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This Class

What You Will Learn:
▶ Unsupervised Machine Learning

▶ Dimension Reduction using Principal Components Analysis
▶ Clustering
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Based On

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani:
An Introduction to Statistical Learning with Applications in R. 2nd
edition, corrected printing, June 2023. (ISLR2)
https://www.statlearning.com

Chapter 12

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The
Elements of Statistical Learning. 2nd edition, 12th corrected printing,
2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapter 14

Kevin P. Murphy: Probabilistic Machine Learning – An Introduction.
MIT Press 2022.
https://probml.github.io/pml-book/book1.html

Chapters 20, 21

3 / 41

https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html


Principal Components Analysis (PCA)

▶ Create linear combinations of predictors that are:
▶ Maximally variable
▶ Independent of each other

▶ Generally fewer components than predictors
▶ Can be used instead of original predictors in regression or

classification models
▶ Useful when the problem dimensionality is too high (too

many parameters)
▶ Can be interpreted as a regularization method

▶ Useful for visualization to show 2D or 3D summaries of
high-dimensional data
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PCA [cont’d]

https://commons.wikimedia.org/wiki/File:
GaussianScatterPCA.svg

Scatterplot with
Principal
Components

(Eigenvectors of
covariance matrix,
scaled by the
square root of the
corresponding
eigenvalue and
shifted to mean)

5 / 41

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg


PCA [cont’d]

▶ First principal component (PC) for 1 ≤ i ≤ n data values
and p variables:

zi1 = ϕ11xi1 + ϕ21xi2 + · · ·+ ϕp1xip

▶ Loading vector ϕ = (ϕ11, . . . , ϕp1) scaled so that ||ϕ||2 = 1
▶ Assume zero-centered variables
▶ Maximize:

1
n

n∑
i=1

z2
i1 =

1
n

n∑
i=1

 p∑
j=1

ϕj1xij

2

(Variance of zi1)

▶ Subject to:
p∑

j=1

ϕ2
j1 = 1 (Scaling constraint)
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PCA [cont’d]

▶ For further components k , subtract the first k − 1
components from the data X (residualization), then repeat
the maximization

▶ At most as many components as data variables p
▶ Each successive component explains a decreasing

proportion of the variance in the data
▶ Information loss when using fewer components to

represent data

Tips
▶ Scale data prior to PCA
▶ Principle component signs can be ”flipped” (arbitrarily)
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PCA – Example and Biplot

PC1 PC2
Murder .536 -0.418
Assault .583 -0.188
UrbanPop .278 0.873
Rape .543 0.167

Source: ISLR2 Table 12.1
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PCA – Technicalities

▶ Each PC is an eigenvector of the data correlation matrix:

V−1CV = Λ

where V are the eigenvectors, C is the correlation matrix,
and Λ is a diagonal matrix of eigenvalues

▶ The proportion of variance explained fk by each PC k is
proportional to the corresponding eigenvalue λk :

fk =
λk∑p
j=1 λj

▶ The cumulative proportion of variance Fk explained by the
first k PC is then:

Fk =

∑k
j=1 λj∑p

j ′=1 λj ′
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PCA – Screeplot [cont’d]

Choosing the Number of Principal Components
▶ Eigenvalue λ > 1

▶ Cumulative explained variance greater than threshold

▶ Cross-validation to find optimal K (lowest test error) in a linear
regression or classification model

▶ ”Eyeballing” the screeplot
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PCA in R

Use the USArrests dataset that contains data on the arrests
(per 100,000 residents) for various violent crimes as well as the
percentage of urban population in the 50 states of the US.

?USArrests
summary(USArrests)

# PCA using prcomp()
# Scaling is generally a good idea
pca.result <- prcomp(USArrests, scale=TRUE)

# Print the component loadings
pca.result$rotation

# Biplot for components 1 and 2
biplot(pca.result, scale=0)

# Explained variance for each component
pca.result$sdev^2
# Scree plot (both points and lines)
plot(pca.result$sdev^2, type='b')
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PCA in R [cont’d]

Biplot and Screeplot:
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PCA in R [cont’d]

continued . . .

# Proportion of variance explained
pve <- pca.result$sdev^2 / sum(pca.result$sdev^2)

# Cumulative sum of variance explained
plot(cumsum(pve), type='b')

# Eigen-decomposition of correlation matrix
e <- eigen(cor(USArrests))
# Compare values and vectors to prcomp results
e$values
e$vectors

# Print the component scores themselves
# For further use in regression, etc.
head(pca.result$x)
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Hands-On Exercises – PCA

The Boston dataset in the ISLR2 library describes house
prices in the different suburbs of Boston. Use PCA to reduce
the number of dimensions for this dataset:

1 Use the prcomp function to perform a PCA on the
centered and standardized data. Limit yourself to
quantitative inputs.

2 Produce a biplot of the first two components
3 Provide the proportion of variance explained by each

component
4 How many components would you retain? Why? How

much of the total variance would this explain?
5 Based on the loadings, can you ascribe meaning to the

components? What do they represent?
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Hands-On Exercises – PCA

The Harmann74.cor dataset in the datasets library
contains the results of 24 psychological tests given to 145
school children. Use PCA to reduce the number of dimensions
for this dataset:

1 Use the prcomp function to perform a PCA on the
centered and standardized data. Limit yourself to
quantitative inputs.

2 Produce a biplot of the first two components
3 Provide the proportion of variance explained by each

component
4 How many components would you retain? Why? How

much of the total variance would this explain?
5 Based on the loadings, can you ascribe meaning to the

components? What do they represent?
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Hands-On Exercises – PCA

The Hitters dataset in the ISLR2 library contains the salary
of 322 baseball players and season statistics. Use salary as
the target variable and all other numerical variables as
predictors.

1 Use PCA to reduce the number of dimensions for the
predictors.

2 Retain the first principal component.
3 Estimate and cross-validate a regression model using the

first PC as predictor. What is the training and validation
error?

4 Repeat steps (1) to (3), retaining 2, 3, . . . , all components
5 Plot the training and validation error agains the number of

components. Describe and discuss your results.
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Clustering

Goals
▶ Form homogenous subgroups of data
▶ Based on similarity of (or distance between) observations
▶ Discover ”structure” in the data
▶ Clustering observations based on features, or clustering

features based on observations (transpose of data matrix)

K-Means Clustering
▶ Number of clusters K is given

Hierarchical Clustering
▶ Unknown or variable number of clusters
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K-Means Clustering
▶ Minimize within-cluster variation W (Ci):

min
Ci

{
K∑

k=1

W (Ck )

}
▶ Squared Euclidean Distance

▶ Between every pair of observations in the cluster (equation
1)

▶ Between every observation and the cluster centroid
(”mean”) (equation 2)

W (Ck ) =
1

|Ck |
∑

i,i ′∈Ck

p∑
j=1

(xij − xi ′j)
2 (1)

= 2
∑
i∈Ck

p∑
j=1

(xij − µ̄kj)
2 (2)

▶ Only for quantitative variables
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K-Means Clustering

K=2 K=3 K=4

Source: ISLR2 Figure 12.7
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K-Means Clustering – Iterative Cluster Assignment

1 Randomly assign
each observation
to a cluster

2 Iterate until cluster
assignments are
stable

2.1 Compute
cluster means
/ centroid

2.2 Assign each
observation to
cluster with
closest
centroid

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Source: ISLR2 Figure 12.8
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K-Means Clustering – Randomized Starting

▶ Different random
initial starting
clusters lead to
different
(suboptimal)
solutions

▶ Run algorithm
multiple times
and select
solution with
lowest objective
value

320.9 235.8 235.8

235.8 235.8 310.9

Source: ISLR2 Figure 12.9
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K-Means Clustering in R

Simulated example:

# Set RNG seed for replicability
set.seed(2)

# Create a 50 x 2 matrix of random variables
# Normally distributed, with 0 mean and SD=1
x <- matrix(rnorm(n=50*2, mean=0, sd=1), ncol=2)

# Clearly separate the first 25 points by
# shifting their coordinates
x[1:25, 1] <- x[1:25, 1] + 3
x[1:25, 2] <- x[1:25, 2] - 4

# Cluster into 2 clusters, performing
# 20 random starting assignments
km.result <- kmeans(x, 2, nstart=20)
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K-Means Clustering in R [cont’d]

continued . . .

# Results show cluster means, cluster
# assignments, and sums of squares (distances)
# within and between
km.result
# Those values are also available in
# the result object
names(km.result)

# Plot the color-coded points
plot(x, col=(km.result$cluster+1),

main = 'K-Means Clustering Results with K=2',
xlab = '', ylab='', pch=20, cex=2)
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K-Means Clustering in R [cont’d]
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Hands-On Exercises – K-Means Clustering

The Boston dataset in the ISLR2 library describes house
prices in the different suburbs of Boston. Use K-Means
Clustering to identify sets of similar suburbs using only the
numerical variables in the data set.

1 Use the kmeans function to perform a cluster analysis,
using multiple starting assignments. Limit yourself to
quantitative inputs.

2 Use different numbers of clusters k and identify which
value of k gives you the best results. Justify your choice.

3 Scale the data so that each variable has the same
variance or standard deviation, but do not change the
variable means.

4 Repeat the cluster analysis with the best value of k and
compare results.
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Hands-On Exercises – K-Means Clustering

The Hitters dataset in the ISLR2 library contains the salary
of 322 baseball players and season statistics. Use K-Means
Clustering to identify sets of similar players, using only the
numerical variables in the data set.

1 Use the kmeans function to perform a cluster analysis,
using multiple starting assignments. Limit yourself to
quantitative inputs.

2 Use different numbers of clusters k and identify which
value of k gives you the best results. Justify your choice.

3 Scale the data so that each variable has the same
variance or standard deviation, but do not change the
variable means.

4 Repeat the cluster analysis with the best value of k and
compare results.
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Hierarchical Clustering

Bottom-Up / Agglomerative Clustering
1 Begin with n observations and a dissimilarity or distance

metric
2 Treat each observation as its own cluster
3 Repeat n − 2 times:

3.1 Calculate dissimilarities or distances between all pairs
of clusters

3.2 Identify the pair of clusters that are least dissimilar
(most similar)

3.3 ”Fuse” or merge these two clusters
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Hiearchical Clustering

Dendrogram
▶ Shows what clusters were fused at what dissimilarity
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Hierarchical Clustering

Key Decisions
▶ How to measure dissimilarity/distance between

observations?
▶ How to measure dissimilarity between clusters (”linkage”)?
▶ How many clusters should we have?
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Hierarchical Clustering – Common Distance Metrics

Common Distance Metrics or ”Norms”

Taxicab /
Manhattan

||q − p||1
∑

i

|qi − pi |

Euclidean ||q − p||2
√∑

i

(qi − pi)2

Minkowski ||q − p||p

(∑
i

|qi − pi |p
) 1

p

Chebyshev ||q − p||∞ lim
p→∞

(∑
i

|qi − pi |p
) 1

p

= max
i
(|qi − pi |)

||q − p||−∞ lim
p→−∞

(∑
i

|qi − pi |p
) 1

p

= min
i
(|qi − pi |)
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Hierarchical Clustering – Common Distance Metrics

https://commons.wikimedia.org/wiki/File:
Minkowski_distance_examples.svg
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Hierarchical Clustering – Common Linkage Criteria

Common Linkages

Single dSL(G,H) = min
i∈G,i ′∈H

di,i ′

Complete dCL(G,H) = max
i∈G,i ′∈H

di,i ′

Average dAL(G,H) = mean
i∈G,i ′∈H

di,i ′

There are many other linkage functions: https:
//en.wikipedia.org/wiki/Hierarchical_clustering
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Hierarchical Clustering – Common Linkage Criteria

Average Linkage Complete Linkage Single Linkage

Source: ISLR2 Figure 12.14
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Hierarchical Clustering – How Many Clusters?

▶ ”Cut” the dendrogram at a dissimilarity value
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Source: ISLR2 Figure 12.11
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Hierarchical Clustering in R

# The dist() function calculated distances
# according to a variety of metrics/norms
euclid.dist <- dist(x, method='euclidean')
pnorm.dist <- dist(x, method='minkowski', p=3)
manh.dist <- dist(x, method='manhattan')
max.dist <- dist(x, method='maximum')

# Use the hclust() function with a distance metric
hc.complete <- hclust(euclid.dist, method='complete')
hc.single <- hclust(euclid.dist, method='single')
hc.average <- hclust(euclid.dist, method='average')
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Hierarchical Clustering in R [cont’d]

continued . . .

# Plot the dendrograms in a single plot
par(mfrow = c(1, 3))
plot(hc.complete , col='red',

main = "Complete Linkage",
xlab = "", sub = "", cex = .9)

plot(hc.average , col='blue',
main = "Average Linkage",
xlab = "", sub = "", cex = .9)

plot(hc.single , col='green',
main = "Single Linkage",
xlab = "", sub = "", cex = .9)
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Hierarchical Clustering in R [cont’d]
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Hierarchical Clustering in R [cont’d]

Cutting the tree and identifying clusters:

# Cut by number of groups/clusters
cutree(hc.complete, k=4)
# Cut by height (dissimilarity)
cutree(hc.complete, h=6)
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Hands-On Exercises – Hierarchical Clustering

The Boston dataset in the ISLR2 library describes house
prices in the different suburbs of Boston. Use Hierarchical
Clustering to identify sets of similar suburbs using only the
numerical variables in the data set.

1 Use the hclust function to perform a cluster analysis,
exploring different distance metrics and linkage functions.

2 Examine the dendrograms and identify which combination
of distance metric and linkage function gives you the
”cleanest” separation of clusters.

3 How many factors k would you retain?
4 Using this value for k , perform a K-Means Clustering and

compare the results.
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Hands-On Exercises – Hierarchical Clustering

The Hitters dataset in the ISLR2 library contains the salary
of 322 baseball players and season statistics. Use Hierarchical
Clustering to identify sets of similar players, using only the
numerical variables in the data set.

1 Use the hclust function to perform a cluster analysis,
exploring different distance metrics and linkage functions.

2 Examine the dendrograms and identify which combination
of distance metric and linkage function gives you the
”cleanest” separation of clusters.

3 How many factors k would you retain?
4 Using this value for k , perform a K-Means Clustering and

compare the results.

40 / 41



Hands-On Exercises – Hierarchical Clustering

The Auto dataset in the ISLR2 library contains information on
392 vehicles. Use Hierarchical Clustering to identify sets of
similar vehicles, using only the numerical variables in the data
set.

1 Use the hclust function to perform a cluster analysis,
exploring different distance metrics and linkage functions.

2 Examine the dendrograms and identify which combination
of distance metric and linkage function gives you the
”cleanest” separation of clusters.

3 How many factors k would you retain?
4 Using this value for k , perform a K-Means Clustering and

compare the results.
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