
Business 4720 - Class 20
Analytics at Industrial Scale – Big Data Analytics

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 78

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Distributed data storage

▶ Hadoop HDFS
▶ Distributed computation

▶ Hadoop Map-Reduce
▶ Spark

▶ Dataframe operations
▶ Spark SQL
▶ Spark MLLib

2 / 78

Further Reading

Hrishikesh V. Karambelkar (2018) Apache Hadoop 3 Quick
Start Guide. Packt Publishing. Birmingham, UK.

Tom White (2012) Hadoop – The Definitive Guide. 3rd edition.
O’Reilly Media. Sebastopol, California, US.

Bill Chambers and Matei Zaharia (2018) Spark – The Definitive
Guide. O’Reilly Media. Sebastopol, California, US.

Jules Damji et al. (2020) Learning Spark – Lightning-Fast Data
Analytics. 2nd edition. O’Reilly Media. Sebastopol, California,
US.

3 / 78

Big Data

Characterized by any one or more of:
▶ Large volume
▶ Large ”velocity” (volume per time)
▶ Large variety (of data types and sources)

4 / 78

Big Data Example – CERN

”Conseil Europeenne pour la Recherche Nucleaire”
https://www.home.cern/science/computing/data-centre1

Servers ≈ 12000

CPU Cores ≈ 330000

Disks ≈ 220000

Total Disk Space ≈ 950000 TB

DB Transactions per second ≈ 20000

File Transfer Throughput ≈ 500000 Gb/s

1Accessed Feb 23, 2024
5 / 78

https://www.home.cern/science/computing/data-centre

Distributed Data and Distributed Computation

Hadoop
▶ Initial release 2006
▶ Maintained by the Apache Foundation
▶ Inspired by Google File System (GFS) (2003) and Google

MapReduce (2004) for large data management
▶ Early use cases by Yahoo (2009) and Facebook (2012)

drove adoption
▶ Distributes data storage and computation across a cluster

of computers
▶ Data locality means moving computation to data, not data

to computation

6 / 78

Hadoop Benefits

▶ Reliability: Hardware and software failure tolerance
through replication and automatic recovery

▶ Scalability: Dynamically adding and removing storage
nodes and cluster re-balancing (more than 10,000 nodes
in Hadoop 3)

▶ Cost effective: Open source, runs on commodity
hardware, can use heterogenous nodes

▶ Cloud support: Vendors offering turn-key Hadoop
systems

7 / 78

Main Hadoop Components

▶ HDFS: Hadoop Distributed File System
▶ MapReduce: Software framework for processing large

data volumes
▶ YARN: Yet Another Resource Negotiator (cluster and

compute job manager)

https://commons.wikimedia.org/wiki/File:Apache_Hadoop.png

8 / 78

https://commons.wikimedia.org/wiki/File:Apache_Hadoop.png

HDFS Principles

▶ Streaming data access: Data is written and read linearly,
processed one item at a time

▶ Large datasets: Multiple gigabytes or terabytes, hundreds
of computers per clusters, millions of files per node

▶ Write once: Files once written are only read or appended
to

▶ Moving computation is cheaper than moving data:
Move compute applications to the server that stores the
data

9 / 78

HDFS Architecture

Source: Apache Foundation (https://hadoop.apache.org/docs/)

10 / 78

https://hadoop.apache.org/docs/

HDFS Architecture

NameNode
▶ One NameNode per cluster (plus sercondary/backup)
▶ Manages file namespace (sub-directories, file names, etc.)
▶ Regulates access to files
▶ Provides file operations such as opening, closing,

renaming, etc.

DataNode
▶ Files are split into blocks stored on DataNodes
▶ DataNodes handle read and write requests of clients
▶ DataNodes perform block operations for file operations by

NameNode

11 / 78

Working with HDFS

Use the hdfs dfs command to insteract with the distributed
file system. The commands are similar to the regular Linux
commands to interact with files.

hdfs dfs -cat Print a file to standard output

hdfs dfs -cp Copy a file or directory

hdfs dfs -df Display free space

hdfs dfs -du Display disk usage

hdfs dfs -get Copy files to the local file system

hdfs dfs -head Print the first kilobyte of a file

hdfs dfs -ls List files and directories

12 / 78

Working with HDFS [cont’d]

Continued . . .

hdfs dfs -mkdir Make a directory

hdfs dfs -mv Move a file or directory

hdfs dfs -put Copy files from the local file system

hdfs dfs -rm Remove files or directories

hdfs dfs -rmdir Removes a directory

hdfs dfs -tail Print the last kilobyt of a file

hdfs dfs -concat Concatenate existing files into a target file

13 / 78

Working with HDFS – Examples

Start the Hadoop cluster NameNode, DataNode, and YARN
service:

sudo systemctl start hadoop.service

Download an event log file:

wget https://evermann.ca/busi4720/eventlog.short.log

Put the event log on to the Hadoop Distributed File System:

hdfs dfs -put eventlog.short.log

Display the start and end of it:

hdfs dfs -head eventlog.short.log
hdfs dfs -tail eventlog.short.log

14 / 78

Working with HDFS – Examples [cont’d]

Show disk usage and disk free space:

hdfs dfs -du
hdfs dfs -df

Copy the event log:

hdfs dfs -cp eventlog.short.log eventlog.copy.log

List all files:

hdfs dfs -ls

Web Interface
▶ NameNode overview at http://localhost:9870
▶ HDFS explorer at

http://localhost:9870/explorer.html#/

15 / 78

http://localhost:9870
http://localhost:9870/explorer.html#/

MapReduce

What is it?
▶ Programming model for parallel processing of data
▶ Move computation to data nodes

Strengths
▶ Massively parallelizable
▶ Conceptually simple: Only 2 types of functions

Drawbacks
▶ Disk limited: Intermediate results are written to disk
▶ Stateless functions only
▶ Non-iterative, acyclic dataflow programs only

16 / 78

MapReduce – Basic Steps

1 Map
▶ Reads key–value pairs of input2
▶ For each input key and value, outputs a list of key–value

pairs

Map : (key1, value1) → list(key2, value2)

2 Shuffle
▶ Distributes data based on keys produced by map
▶ All values for the same key are sent to the same reducer

3 Reduce
▶ Processes all values for a given key
▶ For each input key and its values, outputs a list of

key–value pairs

Reduce : (key2, list(value2)) → list(key3, value3)

2By default, for text input, each line is a key–value pair, separated by the
first tab character

17 / 78

MapReduce on Hadoop – YARN cluster manager

▶ Submit an application (set of jobs) to Resource Manager
▶ Application Master tracks status of jobs and tasks
▶ Tasks distributed to nodes
▶ Node Managers manage local resources

https://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/yarn_architecture.gif
18 / 78

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif

MapReduce on Hadoop

▶ Specify input directory
▶ Data in multiple data files
▶ Data files are stored in blocks distributed across cluster

▶ One map job is executed for each input block
▶ Map jobs are executed on node where input block is located
▶ Necessary program files are sent to each node if necessary
▶ Map output is moved to nodes for reduce job (”shuffle”)

▶ Execute a reduce job on every node for maximum
parallelization

19 / 78

MapReduce Example – Word Count

▶ Hadoop MapReduce is programmed in Java
▶ Hadoop Streaming allows mappers and reducers as

executable programs (e.g. in Python)

The Mapper:

#!/usr/bin/env python
import sys

for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:

print ('{}\t{}'.format(word, 1))

20 / 78

MapReduce Example – Word Count [cont’d]

The Reducer:

#!/usr/bin/env python
import sys

word_counts = dict()

for line in sys.stdin:
word, count = line.split('\t', 1)
count = int(count)

if word not in word_counts:
word_counts[word] = count

else:
word_counts[word] = word_counts[word] + count

for word, count in word_counts.items():
print('{}\t{}'.format(word, count))

21 / 78

MapReduce Example – Word Count [cont’d]

Try it locally:

wget https://evermann.ca/busi4720/map.py
wget https://evermann.ca/busi4720/reduce.py
wget https://evermann.ca/busi4720/hamlet.txt
chmod +x *.py

Run the mapper and view its output:

cat hamlet.txt | ./map.py > map.out
less map.out

Run the reducer and view its output:

cat map.out | ./reduce.py > reduce.out
sort -k2 -rn reduce.out | less

22 / 78

MapReduce Example – Word Count [cont’d]

Put the text file on the HDFS:

hdfs dfs -mkdir hamlet
hdfs dfs -put hamlet.txt hamlet
hdfs dfs -ls hamlet

Run the MapReduce job on the Hadoop cluster:

mapred streaming \
-input hamlet -output hamlet.out \
-mapper map.py -reducer reduce.py \
-file map.py -file reduce.py

Examine the results:

hdfs dfs -ls hamlet.out
hdfs dfs -get hamlet.out/part-*
cat part-* | sort -k2 -rn | less

23 / 78

MapReduce Use Case – Scalable Process Discovery

1 α-Miner
▶ 2 MapReduce phases

2 Flexible Heuristic Miner
▶ 5 MapReduce phases

▶ Random process, 47 activity types
▶ 5 million traces, 80GB event logs
▶ Three cluster sizes:

1 Single node cluster, 2 CPUs
2 10-Node cluster, 2 CPUs each
3 10-Node cluster, 10 CPUs each

Source: Evermann, J. (2016) Scalable Process Discovery using
Map-Reduce. IEEE TSC, 9 (3), 469-481.
https://doi.org/10.1109/TSC.2014.2367525

24 / 78

https://doi.org/10.1109/TSC.2014.2367525

Example – Flexible Heuristic Miner MapReduce
Pipeline

▶ Keys and values can be complex
▶ Define a comparison function to shuffle

map1:(Int ,Text) → set(CaseID, (Event ,TimeStamp))

shuffle1:set(caseID, (Event ,TimeStamp)) → (CaseID, set(Event ,TimeStamp))

reduce1:(CaseID, set(Event ,TimeStamp)) → set((Event ,Event), (Int ,Bool, Int))

combine2:set((Event ,Event), (Int ,Bool, Int)) → set((Event ,Event , (Int ,Bool, Int))

reduce2:((Event ,Event), set(Int ,Bool, Int)) → set(c, (Event ,Event , Int ,Float))

reduce3:set(c, (Event ,Event), set(Int ,Float)) → set(c, (Event ,Event))

map4:(Int ,Text) → set(CaseID, (Event ,TimeStamp))

shuffle4:set(CaseID, (Event ,TimeStamp)) → (CaseID, set(Event ,TimeStamp))

reduce4:(CaseID, set(Event ,TimeStamp)) → set((Event , set(Event),Bool), Int)

reduce5:((Event , set(Event),Bool), set(Int)) → ((Event , set(Event),Bool), Int)

25 / 78

MapReduce Use Case – Results

Source: Evermann, J. (2016) Scalable Process Discovery using Map-Reduce. IEEE
TSC, 9 (3), 469-481. https://doi.org/10.1109/TSC.2014.2367525

α Algorithm
Single node 25:00 hours
Medium cluster 1:24 hours
Large cluster 0:08 hours

FHM
Single node 22:21 hours
Medium cluster 2:01 hours
Large cluster 0:17 hours

26 / 78

https://doi.org/10.1109/TSC.2014.2367525

Apache Pig

https://en.wikipedia.org/
wiki/File:

Apache_Pig_Logo.svg

▶ High-level programming
▶ Pig Latin language
▶ Pig Latin programs run as MapReduce

jobs on Hadoop
▶ Procedural, not declarative (SQL)

https://pig.apache.org/docs/
latest/basic.html

27 / 78

https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://en.wikipedia.org/wiki/File:Apache_Pig_Logo.svg
https://pig.apache.org/docs/latest/basic.html
https://pig.apache.org/docs/latest/basic.html

Apache Pig Latin Example – Word Count

input_lines = LOAD 'hamlet.txt' AS (line:chararray);
-- Extract words from each line and put them into
-- a pig bag datatype, then flatten the bag to get
-- one word on each row
words = FOREACH input_lines \

GENERATE FLATTEN(TOKENIZE(line)) AS word;
-- create a group for each word
word_groups = GROUP words BY word;
-- count the entries in each group
word_count = FOREACH word_groups \

GENERATE COUNT(words) AS count, group AS word;
-- order the records by count
ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO 'hamlet.out';

Source: https://en.wikipedia.org/wiki/Apache_Pig

28 / 78

https://en.wikipedia.org/wiki/Apache_Pig

Apache Pig Latin – Relational Operators

LOAD STORE DUMP

FILTER DISTINCT FOREACH . . . GENERATE

SAMPLE JOIN GROUP

CROSS ORDER LIMIT

UNION SPLIT

29 / 78

Apache Hive

https://commons.wikimedia.org/
wiki/File:Apache_Hive_logo.svg

▶ Data warehouse
▶ HiveQL similar to SQL
▶ Translate HiveQL to run as

MapReduce jobs on Hadoop

https://cwiki.apache.org/
confluence/display/Hive/
LanguageManual

30 / 78

https://commons.wikimedia.org/wiki/File:Apache_Hive_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Hive_logo.svg
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

HiveQL Example – Word Count

DROP TABLE IF EXISTS docs;
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'hamlet.txt'
OVERWRITE INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\s'))

AS word FROM docs) temp
GROUP BY word
ORDER BY word;

Source: https://en.wikipedia.org/wiki/Apache_Hive

31 / 78

https://en.wikipedia.org/wiki/Apache_Hive

Apache Spark

https://commons.wikimedia.org/

wiki/File:Apache_Spark_logo.svg

▶ Origin at UC Berkeley in 2009
▶ Donated to Apache Software

Foundation in 2013
▶ Quickly adopted due to

performance advantages over
MapReduce

▶ Builds on Hadoop HDFS and
YARN

▶ Can use other file storage (S3,
Azure, etc.) and cluster
managers (Mesos, Kubernetes,
etc.)

32 / 78

https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg

Apache Spark – Characteristics

▶ In-Memory Processing with spill-over to disk

▶ Efficiency and much faster processing speed compared to
MapReduce.

▶ Integration with Hadoop and its components

▶ Unified Engine for batch processing, real-time streaming,
machine learning, and graph processing

▶ Advanced Analytics for machine learning, graph processing,
SQL and structured data processing

▶ Language Support for Java, Scala, Python, and R

▶ Scalability from a single server to thousands of nodes.

▶ Fault Tolerance through execution engine that provides
”lineage” information to recompute lost data

▶ Ease of Use allows quicker development than Hadoop’s
MapReduce.

33 / 78

Apache spark – Main Components

https://commons.wikimedia.org/wiki/File:

Sch%C3%A9ma_d%C3%A9tail_outils_spark.png

34 / 78

https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_d%C3%A9tail_outils_spark.png
https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_d%C3%A9tail_outils_spark.png

Apache Spark – Cluster Overview

https://spark.apache.org/docs/latest/img/cluster-overview.png

35 / 78

https://spark.apache.org/docs/latest/img/cluster-overview.png

Apache Spark – Spark on Hadoop

▶ YARN manages resources for Spark applications
▶ Spark RDD partitions correspond to HDFS blocks
▶ Spark is location aware, schedules job execution on nodes

close to data
▶ Two layers of fault tolerance: HDFS replication and Spark

RDD lineage

36 / 78

Apache Spark – Data Abstractions

1 RDD (”Resilient Distributed Dataset”)

▶ Dependencies: Data ”lineage” information; how the RDD is
computed; may be used to reconstruct an RDD

▶ Partitions: Split data among executors; parallelize
computation, with location info

▶ Low-level programming interface focused on MapReduce
▶ Procedural, no query optimization

2 DataFrame

▶ Inspired by Pandas and R data frames
▶ Builds on RDD
▶ Named columns with data types
▶ High-level programming interface
▶ Immutable
▶ Declarative, query optimization (”Catalyst” query optimizer)

3 Dataset

▶ Strongly typed variant of DataFrame for Java and Scala

37 / 78

Apache Spark – Execution Principles

Transformations
▶ Transform a DataFrame into another DataFrame without

altering the original (immutability)
▶ Examples: map(), select(), filter(), groupBy(),

orderBy(), join()
▶ Recorded in data lineage
▶ Lazy evaluation: Delay execution until action is invoked;

allows query optimization

Actions
▶ Returns a result or writes result to storage
▶ Does not produce another DataFrame
▶ Examples: collect(), count(), show(), take()
▶ Triggers execution of transformations

38 / 78

Apache Spark – Basics

Start the local Hadoop cluster (if not already running) and the
PySpark console:

sudo systemctl start hadoop.service
pyspark --master yarn

Read a file from HDFS and get some statistics:

textFile = spark.read.text(\
'hdfs://localhost:9000/user/busi4720/hamlet.txt')

Number of lines
textFile.count()
First row
textFile.first()
How many lines contain the word Hamlet?
textFile \

.filter(textFile.value.contains("Hamlet")) \

.count()

39 / 78

Apache Spark – Basics [cont’d]

Word count example in Pyspark:

Import useful functions from Spark SQL:
from pyspark.sql import functions as sf

wordCounts = textFile \
.select(sf.explode(sf.split(textFile.value, "\s+")) \

.alias("word")) \
.groupBy("word") \
.count() \
.orderBy("count")

wordCounts.collect()

40 / 78

Apache Spark – Basic Transformations and Actions

Transformations (PySpark)

select() filter() where()

withColumn() groupBy() sort()

distinct() drop() cov()

orderBy() withColumnRenamed() union()

join()

Actions (PySpark)

show() collect() take()

count() head() tail()

write.csv() toPandas()

41 / 78

Apache Spark – Schemas and DataFrames

Schema describes the columns of data frames and their types.
▶ No need for Spark to infer types
▶ No need for Spark to read data to infer schema
▶ Error detection when reading data

Define a schema using Spark schema DDL:

logSchema = \
'caseID STRING, \
activity STRING, \
ts TIMESTAMP'

Spark DDL Data Types

STRING TINYINT SMALLINT INT

BIGINT BOOLEAN FLOAT DOUBLE

DATE DECIMAL TIMESTAMP BINARY

STRUCT ARRAY MAP

42 / 78

Apache Spark – Schemas and DataFrames

Read the data from HDFS into a data frame:

fname='hdfs://localhost:9000/user/busi4720/\
eventlog.short.log'

data = spark.read \
.format('csv') \
.option('delimiter', '\t') \
.option('header', 'false') \
.schema(logSchema) \
.load(fname)

Query the schema, count rows, show 5 rows, and a summary:

data.printSchema()
data.count()
data.show(5)
data.summary().show()

43 / 78

Apache Spark – SQL

Register a data frame as a temporary SQL table (”view”):

data.createOrReplaceTempView('log')

Alternatively, create a permanent SQL table:

data.write.saveAsTable('log_table')

Query the SQL table, will return a data frame:

result_df = spark.sql('select * from log limit 5')
result_df.show()

44 / 78

Apache Spark – SQL

Create a Directly-Follows-Graph (DFG) from a log. Define the
SQL Query:

sql_query = \
'SELECT COUNT(*), l1.activity AS activity1, \
l2.activity AS activity2, AVG(l2.ts - l1.ts) AS dtime \
FROM log AS l1 JOIN log AS l2 ON l1.caseid=l2.caseid \
WHERE l2.ts = (SELECT MIN(ts) FROM log l3 \
WHERE l3.caseid=l1.caseid AND l3.ts > l1.ts) \
GROUP BY GROUPING SETS((l1.activity, l2.activity))'

Run the query, show the results and explain the query plan:

dfg = spark.sql(sql_query)
dfg.count()
dfg.show()

dfg.explain(mode='formatted')
dfg.explain(True)

45 / 78

Apache Spark – SQL

Run as self-contained application:

Download file
wget https://evermann.ca/busi4720/spark_dfg.py
Submit to Spark/Hadoop cluster
spark-submit --master yarn spark_dfg.py \
hdfs://localhost:9000/user/busi4720/eventlog.short.log

Result will be written to HDFS.

Job Tracker
Use Hadoop Job Tracker at https://localhost:8088 to

track status of nodes and progress of jobs.

46 / 78

https://localhost:8088

Apache Spark – Compare to PostgreSQL

psql

Create table and read data from CSV file:

CREATE TABLE log(
caseId VARCHAR(20),
activity VARCHAR(10),
ts TIMESTAMP);

\COPY log FROM 'eventlog.short.log'
WITH DELIMITER E'\t';

Execute query:

SELECT COUNT(*), l1.activity, l2.activity,
AVG(l2.ts - l1.ts) AS dtime
FROM log AS l1 JOIN log AS l2 ON l1.caseid=l2.caseid
WHERE l2.ts = (SELECT MIN(ts) FROM log l3
WHERE l3.caseid=l1.caseid AND l3.ts > l1.ts)
GROUP BY (l1.activity, l2.activity);

47 / 78

Apache Spark – ML

Spark ML Frameworks
▶ Spark.mllib: RDD focused, maintenance only
▶ Spark.ml: Dataframe focused, actively developed

Spark ML Techniques
▶ Supervised: Classification, Regression
▶ Unsupervised: Clustering, Principal Component Analysis,

etc.

48 / 78

Apache Spark – ML Pipelines

▶ Transformers: Accept a dataframe, execute
transform() method, return a dataframe

▶ Estimators: Accept a dataframe, execute fit() method,
return a transformer

https://spark.apache.org/docs/latest/ml-pipeline.html

49 / 78

https://spark.apache.org/docs/latest/ml-pipeline.html

Apache Spark – Selection of available ML Models

Classification

Logistic regression Decision trees Random forests

Gradient-boosted trees Multilayer perceptron Support vector machines

Naive bayes

Regression

Linear regression Generalized linear regression

Decision tree regression Random forest regression

GBT regression Survival regression

Unsupervised

K-means clustering Principal components

50 / 78

Apache Spark – ML Example

Full example at
https://evermann.ca/busi4720/spark_ml.py

Run as self-contained application:

Download file
wget https://evermann.ca/busi4720/spark_ml.py
Submit to Spark/Hadoop cluster
spark-submit --master yarn spark_ml.py \

hdfs://localhost:9000/user/busi4720/mushrooms.csv

Job Tracker
Use Hadoop Job Tracker at https://localhost:8088 to

track status of nodes and progress of jobs.

51 / 78

https://evermann.ca/busi4720/spark_ml.py
https://localhost:8088

Apache Spark – ML Example

Get the dataset:

wget https://evermann.ca/busi4720/mushrooms.csv
hdfs dfs -put mushrooms.csv

https://archive.ics.uci.edu/dataset/848/secondary+mushroom+dataset
CC-BY 4.0 license

Define the schema:

the_schema = 'class STRING, `cap-diameter` DOUBLE, \
`cap-shape` STRING, `cap-surface` STRING, \
`cap-color` STRING, `does-bruise-or-bleed` STRING, \
`gill-attachment` STRING, `gill-spacing` STRING, \
`gill-color` STRING, `stem-height` DOUBLE, \
`stem-width` DOUBLE, `stem-root` STRING, \
`stem-surface` STRING, `stem-color` STRING, \
`veil-type` STRING, `veil-color` STRING, \
`has-ring` STRING, `ring-type` STRING, \
`spore-print-color` STRING, habitat STRING, \
season STRING'

52 / 78

https://archive.ics.uci.edu/dataset/848/secondary+mushroom+dataset

Apache Spark – ML Example

Load data:

fname='hdfs://localhost:9000/user/busi4720/\
mushrooms.csv'

data = spark.read \
.format('csv') \
.option('delimiter', ',') \
.option('header', 'true') \
.schema(the_schema) \
.load(fname)

data = data.drop('veil-type')
data = data.fillna('NULL')

53 / 78

Apache Spark – ML Example

Import all required pieces:

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import StandardScaler, \

StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.evaluation \

import BinaryClassificationEvaluator
from pyspark.ml import PipelineModel

Create the necessary transformers for the pipeline. Collect all
numerical features:

numFeatures = VectorAssembler(
inputCols = ['cap-diameter', 'stem-width',

'stem-height'],
outputCol = 'numFeatures')

scaler = StandardScaler(inputCol='numFeatures',
outputCol='numFeaturesS')

54 / 78

Apache Spark – ML Example

Encode categorical variables as one-hot (dummy variables):

categoricalCols = \
[name for (name, dtype) in data.dtypes \

if dtype=='string']
indexOutputCols = \

[x + 'index' for x in categoricalCols]
oheOutputCols = \

[x + 'ohe' for x in categoricalCols]

stringIndexer = StringIndexer(
inputCols = categoricalCols,
outputCols = indexOutputCols,
handleInvalid='skip')

oheEncoder = OneHotEncoder(
inputCols = indexOutputCols,
outputCols = oheOutputCols)

55 / 78

Apache Spark – ML Example

Assemble all features into a feature vector:

vecAssembler = VectorAssembler(
inputCols = oheOutputCols+['numFeaturesS'],
outputCol = 'feature_vec')

Encode the target classes as numbers:

stringIndexTarget = StringIndexer(
inputCols = ['class'],
outputCols = ['classIndex'],
handleInvalid='skip')

Create the classification estimator:

logReg = LogisticRegression(
featuresCol = 'feature_vec',
labelCol = 'classIndex')

56 / 78

Apache Spark – ML Example

Put all components into the pipeline:

pipeline = Pipeline(stages=[
numFeatures,
scaler,
stringIndexer,
oheEncoder,
vecAssembler,
stringIndexTarget,
logReg])

57 / 78

Apache Spark – ML Example

Create train/test data split:

train_data, test_data = \
data.randomSplit([.66, .33], seed=1)

Fit the model to the training data:

pipelineModel = pipeline.fit(train_data)

Summary of the training data:

summary = pipelineModel.stages[-1].summary
summary.accuracy
summary.areaUnderROC
summary.fMeasureByThreshold.show()
summary.precisionByLabel
summary.recallByLabel
summary.roc.show()

58 / 78

Apache Spark – ML Example
Fitted estimators (including whole pipelines) become
transformers. Predict for both training and testing data:

trainPred = pipelineModel.transform(train_data)
testPred = pipelineModel.transform(test_data)

Evaluate the model using AUC:

evaluator = BinaryClassificationEvaluator(
labelCol='classIndex')

evaluator.evaluate(trainPred)
evaluator.evaluate(testPred)

Save the fitted model for later re-use:

pipelineModel.write().overwrite().save('myFirstModel')

Load a saved model:

savedModel = PipelineModel.load('myFirstModel')

59 / 78

Stream Analytics

▶ Network (”directed acyclic graph”) of nodes
▶ Ingest records, process records, emit records
▶ Record-by-record processing
▶ Low latencies
▶ Resource intensive

Example Use Cases
▶ Customer click-stream analysis for real-time pricing
▶ Machine sensor data for failure warnings/alarms
▶ Financial/payments transaction fraud monitoring
▶ Market data anlytics, news monitoring
▶ Activity records for process compliance monitoring
▶ . . .

60 / 78

Process Discovery with Streaming Data

▶ Flexible Heuristics Miner
▶ Activity completion records
▶ Record-by-record processing
▶ 57,000 – 160,000 traces per min
▶ 2,000,000 – 5,500,000 events per min
▶ 5 16-core, 32GB nodes

Source: Evermann, J., Rehse, J.-R., and Fettke, P.: Process Discovery from
Event Stream Data in the Cloud - A Scalable, Distributed Implementation of
the Flexible Heuristics Miner on the Amazon Kinesis Cloud Infrastructure.
CloudBPM Workshop on Business Process Monitoring and Performance
Analysis in the Cloud at the 8th IEEE International Conference on Cloud
Computing Technologies and Science (CloudCom 2016) .

61 / 78

Process Discovery with Streaming Data

▶ Implemented on AWS Kinesis
▶ Directed acyclic graph (DAG)
▶ Multiple event generators
▶ Multiple record streams
▶ Stream is queue with ”Put” and

”Read” operations
▶ Streams contain multiple

”shards” (same keys)
▶ Multiple threads/executors per

shard (key)

62 / 78

Process Discovery with Streaming Data

Performance Results:

63 / 78

Apache Spark – Stream Analytics

Principles
▶ Micro-batches
▶ Data stream as unbounded dataframe/table
▶ Unified programming model for batch and stream

processing
▶ Support for time windows
▶ Wide range of input sources and output destinations
▶ Optimized stateful stream transformations and

aggregations

64 / 78

Apache Spark – Stream Analytics

https://spark.apache.org/docs/latest/img/streaming-arch.png

https://spark.apache.org/docs/latest/img/streaming-flow.png

65 / 78

https://spark.apache.org/docs/latest/img/streaming-arch.png
https://spark.apache.org/docs/latest/img/streaming-flow.png

Apache Spark – Stream Analytics

https://spark.apache.org/docs/latest/img/
structured-streaming-stream-as-a-table.png

66 / 78

https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png
https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png

Apache Spark – Stream Analytics

Triggering
▶ Micro-batch (process next batch when prior batch

completed)
▶ Time trigger
▶ Once
▶ Continuous

Output Modes
▶ Append: Assume older output remains valid
▶ Update: Change parts of older output (requires appropriate

output destination, e.g. PostgreSQL, but not HDFS)
▶ Complete: Replace/overwrite older output

67 / 78

Apache Spark – Stream Analytics

Import all necessary functions and get a Spark Session:

from pyspark.sql.functions import \
explode, split, col, desc, \
window, current_timestamp

Create the stream reader to read from a network socket:

lines = spark.readStream \
.format('socket') \
.option('host', 'localhost') \
.option('port', 9999) \
.load()

lines is a DStream.

The stream reader opens a client socket, i.e. the socket must
already be opened for writing.

68 / 78

Apache Spark – Stream Analytics

Define processing of lines:

words = lines.select(explode(split(col('value'), \
'\\s')).alias('word'))

words is another DStream, connected to lines

https:

//spark.apache.org/docs/latest/img/streaming-dstream-ops.png

69 / 78

https://spark.apache.org/docs/latest/img/streaming-dstream-ops.png
https://spark.apache.org/docs/latest/img/streaming-dstream-ops.png

Apache Spark – Stream Analytics

Define processing of words:

counts = words.groupBy('word') \
.count() \
.sort(desc('count'))

counts is another Dstream, connected to words

Define the output writer with output mode and processing
trigger:

writer = counts.writeStream \
.format('console') \
.outputMode('complete') \
.trigger(processingTime='5 second') \
.option('checkpointLocation', \

'hdfs://localhost:9000/user/busi4720/')

70 / 78

Apache Spark – Stream Analytics

https://spark.apache.org/docs/latest/img/
structured-streaming-example-model.png

71 / 78

https://spark.apache.org/docs/latest/img/structured-streaming-example-model.png
https://spark.apache.org/docs/latest/img/structured-streaming-example-model.png

Apache Spark – Stream Analytics

First, open a server socket from the shell using nc:

nc -kl 9999

Start the processing by starting the writer. This returns a
streaming query object that provides progress information.
”start()” is a non-blocking operation:

streamingQuery = writer.start()

72 / 78

Apache Spark – Stream Analytics

Get progress information through the lastProgress attribute
of the query:

print(streamingQuery.lastProgress)

Stop the processing by calling stop() on the query object:

streamingQuery.stop()

73 / 78

Apache Spark – Stream Analytics

Fault Tolerance
▶ Checkpointing of state
▶ ”End-to-end exactly-once” guarantees

▶ Replayable sources
▶ Deterministic computations
▶ Destination that can identify duplicates

74 / 78

Apache Spark – Stream Analytics

Time Windowing

words = lines.select(explode(split(col('value'), \
'\\s')).alias('word')) \
.withColumn('eventTime', current_timestamp())

counts = words \
.groupBy('word', \

window('eventTime', '1 minute', '30 second')) \
.count() \
.sort(desc('count'))

75 / 78

Apache Spark – Stream Analytics

https://spark.apache.org/docs/latest/img/
structured-streaming-window.png

76 / 78

https://spark.apache.org/docs/latest/img/structured-streaming-window.png
https://spark.apache.org/docs/latest/img/structured-streaming-window.png

Apache Spark – Stream Analytics

1 Streaming ML Learning
▶ Streaming Linear Regression
▶ Streaming Logistic Regression
▶ Streaming KMeans

2 Streaming ML Prediction
▶ From off-line trained models

77 / 78

Apache Spark – Further Reading

Quick Start
https://spark.apache.org/docs/latest/quick-start.html

SQL, DataFrames and Datasets
https://spark.apache.org/docs/latest/

sql-programming-guide.html

Structured Streaming
https://spark.apache.org/docs/latest/

structured-streaming-programming-guide.html

Machine Learning
https://spark.apache.org/docs/latest/ml-guide.html

Last accessed on March 8, 2024

78 / 78

https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/ml-guide.html

	Introduction

