVENTORY]
—()-[:FILM_INVENTORY]

—(f:Film)

WITH c, count/{

MATCH (f)-[:FILM_INVENTORY]
—()—[:STORE_INVENTORY]
- (s:Store)

RETURN DISTINCT s.storelID
} AS storeNum
where storeNum > 1
RETURN DISTINCT
c.lastName
4o
+left (c.firstName, 1)
+'.' AS custName,
storeNum

UNIVERSITY

31/37

Cypher Query Examples [contd]

Christian Akroyd’s co-actors

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})

- [:ACTS_IN]
- (f:Film)
<- [:ACTS_IN]
— (coActors)
RETURN coActors.firstName + ' ' +

coActors.lastName AS Name;

Quantified Relationships: Movies and actors up to 2 "hops”
away from Christian Akroyd

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})
— [:ACTS_IN%1..2]
— (others)
RETURN distinct others;

]ul!ul’lill;ll

UNIVERSITY

32/37

Cypher Query Examples [contd]

Built-In Function: The shortest path of an acts-in relationship
between Christian Akroyd and Charlize Dench

MATCH path=shortestPath (
(al: Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})
— [:ACTS_INx]
- (a2: Actor {firstName: 'CHARLIZE',
lastName: 'DENCH'}))
RETURN path;

1n|!ul¢l:|l;||

UNIVERSITY

33/37

Cypher Query Examples [contd]

Pattern in WHERE clause, multiple MATCH patterns Find
actors that Christian Akroyd hasn’t yet worked with, but his
co-actors have. Extend Christian Akroyd’s co-actors, to find
co-co-actors who haven’t worked with him.

MATCH (al:Actor {firstName:'CHRISTIAN',
lastName: "AKROYD'})

- [:ACTS_IN] —-> (m) <-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]->(m2)<-[:ACTS_IN] - (cocoActors)
WHERE NOT (al)-[:ACTS_IN]->()<-[:ACTS_IN]- (cocoActors)

AND al <> cocoActors
RETURN cocoActors.firstName+' '+
cocoActors.lastName AS Recommended,
count (*) AS Strength
ORDER BY Strength DESC

1u|!ul¢l:|l;||

UNIVERSITY

34/37

Cypher Query Examples [contd]

Find someone who can introduce Christian Akroyd to Susan
Davis

MATCH (al:Actor {firstName:'CHRISTIAN',
lastName: "AKROYD'})
—[:ACTS_IN]—->(m)<-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]—>(m2)
<-[:ACTS_IN]-(a2:Actor {firstName:'SUSAN',
lastName: 'DAVIS'})
RETURN al, m, coActors, m2, a2

1n|!ul¢l:|l;||

UNIVERSITY

35/37

Further Information

Getting Started

Cypher Manual

Graph Data Science

APQOC Library
Use Cases

Resources

https://neo4j.com/docs/
getting-started/

https://neo4j.com/docs/cypher-manual

https://neo4j.com/docs/
graph-data-science

https://neodj.com/docs/apoc/current/
https://neo4j.com/use-cases/

https://neodj.com/resources/

1n|!ul I.ll.ll

UNIVERSITY

36/37

https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/cypher-manual
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/apoc/current/
https://neo4j.com/use-cases/
https://neo4j.com/resources/

Hands-On Exercises

Are there two customers that have the same address?
Which customers have rented the same set of films?
Find all films with a single actor

Calculate the rental revenue per customer. Who are the
top 57 Bottom 5?

Calculate the rental counts for each country of customer.
Are there countries with no rentals?

A Create a graph that represents a product hierarchy.

1u|!ul¢l:|l;||

UNIVERSITY

37/37

	Introduction
	Graph Databases

