
Business 4720 - Class 19
Interpretable Machine Learning – Explainable AI

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 56

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Introduction to Interpetability and Explainability
▶ Model specific and Model agnostic methods
▶ Global explainability
▶ Local explainability

2 / 56

Based On

Molnar, Christoph: Interpretable Machine Learning (2023)

https://christophm.github.io/interpretable-ml-book/

(CC BY-NC-SA License)

3 / 56

https://christophm.github.io/interpretable-ml-book/

Additional Materials

SciKit Learn
A machine learning framework for Python that also provides some
interpretable ML functions.
https://scikit-learn.org/stable/user_guide.html

LIME
A Python package to compute Local Interpretable Model
Explanations (a local model-agnostic method).
https://github.com/marcotcr/lime

SHAP
A Python package to compute Shapley Additive Explanations (a local
model-agnostic interpretation method).
https://shap.readthedocs.io/en/latest/

4 / 56

https://scikit-learn.org/stable/user_guide.html
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/

Tools

Install required Python packages:

pip install statsmodels matplotlib scikit-learn \
PyALE lime shap

5 / 56

Importance of Interpretability

Human understanding of how the AI works and ar-
rives at its results (decisions, predictions, . . .)

▶ Curiosity
▶ Human learning
▶ Human sensemaking of events and phenomena
▶ Knowledge extraction for scientific progress
▶ Safety and compliance assessment
▶ Reliability and robustness evaluation
▶ Identify knowledge limits
▶ Auditability
▶ Bias detection & ensuring fairness
▶ Trust and acceptance
▶ Debugging & failure analysis
▶ Legal obligations (”right to explanation”)

6 / 56

Model Interpretability

Distinctions
▶ Intrinsic ↔ Post-hoc
▶ Local ↔ Global

7 / 56

Intrinsically Interpretable Models

Algorithm Linear Monotone Interaction
Linear regression Yes Yes No
Logistic regression No Yes No
Decision trees No Some Yes
RuleFit Yes No Yes
Naive Bayes No Yes No
k-NN No No No

Source:

https://christophm.github.io/interpretable-ml-book/simple.html

8 / 56

https://christophm.github.io/interpretable-ml-book/simple.html

Linear Regression

Load the bike rental data set
d <- read.csv('https://evermann.ca/busi4720/bike.csv')
Perform the regression and summarize results
summary(lm(cnt~season+temp, data=d))

Results:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3151.02 169.35 18.606 < 2e-16 ***
seasonSPRING -494.15 163.28 -3.026 0.00256 **
seasonSUMMER -852.68 209.82 -4.064 5.35e-05 ***
seasonWINTER -1342.87 164.59 -8.159 1.49e-15 ***
temp 132.79 11.02 12.046 < 2e-16 ***

Residual standard error: 1433 on 726 degrees of freedom
Multiple R-squared: 0.4558, Adjusted R-squared: 0.4528

9 / 56

Linear Regression

▶ Algorithmic transparency: The ordinary least squares
loss function is clear and intuitive; provides optimality
guarantees

▶ Coefficients β
▶ An increase of one unit of a predictor increases the

prediction by β, assuming all other predictors remain the
same (”ceteris paribus”)

▶ Switching from the reference category (see ”contrasts”) to
another category increases the prediction by β, assuming
all other predictors remain the same (”ceteris paribus”)

▶ Intercept is the predicted value when all other predictors
are 0. Is this reasonable?

▶ R2 is the amount of explained variance; model weights
should only be interpreted when R2 reasonable size.

▶ Relative feature importance is given by the t = β̂

SE(β̂)

statistic.

10 / 56

Linear Regression

Dimension reduction to improve interpretability:
▶ Manual feature selection, e.g. based on effect size
▶ Automatic feature selection (forwards or backwards)
▶ Regression with PCA components
▶ Penalized regression with LASSO

Be aware of bias-variance trade-off with all of these.

11 / 56

Decision Trees

Decision Tree Types
▶ Regression trees
▶ Classification trees

Strengths
▶ Intrinsically interpretable and visualizable
▶ Individual predictions explained by path through tree
▶ Captures feature interactions
▶ No need to transform features

Weaknesses
▶ Unstable (high variance)
▶ Tend to overfit
▶ Predictions are piecewise constant

12 / 56

Regression Trees

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Source: ISLR2
Figure 8.3

13 / 56

Regression Trees

1 Recursively divide the predictor space into J distinct and
non-overlapping regions R1,R2, . . . ,Rj

▶ For every predictor j and split point s define regions

R1(j , s) = {X |Xj < s} and R2(j , s) = {X |Xj ≥ s}

▶ Choose j and s to minimize variance in each region:∑
i:xi∈R1(j,s)

(yi − ȳR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ȳR2)
2

2 For every observation that falls into region Rj , prediction is
the mean of the targets of training observations in Rj

14 / 56

Regression Trees

Prepare data:

import matplotlib.pyplot as plt
import pandas as pd
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=d[['temp', 'hum']]
y=d['cnt']

Fit unpruned tree:

from sklearn.tree import DecisionTreeRegressor
regr = DecisionTreeRegressor()
regr.fit(x, y)

Print the MSE:

from sklearn.metrics import mean_squared_error
mean_squared_error(regr.predict(x), y)

15 / 56

Regression Trees

Print the tree:

import sklearn
print (sklearn.tree.export_text(regr, \

feature_names=x.columns))

Plot the tree:

sklearn.tree.plot_tree(regr,
max_depth=2, feature_names=x.columns,
filled=True, fontsize=6)

plt.show()

Early stopping can prevent overfitting and maintain
interpretability:

regr = DecisionTreeRegressor(max_depth=3)
regr = DecisionTreeRegressor(min_samples_leaf=10)
regr = DecisionTreeRegressor(max_leaf_nodes=8)

16 / 56

Regression Trees

17 / 56

Regression Trees

Plot fitted versus true values:

import plotly.express as px
px.scatter(pd.DataFrame([y, regr.predict(x)], \

index=['y', 'yhat']).transpose() \
,x='y', y='yhat').show()

18 / 56

Regression Trees

19 / 56

Hands-On Exercises

Fit regression trees to the bike dataset on the previous slides.
Calculate the MSE, print the decision rules, and plot predicted
versus true values as you vary:
▶ max_depth: choose values 1, 3, 5, 7
▶ min_samples_leaf: choose values 1, 5, 10, 20
▶ max_leaf_nodes: choose values 2, 8, 16, 32

How does the training MSE change? What can you observe
from the plots of predicted versus true values?

20 / 56

Classification Trees

▶ Instead of mean, predict most common class in leaf node.
▶ Instead of MSE, use Gini index G (node purity) to

determine splits:

G =
K∑

k=1

p̂mk (1 − p̂mk)

▶ Instead of Gini index, use Entropy H as loss functions to
determine splits:

H = −
K∑

k=1

p̂mk log p̂mk

▶ Tree pruning using classification error rate

21 / 56

Decision Trees

Further reading:

https://scikit-learn.org/stable/modules/tree.html

https://scikit-learn.org/stable/auto_examples/tree/
plot_unveil_tree_structure.html

https://scikit-learn.org/stable/auto_examples/tree/
plot_cost_complexity_pruning.html

22 / 56

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html
https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html

Global Model Agnostic Methods

▶ Partial dependence plot (PDP)
▶ Individual conditional expectation (ICE) curves
▶ Accumulated local effects plot (ALE)
▶ Feature interaction
▶ Functional decomposition
▶ Permutation feature importance
▶ Global surrogate models
▶ Prototypes

23 / 56

Partial Dependence Plot (PDP)

Marginal effect of one or a few features XS on the outcome,
marginalized (i.e. sum weighted by probability) over all other
(complement) features XC .

f̂S(XS) = EXC

[
f̂ (XS,XC))

]
=

∫
f̂ (XS,XC)p(XC)dXc

Estimated from sample data as:

f̂S(XS) =
1
n

n∑
i=1

f̂ (XS,X
(i)
C)

Shows how the average prediction changes when the focal
predictor is changed (assuming feature independence).

24 / 56

Partial Dependence Plot (PDP)
Read the data set:

import pandas as pd
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=d[['temp', 'hum']]
y=d[['cnt']]

Fit a regression tree:

from sklearn.tree import DecisionTreeRegressor
regr = DecisionTreeRegressor(max_depth=5).fit(x, y)

Show the PDP:

import matplotlib.pyplot as plt
from sklearn.inspection import PartialDependenceDisplay
PartialDependenceDisplay \

.from_estimator(regr, x, [0, 1, (0,1)],
grid_resolution=20)

plt.show()

25 / 56

Partial Dependence Plot (PDP)

26 / 56

Individual Conditional Expectation (ICE) Plot

▶ Instead of the average effect of a feature, shows PDP for
individual samples

▶ Identify individual outlier cases or heterogeneous data

PartialDependenceDisplay \
.from_estimator(regr, x, [0, 1], kind='both')

(Individual samples overlaid due to piece-wise constant regression)

27 / 56

Accumulated Local Effects (ALE) Plot
▶ Effects computed for a grid of intervals (a ”local window”)

(instead of the entire domain, as in PDP)
▶ Does not construct unrealistic feature combinations
▶ Overcomes the problem of correlated features in PDP
▶ Focuses on difference in predictions

ˆ̃fj,ALE(X) =

kj (x)∑
k=1

1
nj(k)

∑
i:x (i)

j ∈Nj (k)

[
f̂ (zk ,j , x

(i)
j)− f̂ (zk−1,j , x

(i)
j)

]

▶ Difference of predictions (in sq brackets) is local to
”neighbourhood” Nj(k) of feature j around observation k

▶ Outer sum accumulates the local effects
Centering the effects to mean 0:

f̂j,ALE(x) =
ˆ̃fj,ALE(x)−

1
n

n∑
i=1

ˆ̃fj,ALE(x
(i)
j)

28 / 56

ALE Plots

Source: Molnar, Fig. 8.7

29 / 56

Accumulated Local Effects (ALE) Plot

Train model:

from sklearn.tree import DecisionTreeRegressor
regr=DecisionTreeRegressor(min_samples_leaf=10).fit(x,y)

Construct the ALE and plot:

import matplotlib.pyplot as plt
from PyALE import ale
ale_effects = ale(X=x, model=regr, \

feature=['temp'], grid_size=50, include_CI=True)
plt.show()

2D feature interactions:

ale_effects = ale(X=x, model=regr, \
feature=['temp', 'hum'], grid_size=50)

plt.show()

30 / 56

Accumulated Local Effects (ALE) Plot

31 / 56

Permutation Feature Importance

Intuition
Calculate the increase in a model’s prediction error when
permuting a feature

1 Estimate model error on original data eorig = L(y , f̂ (X))

2 For each feature j :
▶ For each repetition k in 1 · · ·K :

▶ Generate X perm
j,k by permuting (”randomly shuffling”) values of

feature j
▶ Estimate eperm

j,k = L(y , f̂ (X perm
j,k))

▶ Calculate permutation feature importance as
ij = eorig − 1

K

∑K
k eperm

j,k

Calculate Permutation Feature Importance on test data

32 / 56

Permutation Feature Importance

Prepare data:

import pandas as pd
d=pd.read_csv('https://evermann.ca/busi4720/bike.csv')
x=pd.get_dummies(d.drop(['yr','days_since_2011'],axis=1))
y=x.pop('cnt')

Train model:

from sklearn.tree import DecisionTreeRegressor
regr=DecisionTreeRegressor(min_samples_leaf=10).fit(x,y)

Calculate permutation feature importance and sort them:

from sklearn.inspection import permutation_importance
r = permutation_importance(regr, x, y, n_repeats=30)
r_idx = r.importances_mean.argsort()

33 / 56

Permutation Feature Importance

Produce a nice plot of sorted feature importance:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.boxplot(

r.importances[r_idx].T,
vert=False,
labels=x.columns[r_idx])

ax.axvline(x=0, color="k", linestyle="--")
plt.show()

34 / 56

Permutation Feature Importance

Uncertainty due to multiple permutations (parameter n_repeats)

35 / 56

Global Surrogate Models

Intuition
Predict the predictions of a complex ”black box” model using an
intrinsically interpretable model.

Example ”black box” model:

from sklearn.neural_network import MLPRegressor
regr = MLPRegressor((4, 2,), max_iter=10000)
regr.fit(x, y)
preds = regr.predict(x)

Interpretable, linear model to explain predictions:

from statsmodels.api import OLS
OLS(preds, x).fit().summary()

36 / 56

Global Model Agnostic Methods – Summary

PDP/ICE
Intuitive Limited number of features
Clear interpretation Assumes feature independence
Easy to implement

ALE
Unbiased for correlated features Local interpretation only
Clear interpretation ALE may differ from linear coefficients
Faster to compute than PDP No ICE curves

Unstable for large number of intervals
PFI

Clear interpretation Linked to model error
Concise, global measure Requires access to true targets
Does not require retraining May be biased for correlated features
Takes into account all interactions

Global Surrogate Models
Flexible Conclusions about model, not data
Intuitive Unclear cut-off for goodness of fit
R-squared measure for fit

37 / 56

Local Interpretable Model-Agnostic Explanations

Idea

1 Choose an instance x of interest,

2 Sample instances around it, weight by distance kernel πg ,

3 Construct local interpretable model g

▶ Minimize discrepancy L between g and black-box model f
▶ Penalize by model complexity Ω(g)

ξ(x) = argmin
g∈G

L(f ,g, πx) + Ω(g)

Method

1 Sample instances z ′
i around x ′ (interpretable version of x)

2 Traing interpretable model on features z ′
i , targets f (zi) and

weights πx(zi) (zi is the original version of z ′
i)

38 / 56

LIME – Example

Source: Molnar
Figure 9.5

39 / 56

LIME – Example

▶ Weight function π is often an exponential smoothing kernel
▶ Kernel width is critical determinant of explanation

Source:
Molnar
Figure 9.6

40 / 56

LIME – Example

Using a deep decision tree as ”black box”:

import sklearn.tree
dt = sklearn.tree.DecisionTreeClassifier(max_depth=8)
dt.fit(x, y)

Create the explainer:

import lime, lime.lime_tabular
from sklearn.linear_model import Ridge

explainer = lime.lime_tabular.LimeTabularExplainer(
x.to_numpy(),
feature_names=x.columns,
discretize_continuous = True,
mode='regression',
verbose=True)

41 / 56

LIME – Example

Explain instance number 5:

exp = explainer.explain_instance(
x.to_numpy()[7],
dt.predict,
num_features=5,
num_samples=1000,
distance_metric='euclidean')

exp.as_list()
exp.as_pyplot_figure().show()

42 / 56

LIME for Images

LIME explanations for label ”bagel” and ”strawberries”:

Molnar, Figure 9.8

Python Examples:
https://github.com/marcotcr/lime

Paper:
https://arxiv.org/abs/1602.04938

43 / 56

https://github.com/marcotcr/lime
https://arxiv.org/abs/1602.04938

Shapley Values

Motivation
How much does feature value xj contribute to the overall
prediction compared to the average prediction?

Game Theory
▶ Players cooperate in a coalition and receive a certain profit

from this cooperation.
▶ Method for assigning payouts to players depending on their

contribution to the total payout.

44 / 56

Shapley Values

ϕi(v) =
1
n

∑
S⊆N\{i}

(
n − 1
|S|

)−1

[v(S ∪ {i})− v(S)]

▶ v(S ∪ {i})− v(S): marginal contribution of player i to
coalition of players S

▶
(n−1
|S|

)
: number of possible ways to form a coalition of size

|S| of the set N \ {i} of n−1 players (set N without player i)

45 / 56

Shapley Value

Fairness Properties
▶ Efficiency: Contributions add up to total value
▶ Symmetry: If two players contribute equally to all possible

coalitions, they have the same Shapley value
▶ Dummy: A player that does not contribute at all has a

Shapley value of 0
▶ Additivity: For a game with combined payouts v + w , the

Shapley values of players are ϕ(v) + ϕ(w)

46 / 56

Shapley Values in Interpretable ML

▶ Players are feature values
▶ Coalitions are combinations of feature values
▶ Presence in a coalition means we know the value
▶ Absence from a coalition means we don’t know the value

⇒ integrate/marginalize over all values of all features not in
coalition S

vx(S) =

∫
· · ·

∫
R

f̂ (x1, . . . , xp)dPx ̸∈S − Ex(f̂ (X))

▶ Expensive to compute ⇒ in practice, approximation by
sampling and permuting values (can make for unrealistic
instances when features are correlated)

47 / 56

Shapley Additive Explanations (SHAP)

data

model Prediction (what)

Explanation (why)shap

Paper
https://arxiv.org/abs/1705.07874

Documentation (Intro and Examples)
https://shap.readthedocs.io/en/latest/
index.html

Python Code and Tutorials
https://github.com/shap/shap

48 / 56

https://arxiv.org/abs/1705.07874
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://github.com/shap/shap

SHAP Example

Fit a simple regression model to the California housing dataset:

import sklearn
import shap

X, y = shap.datasets.california(n_points=1000)
model = sklearn.linear_model.LinearRegression()
model.fit(X, y)

Compute the SHAP values:

X100 = shap.utils.sample(X, 100)
explainer = shap.Explainer(model.predict, X100)
shap_values = explainer(X)

49 / 56

SHAP Example

The barplot shows the importance of feature values for an
individual prediction:

shap.plots.bar(shap_values[20])

50 / 56

SHAP Example

The barplot can also show the importance of a feature by
averaging over all instances (and their feature values):

shap.plots.bar(shap_values)

51 / 56

SHAP Example

Waterfall plots explain how feature values combine to produce
an individual prediction:

sha.plots.waterfall(shap_values[20], max_display=14)

52 / 56

SHAP Example

Beeswarm plots explain all feature values for all instances
(represented by a dot):

shap.plots.beeswarm(shap_values)

53 / 56

SHAP Example
The heatmap shows SHAP values of feature values for all
instances, and shows model prediction and global feature
importance in rugs:

shap.plots.heatmap(shap_values)

54 / 56

SHAP for Image Classification

▶ Presence/absence of features/pixels by masking parts of
an image:

Source: https://github.com/shap (MIT License)

55 / 56

https://github.com/shap

SHAP for Text Classification

Source: https://shap.readthedocs.io/en/latest/text_examples.html
(MIT License)

56 / 56

https://shap.readthedocs.io/en/latest/text_examples.html

	Introduction

