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This Class

What You Will Learn:
▶ Time Series Models

▶ Time series basics
▶ Smoothing methods
▶ ARIMA models
▶ Seasonal models
▶ GARCH Models
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Based On

Robert H. Shumway and David S. Stoffer (2017) Time Series
Analysis and Its Applications, 4th Edition. Springer.
https://www.stat.pitt.edu/stoffer/tsa4/

Rob J. Hyndman and George Athanasopoulos (2018) Forecasting:
Principles and Practice, 2nd edition. OTexts.
https://otexts.com/fpp2/

Useful Tutorials
▶ https://github.com/nickpoison/tsa4

▶ https://a-little-book-of-r-for-time-series.
readthedocs.io/en/latest/src/timeseries.html

▶ https://rc2e.com/timeseriesanalysis

▶ https:
//atsa-es.github.io/atsa-labs/chap-tslab.html
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Time Series Application Examples

▶ Finance: Stock market predictions
▶ Economics: Unemployment rates
▶ Social science: School enrollment
▶ Natural sciences: Global temperature trends
▶ Ecology: Fish population forecasting
▶ Epidemiology: COVID incidence rates

Time

Q
ua

rt
er

ly
 E

ar
ni

ng
s 

pe
r 

S
ha

re

1960 1965 1970 1975 1980

0

5

10

15

4 / 77



Characteristics of Time Series

Time-Domain Approach
▶ Focuses on lagged relationships
▶ Example: How does yesterday’s stock performance affect

today’s stock performance?

Frequency-Domain Approach
▶ Focuses on cycles
▶ Example: What is the economic cycle through periods of

expansion and recession?
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Time Series Statistical Models

▶ Moving Averages
▶ Autoregressive Model
▶ Random walk with drift
▶ Signal in noise
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Moving Averages

Example:

vt =
1
3
(wt−1 + wt + wt+1)

# Random numbers
w = rnorm(500,0,1)
# Moving average
v = filter(w, sides=2, filter=rep(1/3,3))
# Plot timeseries
par(mfrow=c(2,1))
tsplot(w,

main="white noise", col=3, gg=T)
tsplot(v, ylim=c(-3,3),

main="moving average", col=4, gg=T)
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Moving Averages [cont’d]
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Autoregressions

Example:

xt = xt−1 − 0.9xt−2 + wt

# Random numbers (errors)
w = rnorm(550,0,1)
# remove first 50 values for startup
x = filter(w, filter=c(1,-.9),

method="recursive")[-(1:50)]
tsplot(x, main="autoregression", col=4, gg=T)
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Autoregressions [cont’d]
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Random Walk with Drift

Example:

xt = δ + xt−1 + wt

= δt +
t∑

j=1

wj

w = rnorm(200)
x = cumsum(w)
drift = .2
w.drift = w + drift;
x.drift = cumsum(w.drift)
tsplot(x.drift, ylim=c(-10,55),

main="random walk", ylab='', col=3, gg=T)
abline(a=0, b=drift, lty=2, col=3)
lines(x, col=4)
abline(h=0, col=4, lty=2)
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Random Walk with Drift [cont’d]
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Signal in Noise

Example:

xt = A cos(2πωt + ϕ)

A = 2 amplitude
ω = 1/50 frequency
ϕ = .6π phase shift

# Create signal
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
# Overlay with gaussian noise and plot
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
tsplot(cs,

main='Signal', col=2, gg=T)
tsplot(cs+w,

main='Signal and N(0,1) noise', col=3, gg=T)
tsplot(cs+5*w,

main='Signal and N(0,25) noise', col=4, gg=T)
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Signal in Noise [cont’d]
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Basic Time Series Operations in R

Building a time series:

# Creating a time series object with monthly data
ts_data <- ts(1:24, frequency = 12, start = c(2020, 1))

Dealing with missing values:

library(zoo)
# Introduce NA values
ts_data[c(5, 10, 15)] <- NA
# Remove leading/trailing NA values
trimmed_ts <- na.trim(ts_data)
# Last Observation Carried Forward
locf_ts <- na.locf(ts_data)
# Interpolate NA values
approx_ts <- na.approx(ts_data)
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Basic Time Series Operations in R

First and last observations:

head(ts_data)
tail(ts_data)

Merging time series:

# Creating another time series
ts_data2 <- ts(c(1:24), frequency = 12, start = c(2020, 7))

# Find intersection of two time series
intersect_ts <- ts.intersect(ts_data, ts_data2)

# Find union of two time series
union_ts <- ts.union(ts_data, ts_data2)
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Basic Time Series Operations in R

Lagging a series (shifting forward or backward in time):

# Positive k shifts backwards
lag(ts_data, 6)
# Negative k shifts forwards
lag(ts_data, -3)
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Smoothing a Time Series

▶ Moving average
▶ Kernel smoothing
▶ KNN regression / Lowess
▶ Smoothing splines
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Moving Average

mt =
k∑

j=−k

ajxt−j where
k∑

j=−k

aj = 1

f = c(.5, rep(1, 11), .5)/12
filter(soi, sides=2, filter=f)
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Kernel Smoothing

ai(t) = K
(

t − i
b

)
/

n∑
j=1

K
(

t − j
b

)
and K (z) =

1√
2π

exp
(
−z2/2

)

ksmooth(time(soi), soi, 'normal', bandwidth=1)
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Locally Weighted Regression

▶ Identify proportion f of closest points
▶ Use weighted least squares regression to predict values

lowess(soi, f=0.1)
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Smoothing Splines
▶ Penalized polynomial regression
▶ Fit mt = β0 + β1t + β2t2

▶ Minimize loss function:
n∑

t=1

(xt − mt)
2 + λ

∫ (
d2m
dt2

)2

dt

smooth.spline(time(soi), soi, spar=0.5)
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Hands-On Exercises

1 Generate 100 observations from the autoregression model
xt = −.9xt−2 + wt with σ2

w = 1
1.1 Smooth the time series using a moving average filter

vt = (xt + xt−1 + xt−2 + xt−3)/4
1.2 Plot xt as a line and superimpose vt
1.3 Comment on the behaviour of xt and how applying the

moving average filter changes that behavior

2 Repeat the smoothing but with xt = cos(2πt/4)
3 Repeat the smoothing but with added N(0,1) noise, that is

smooth xt = cos(2πt/4) + wt

4 Compare and contrast the three exercises: How does the
moving average change each series

▶ Use x = filter(w, filter=c(a, b), method="recursive")

▶ Use v = filter(x, rep(1/4, 4), sides=1) as above.
▶ Use c = cos(2*pi*1:500/4) as above.
▶ Use lines(...,lty=2) to add lines to a plot
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Time Series Regression Example

Epidemiology Example:
▶ Cardiovascular mortality cmort
▶ Temperate tempr
▶ Particulate pollution part

# IMPORTANT: Use ts.plot, NOT tsplot:
ts.plot(cmort, tempr, part, col=2:4)
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Time Series Regression Example [cont’d]

Fit different linear regression models (at the same time points):

# Center Temperature
temp = tempr - mean(tempr)

# Square Temperature
temp.2 = temp^2

# Fit different linear models and provide summaries
summary(lm(cmort ~ time(cmort)))
summary(lm(cmort ~ time(cmort) + temp))
summary(lm(cmort ~ time(cmort) + temp + temp.2))
summary(lm(cmort ~ time(cmort) + temp + temp.2 + part))
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Time Series Regression Example
With Lagged Variables

# Lag the temperature
temp.l.2 = lag(temp, 2)
temp.l.4 = lag(temp, 4)

# Intersect all time series to
# omit leading/trailing NA
temp.df <- ts.intersect(cmort, time(cmort), part,

temp, temp.2, temp.l.2,
temp.l.4,
dframe=TRUE)

# Fit the linear model including lagged temperature
summary(lm(cmort ~ time.cmort. + temp + temp.2 +

temp.l.2 + temp.l.4 + part,
data=temp.df))
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Strict Stationarity

A strictly stationary time series is one for which the
probabilistic behaviour of every collection of values

{xt1, xt2, . . . , xtk}

is identical to that of the shifted set

{xt1+h, xt2+h, . . . , xtk+h}.

That is,

Pr{xt1 ≤ c1, . . . , xtk ≤ ck} = Pr{xt1+h ≤ c1, . . . , xtk+h ≤ ck}
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Weak Stationarity

A weakly stationary time series is a finite variance process
such that

1 the mean is constant and does not depend on time: µt = µ

2 the autocovariance γ depends on s and t only through
their difference h = |s − t |.

Let s = t + h, then:

γ(s, t) = γ(t + h, t) = cov(xt+h, xt) = cov(xh, x0) = γ(h)

and

ρ(h) = γ(h)/γ(0)
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Measures of Dependence

Autocovariance
▶ Covariance between two points t , t + h on time series x

γ(h) = cov(x , xt+h) = E [(xt − µ)(xt+h − µ)]

▶ Large autocovariance → smooth time series
▶ Small autocovariance → choppy time series

Sample Autocovariance for Lag h

γ̂(h) =
1
n

n−h∑
t=1

(xt − x̄)(xt+h − x̄)
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Measures of Dependence [cont’d]

Autocorrelation Function (ACF)

ρx(h) =
γ(t + h, t)√

γ(t + h, t + h)γ(t , t)
=

γ(h)
γ(0)

(weak stationarity)

Sample Autocorrelation for Lag h

ρ̂x(h) =
γ̂(h)√
γ̂(h)γ̂(0)

=
γ̂(h)
γ̂(0)

(weak stationarity)
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Measures of Dependence [cont’d]

The large-sample distribution of ρ̂x(h) is normal with mean 0
and standard deviation

σρ̂x = 1/
√

n

if the processes is independent white noise.

Hence, the approximate 95% confidence interval on the ACF is

−1
n
± 2√

n
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Measures of Dependence [cont’d]

Partial Autocorrelation Function (PACF)
The PACF is the correlation between xt+h and xt with the linear
dependence of {xt+1, . . . , xt+h−1} on each, removed:

ϕhh =

{
ρ(1) h = 1
corr(xt+h − x̂t+h, xt − x̂t) h ≥ 2
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Autocorrelation Function (ACF) Example 1

Gaussian white noise example:

library(astsa)
t <- ts(rnorm(500))

# The hard way:
cor(ts.intersect(t, lag(t,1), dframe=T))
cor(ts.intersect(t, lag(t,2), dframe=T))
# etc.

# The easy way:
# Without plot
acf <- acf1(t, plot=FALSE)
# With plot
acf1(t, gg=T, col=7, lwd=3)
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Autocorrelation Function (ACF) Example 1 [cont’d]
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Autocorrelation Function (ACF) Example 2

Example using the soi data set (sea level air pressure index)
from the astsa library:

library(astsa)
?soi

# Compute and plot the ACF for different lags
acf1(soi, gg=T, co=3, lwd=2)

# Scatterplot of original versus
# or lags up to 6, with ACF values
lag1.plot(soi, max.lag = 6,

gg=T, col=4, lwl=3)
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Autocorrelation Function (ACF) Example 2 [cont’d]
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Dealing with Non-Stationarity

Log Transformation

yt = log xt

Box-Cox power transformation

yt =

{
(xλ

t − 1)/λ λ ̸= 0
log xt λ = 0
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Dealing with Non-Stationarity

Assume that xt = µt + yt where µt is the trend and yt a
stationary process.

Detrending
▶ Estimate trend, e.g. with an LM such as µt = β0 + β1t
▶ Work with residuals, e.g. ŷt = xt − µ̂t = xt − β̂0 − β̂1t

# Simulate a time series with a linear trend
t <- ts(1:100 + rnorm(100) * 10)
# Fit a linear model to the time series
trend_model <- lm(t ~ time(t))
# Calculate detrended series
detrended <- residuals(trend_model)
# Plot original and detrended
par(mfrow=c(2,1))
tsplot(t, type="l", main="original",col=3,gg=T)
tsplot(detrended, type="l", main="detrend",col=2,gg=T)
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Detrending Example
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Dealing with Non-Stationarity

Assume that xt = µt + yt where µt is the trend and yt a
stationary process.

Differencing
▶ Model the trend stochastically as a random walk with drift:

µt = δ + µt−1 + wt where wt is white noise
▶ Differencing then yields

xt − xt−1 = (µt + yt)− (µt−1 + yt−1) = δ + wt + yt − yt−1
which is stationary

▶ First difference eliminates linear trend
▶ Second difference eliminates quadratic trend
▶ . . .
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Differencing [cont’d]

Difference Operator

∇xt = xt − xt−1

Backshift / Lag Operator

B xt = xt−1

Bk xt = xt−k

∇xt = (1 − B)xt

∇2xt = (1 − B)2xt = (1 − 2B+B2)xt = xt − 2xt−1 + xt−2

∇d = (1 − B)d
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Differencing in R

set.seed(42)
# Simulating a time series with trend
t <- ts(cumsum(rnorm(100)))

tsplot(diff(t, differences = 1), type="l",
main="first difference", col=4,gg=T)

tsplot(diff(t, differences = 2), type="l",
main="second difference", col=5,gg=T)
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Detrending and Differencing in R

Compare the ACF of the original, detrended, and differenced
series:

acf1(chicken, max.lag=48,
main="original", col=1, gg=T)

acf1(resid(fit), max.lag=48,
main="detrend", col=2, gg=T)

acf1(diff(chicken), max.lag=48,
main="first diff", col=3, gg=T)

acf1(diff(chicken, differences=2), max.lag=48,
main="sec diff", col=4, gg=T)
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Detrending and Differencing in R

0 1 2 3 4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

original

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

detrend

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

first diff

LAG ÷ 12

A
C

F

0 1 2 3 4

−0.2

0.0

0.2

0.4

sec diff

LAG ÷ 12

A
C

F

44 / 77



Hands-On Exercises

1 Extend the mortality, temperature and pollution/particulate
model by adding another component to the regression that
accounts to the particulate four weeks prior; that is, add
Pt−4 to the regression.

2 Draw a scatterplot matrix of Mt , Tt , Pt and Pt−4, then
calculate the pairwise correlations between them.
Compare the relationship between Mt and Pt versus Mt
and Pt−4

3 Detrend the soi time series data by fitting a regression of
St on time t . Is there a significant trend in the surface
pressure?

4 Use two different smoothing techniques to estimate the
trend in the global temperature series gtemp_both in the
astsa library.
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Hands-On Exercises [cont’d]

Consider the two weekly time series oil and gas in the astsa
library. The oil series is in dollars per barrel, while the gas
series in in cents per gallon.

1 Plot the data on the same graph. Do you believe the series
are stationary?

2 Apply the transformation yt = ∇ log xt to the data for both
series

3 Plot the transformed series on the same graph, and
calculate the ACFs for both series

4 Plot the CCF of the transformed series and comment.
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ARIMA Models

▶ AR: Autoregressive models
▶ MA: Moving average models
▶ ARMA: Autoregressive moving-average models
▶ ARIMA: Autoregressive integrated moving-average models

(for non-stationary models with trend)
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AR(p) Models

An autoregressive model of order p is of the form:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + wt

where wt is white noise and ϕi are model parameters.

In contrast to an ”ordinary” regression model, the xi are random effects, not
fixed, because each xi has an associated error term wt .

The autoregressive operator is defined using the backshift
operator as

ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp

=

1 −
p∑

j=1

ϕjBj


so that the AR(p) model becomes:

ϕ(B)xt = wt
48 / 77



AR(p) Models – Theoretical ACF and Simulations
Theoretical ACF of an AR(2) model

ARMAacf(ar=c(1.5, -.75), lag.max=10)

Simulate an ARIMA(2,0,0) model with those AR coefficients

t.ar = arima.sim(list(ar=c(1.5, -.75)), n=200)
# Compute and plot the ACF of the simulated series
acf1(t.ar, max.lag=25, gg=T, lwd=2, col=4)
# Add the theoretical values for comparison
lines(ARMAacf(ar=c(1.5, -.75), lag.max=26)[-1],

lwd=2, col=2)
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MA(p) Models

A moving average model of order q is defined as:

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

where wt are Gaussian errors and θi are model parameters.

The moving average operator is defined using the backshift
operator as

θ(B) = 1 + θ1B + θ2B2 + · · ·+ θqBq

=

1 +

q∑
j=1

θiBi


so that the MA(q) model becomes:

xt = θ(B)wt
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MA(p) Models – Theoretical ACF and Simulations
Theoretical ACF of an MA(2) model

ARMAacf(ma=c(1.5, -.75), lag.max=10)

Simulate an ARIMA(0,0,2) model with those MA coefficients

t.ma = arima.sim(list(ma=c(1.5, -.75)), n=200)
# Compute and plot the ACF of the simulated series
acf1(t.ma, gg=T, lwd=2, col=4)
# Add the theoretical values for comparison
lines(ARMAacf(ma=c(1.5, -.75), lag.max=26)[-1],

lwd=2, col=2)
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ARMA(p, q) Models

A time series is ARMA(p,q) if it is stationary and

xt = α+ ϕ1xt−1 + · · ·+ ϕpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q

where ϕp ̸= 0, θq ̸= 0, α = µ(1 − ϕ1 − · · · − ϕp) and wt is
Gaussian.

This can be written as

ϕ(B)xt = θ(B)wt
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Equivalent Models

ARMA to MA
Every ARMA model has an equivalent (infinite) MA model

ARMAtoMA(ar = c(-.5), ma = c(-.9), lag.max=10)

ARMA to AR
An invertible ARMA model has an equivalent (infinite) AR
model with coefficients pij and π(B) =

∑∞
j=0 πjBj .

library(astsa)
ARMAtoAR(ar = c(-.5), ma = c(-.9), lag.max=10)
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Partial Autocorrelation Function (PACF)

ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)

plot(ACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)
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ARMA(p, q) Models – Model Selection

AR(p) MA(q) ARMA (p, q)

ACF Tails off Cuts off after laq q Tails off

PACF Cuts off after lag p Tails off Tails off

Source: Shumway&Stoffer, Table 3.1
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ARIMA(p, d, q) Models

If the AR operator can be factorized by (1 − B), then:

ϕ(B) =

1 −
p′∑

j=1

ϕjBj

 =

1 −
p′−d∑
j=1

ϕjBj

 (1 − B)d

With p = p′ − d , the ARIMA(p,d,q) model is then:1 −
p∑

j=1

ϕjBj

 (1 − B)dxt =

1 +

q∑
j=1

θjBj

wt

This can be generalized to:1 −
p∑

j=1

ϕjBj

 (1 − B)dxt = δ +

1 +

q∑
j=1

θjBj

wt

where δ = µ(1 − ϕ1 − · · · − ϕp)
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Building ARIMA Models

1 Plot the data
2 Possibly transform the data
3 Assess stationarity
4 Possibly difference the data
5 Identify the dependence orders (p, q) of the model
6 Estimate parameters
7 Model diagnostics
8 Model selection
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Identifying Dependence Order

Identifying d
▶ Slow decay in sample ACF ρ̂(h) indicates need for differencing

▶ Over-differencing can introduce dependence where non exists

▶ Difference once using diff(x, differences = 1), then
check ACF again

Preliminary p and q

▶ Examine sample ACF and PACF of differenced data ∇dxt

AR(p) MA(q) ARMA (p, q)

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

Source: Shumway&Stoffer, Table 3.1
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Example

Examine data and transform:

# Plot data
plot(gnp)
# Plot ACF
acf2(gnp, 50)
# Log transform, and first order differencing
gnpgr = diff(log(gnp))
# Plot transformed and differenced data
plot(gnpgr)
# Plot ACF of transformed and differenced data
acf2(gnpgr, 24)
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Example [cont’d]
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Example [cont’d]

Fit initial models

# Fit an AR(1) model
sarima(gnpgr, 1, 0, 0)
# Fit an MA(2) model
sarima(gnpgr, 0, 0, 2)
# Models are roughly equivalent
ARMAtoMA(ar=0.35, ma=0, 10)

The models show similar fit and all coefficients are significant.
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Example [cont’d]

Standardized Residuals
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Example [cont’d]

Diagnostics
▶ Standardized residuals are Gaussian (µ = 0, sd = 1)
▶ Residuals are not autocorrelated
▶ Residual ACF are Gaussian with µ = 0 and sd = 1/

√
n

▶ Ljung-Box statistic Q of the error ACF ρ̂e for different
maximum lags H is larger than the 1 − α quantile of the
χ2

H−p−q distribution (i.e. the test statistic is not statistically
signifantly different from 0)

Q = n(n + 2)
H∑

h=1

ρ̂2
e(h)

n − h
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Mis-Fit Example

sarima(log(varve), 0, 1, 1, no.constant=T)
sarima(log(varve), 1, 1, 1, no.constant=T)
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Example [cont’d]

Model Selection
For MLE estimated models, model choice is typically based on
information criteria
▶ Functions of the log-likelihood L
▶ Adjusted for model complexity (number of parameters) k
▶ Adjusted for sample size n
▶ Express relative quality of fit: Smaller is better

AIC = −2 log L + 2k Akaike Information Criterion

AICc = AIC +
2k(k + 1)
n − k − 1

Akaike Information Criterion, corrected

BIC = −2 log L + k log n Bayesian Information Criterion
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Example [cont’d]

> sarima(gnpgr, 1, 0, 0)

AIC = -6.44694 AICc = -6.446693 BIC = -6.400958

> sarima(gnpgr, 0, 0, 2)

AIC = -6.450133 AICc = -6.449637 BIC = -6.388823
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Example – Forecasting

forecasts <- sarima.for(gnpgr, n.ahead=10, p=1,d=0,q=0)

Time

gn
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r
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0.
01

0.
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03

ARMA predictions quickly settle to the mean with a constant
prediction error
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General Autoregressive Conditional Heteroscedastic
(GARCH) Models

ARCH models the variance of a series of returns:

rt =
xt − xt−1

xt−1
(”Return”)

Example: ARCH(1) Model – The variance depends on the prior
return.

rt = σtϵt

σ2
t = α0 + α1r2

t−1

where ϵt is Gaussian.

68 / 77



Example: Combined AR(1) and ARCH(1) Model

AR(1) Model with ARCH(1) Errors:

xt = ϕ0 + ϕ1xt−1 + σtϵt where σt = α0 + α1x2
t−1

Example: US GNP Data

u = sarima(diff(log(gnp)), 1, 0, 0)
acf2(resid(u$fit)^2, 20)

Squared residuals may have some dependence.

library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), diff(log(gnp))))
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Example: Combined AR(1) and ARCH(1) Model
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ARCH Extensions

ARCH(q) Model
Extend the ARCH(1) Model to multiple previous returns:

σ2
t = α0 + α1r2

t−1 + · · ·+ αpr2
t−p = α0 +

q∑
i=1

αi r2
t−i

GARCH(p, q) Model
Variance depends also on prior variances:

σ2
t = ω + α1r2

t−1 + · · ·+ αqr2
t−q

+ β1σ
2
t−1 + · · ·+ βpσ

2
t−p

= ω +

q∑
j=1

αj r2
t−j +

p∑
j=1

βjσ
2
t−j
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GARCH Example – DJIA Returns

library(fGarch)
# Log transform
djiar = diff(log(djia$Close))[-1]
# Fit an AR(1) + GARCH(1,1) model
djia.g <- garchFit(~arma(1,0)+garch(1,1), data=djiar)
# Show summary information
summary(djia.g)
# Different plots available
plot(djia.g, which=3)
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ARCH Example – DJIA Returns [cont’d]
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GARCH Example – DJIA Returns [cont’d]
Results

Estimate Std. Error t value Pr(>|t|)
mu 8.585e-04 1.470e-04 5.842 5.16e-09 ***
ar1 -5.532e-02 2.023e-02 -2.735 0.006238 **
omega 1.610e-06 4.459e-07 3.611 0.000305 ***
alpha1 1.244e-01 1.660e-02 7.496 6.55e-14 ***
beta1 8.700e-01 1.526e-02 57.022 < 2e-16 ***
shape 5.979e+00 7.917e-01 7.551 4.31e-14 ***
---
Log Likelihood:
8249.619 normalized: 3.27756
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Appendix – Basic Time Series Functions in R

filter Filters time series, through moving averages or autoregres-
sion

lag Creates a lagged version of a time series by shifting the time-
base back

diff Creates lagged differences
plot.ts Plot a time series
ts.plot Plot multiple time series
lag.plot Scatterplot of lagged values
acf ACF and plot
ccf CCF and plot
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Appendix – Basic Time Series Functions in R

time Creates the vector or times at which a time series was
sampled

cycle Gives the positions in the cycle of each observation
frequency Number of samples per unit time
ts.intersect Bind time series together that have a common fre-

quency. Restrict to time covered by all series
ts.union Bind time series together that have a common fre-

quency. Pad with NA if necessary
ar Fit an autoregressive model
arima Fit an ARIMA model
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Appendix – Time Series Functions in the astsa library

tsplot Plot a time series

acf1 ACF and plot

ccf2 CCF and plot

sarima Fit seasonal ARIMA models (and nice diagnostic plots)

lag1.plot Scatterplot of lagged values
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