
Business 4720 - Class 4
Querying Graph and Document Databases

Joerg Evermann

Faculty of Business Administration
Memorial University of Newfoundland

jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg
Evermann. This material is licensed to you under the Creative Commons

by-attribution non-commercial license (CC BY-NC 4.0)

1 / 37

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This Class

What You Will Learn:
▶ Querying Property Graphs with Neo4J and Cypher

2 / 37

Use Cases

▶ Fraud detection
▶ IT infrastructure monitoring
▶ Recommender engines
▶ Master data management
▶ Social media and social network analytics
▶ Supply chain management
▶ Financial services
▶ Life sciences

3 / 37

Graph Query Languages

▶ SPARQL SPARQL Protocol and RDF Query Language
(W3C, 2008, 2013)

▶ Gremlin (Apache Tinkerpop 2009, 2023)
▶ Cypher (Neo4J 2011, openCypher 2015)
▶ GraphQL (Facebook, 2015, 2021)
▶ GQL (ISO/IEC, forthcoming 2023)

4 / 37

Graph Analytics with Neo4J and Cypher

▶ Neo4J Community Edition installed in course virtual
machine

▶ Browse to http://localhost:7474

▶ Username neo4j password busi4720

5 / 37

http://localhost:7474

Neo4J Property Graphs

Nodes
▶ May be labelled with zero, one or more labels
▶ Labels group nodes into sets
▶ Can have key–value pairs (”properties”)

Relationships
▶ Directed, named connection between two nodes
▶ Typed with one relationship type
▶ Can have key–value pairs (”properties”)
▶ Can be navigated in any direction

Path
▶ Sequence of alternating nodes and relationships
▶ Starts and ends at a node

6 / 37

The Cypher Language

Basic Ideas
▶ Declarative (styled after SQL)
▶ Pattern matching (styled after SPARQL)
▶ Cypher query has multiple clauses (”query pipelines”)
▶ Read and write in a single Cypher statement
▶ Queries must return data

7 / 37

Cypher and Graph Concepts

https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

8 / 37

https://neo4j.com/docs/getting-started/_images/sample-cypher.svg

Cypher Syntax

Graph Nodes
(variable : Label)

▶ Optional variable name, optional label

Relationships
() - [variable : Label] - ()
() - [variable : Label] -> ()
() <- [variable : Label] - ()

() - - ()
() - ->()
()<- - ()

▶ Optional variable name, optional label
▶ Directionality matters for querying and must match that of

the relationship as created

9 / 37

Cypher Syntax [cont’d]

Node Properties
(v:L { propertyName: propertyValue })

Relationship Properties
[r:L { propertyName: propertyValue }]

Pattern
(n1:L1 {p1:v1})-[r:L2 {p2:v2}]->(n2:L2 {p3:v3 })

▶ Can be complex or simple

▶ Must be used with a keyword like MATCH for querying or like
CREATE or MERGE for data definition

10 / 37

Defining Graphs in Cypher

https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

11 / 37

https://neo4j.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

Defining Graphs in Cypher

MERGE (j:Person {name: 'John'})
ON CREATE SET j.age = 27

MERGE (s:Person {name: 'Sally'})
ON CREATE SET s.age = 32

MERGE (b:Book {title: 'Graph Databases'})
ON CREATE SET b.authors = ['Jim Webber', 'Ian Robinson']

MERGE (j)-[rel1:IS_FRIENDS_WITH]->(s)
ON CREATE SET rel1.since = '01/09/2013'

MERGE (j)-[rel2:HAS_READ]->(b)
ON CREATE SET rel2.on = '02/03/2013', rel2.rated = 5

MERGE (s)-[rel3:HAS_READ]->(b)
ON CREATE SET rel3.on = '02/09/2013', rel3.rated = 4

MERGE ensures a node or relationship exists in the graph, creating it
if necessary; CREATE creates a node or relationship

MATCH (n) RETURN n

MATCH searches the graph for a pattern

12 / 37

Defining Graphs in Cypher

13 / 37

Hands-On Exercises

Define a graph in Cypher that represents the following
statement:

You are completing the course BUSI 4720 in this semester with a
final grade of 100. BUSI 4720 is part of the BCom program where
it is offered in the 4th year. BUSI 4720 carries 3 credit hours of
academic credit. It is a course on the topic of Business Analytics.

1 Identify nodes, relationships, and properties of nodes and
relationships

2 Use CREATE or MERGE statements to create nodes first,
then relationships

3 Use MATCH to verify your graph is correct.

14 / 37

Clean-Up

To remove Persons and Books and relationships between
them:

MATCH (:Person|Book)-[r]-(:Person|Book) DELETE r;
MATCH (n:Person|Book) DELETE n;

Similar for other types of relationships or labels.

To remove all relationships and nodes use:

MATCH ()-[relationship]-() DELETE relationship;
MATCH (node) DELETE node;

15 / 37

Property or Relationship?

//find the genres for
// a particular movie
MATCH (m:Movie {title:"The Matrix"})
RETURN m.genre;

//find which movies share genres
MATCH (m1:Movie), (m2:Movie)
WHERE any(x IN m1.genre

WHERE x IN m2.genre)
AND m1 <> m2
RETURN m1, m2;

https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg

16 / 37

https://neo4j.com/docs/getting-started/_images/modeling_genre_property-arr.svg

Property or Relationship?

//find the genres for a
//particular movie
MATCH (m:Movie {title:"The Matrix"}),

(m)-[:IN_GENRE]->(g:Genre)
RETURN g.name;

//find which movies share genres
MATCH (m1:Movie)-[:IN_GENRE]->(g:Genre),

(m2:Movie)-[:IN_GENRE]->(g)
RETURN m1, m2, g

https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg

17 / 37

https://neo4j.com/docs/getting-started/_images/modeling_genre_node-arr.svg

Flexible Data Modeling

https://neo4j.com/docs/getting-started/_images/modeling_airport_flights-arr.svg

https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

18 / 37

https://neo4j.com/docs/getting-started/_images/modeling_airport_flights-arr.svg
https://neo4j.com/docs/getting-started/_images/modeling_airport_flight_dates-arr.svg

Graph Data versus Relational Data

https://neo4j.com/docs/getting-started/_images/relational_model.svg

https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.svg

19 / 37

https://neo4j.com/docs/getting-started/_images/relational_model.svg
https://neo4j.com/docs/getting-started/_images/relational_graph_model-arr.svg

Graph Data versus Relational Data

Conversion
▶ Tables to Node Labels
▶ Rows to Nodes
▶ Columns to Node Properties
▶ Foreign keys to Relationships
▶ Join tables to Relationships
▶ Remove NULL and default values

20 / 37

The Pagila Database for Neo4J

Import the Pagila Datase (This may take ten or more minutes;
already done in the course Virtual Machine):

CALL apoc.cypher.readFile(
'file:///import-pagila-from-csv.cypher')

Verify some data

MATCH (n:Actor) RETURN n LIMIT 25

21 / 37

Explore the Pagila Graph

22 / 37

Explore the Pagila Schema

CALL db.schema.visualization()

23 / 37

Cypher Query Examples

Find actors by last name, limit to 10

MATCH (a:Actor)
RETURN a.firstName, a.lastName
ORDER BY a.lastName DESC
LIMIT 10;

Find films whose title starts with a ’T’ and that have a rental rate
less than 3, sort by film title, limit to 10

MATCH (f:Film {rating: 'PG'})
WHERE (f.title STARTS WITH 'T') AND (f.rentalRate < 3)
RETURN f.title, f.rating, f.rentalRate
ORDER BY f.title ASC LIMIT 10;

24 / 37

Cypher Query Examples [cont’d]

Find rental customers that live in India

MATCH (r:Rental)
- [:RENTAL_CUSTOMER] -> (c)
- [:CUSTOMER_ADDRESS] -> ()
- [:ADDRESS_CITY] -> ()
- [:COUNTRY_OF_CITY] -> (ct {country: 'India'})

RETURN c.firstName, c.lastName, r.rentalDate LIMIT 5

25 / 37

Hands-On Exercise

Find all customers that have rented a film with rating ”PG”

1 Explore the graph visually in Neo4J browser, note the
relationship types

2 Consider the path from customer to film via rental and
inventory

3 Design a pattern that starts with a customer node and
ends with a film node

4 Define an appropriate WHERE clause of property
restrictions in node patterns

26 / 37

Hands-On Exercise

27 / 37

Cypher Query Examples [cont’d]

Aggregation: Find the mean and standard deviation of rental
payments by country

MATCH (p:Payment)
- [:PAYMENT_RENTAL] -> (r:Rental)
- [:RENTAL_CUSTOMER] -> (c)
- [:CUSTOMER_ADDRESS] -> ()
- [:ADDRESS_CITY] -> ()
- [:COUNTRY_OF_CITY] -> (ct)

WITH ct,
avg(p.amount) AS amountMean,
stDev(p.amount) AS amountSD

RETURN ct.country, amountMean, amountSD
ORDER BY amountMean DESC LIMIT 5

https:

//neo4j.com/docs/cypher-manual/current/functions/aggregating/

28 / 37

https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
https://neo4j.com/docs/cypher-manual/current/functions/aggregating/

Cypher Query Examples [cont’d]

Collection: Find the sets of last names of the movie cast, and
the total number of actors

MATCH (a:Actor) - [:ACTS_IN] -> (f:Film)
RETURN f.title,

collect(a.lastName) AS cast,
count(*) AS numActors;

Collection: Find the set ofs of film title by rental customer and
the number of rentals

MATCH (f:Film) - [:FILM_INVENTORY]
- () - [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]
-> (c:Customer)

RETURN c.lastName,
collect(f.title) AS filmRentals,
count(*) AS numRentals;

https://neo4j.com/docs/getting-started/cypher-intro/results/

29 / 37

https://neo4j.com/docs/getting-started/cypher-intro/results/

Cypher Query Examples [cont’d]

Collection: Find the set of rental customers for each film and
the rental count

MATCH (f:Film) - [:FILM_INVENTORY]
- () - [:RENTAL_INVENTORY]
- (r:Rental) - [:RENTAL_CUSTOMER]
-> (c:Customer)

RETURN DISTINCT f.title,
collect(c.lastName+' '+left(c.firstName,1)+'.')

AS custNames,
count(*) as rentalCount

30 / 37

Cypher Query Examples [cont’d]

Sub-Query: Find the customers who rent films that are in
inventory at multiple stores

MATCH (c:Customer)<-[:RENTAL_CUSTOMER]
-(r:Rental)-[:RENTAL_INVENTORY]
-()-[:FILM_INVENTORY]
-(f:Film)

WITH c, count{
MATCH (f)-[:FILM_INVENTORY]

-()-[:STORE_INVENTORY]
-(s:Store)

RETURN DISTINCT s.storeID
} AS storeNum
where storeNum > 1
RETURN DISTINCT
c.lastName

+' '
+left(c.firstName,1)
+'.' AS custName,

storeNum

31 / 37

Cypher Query Examples [cont’d]

Christian Akroyd’s co-actors

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})

- [:ACTS_IN]
- (f:Film)
<- [:ACTS_IN]
- (coActors)

RETURN coActors.firstName + ' ' +
coActors.lastName AS Name;

Quantified Relationships: Movies and actors up to 2 ”hops”
away from Christian Akroyd

MATCH (a:Actor {firstName: 'CHRISTIAN',
lastName: 'AKROYD'})

- [:ACTS_IN*1..2]
- (others)

RETURN distinct others;

32 / 37

Cypher Query Examples [cont’d]

Built-In Function: The shortest path of an acts-in relationship
between Christian Akroyd and Charlize Dench

MATCH path=shortestPath(
(a1: Actor {firstName: 'CHRISTIAN',

lastName: 'AKROYD'})
- [:ACTS_IN*]
- (a2: Actor {firstName: 'CHARLIZE',

lastName: 'DENCH'}))
RETURN path;

33 / 37

Cypher Query Examples [cont’d]

Pattern in WHERE clause, multiple MATCH patterns Find
actors that Christian Akroyd hasn’t yet worked with, but his
co-actors have. Extend Christian Akroyd’s co-actors, to find
co-co-actors who haven’t worked with him.

MATCH (a1:Actor {firstName:'CHRISTIAN',
lastName:'AKROYD'})

- [:ACTS_IN] -> (m) <-[:ACTS_IN] -(coActors),
(coActors)-[:ACTS_IN]->(m2)<-[:ACTS_IN]-(cocoActors)

WHERE NOT (a1)-[:ACTS_IN]->()<-[:ACTS_IN]-(cocoActors)
AND a1 <> cocoActors

RETURN cocoActors.firstName+' '+
cocoActors.lastName AS Recommended,
count(*) AS Strength

ORDER BY Strength DESC

34 / 37

Cypher Query Examples [cont’d]

Find someone who can introduce Christian Akroyd to Susan
Davis

MATCH (a1:Actor {firstName:'CHRISTIAN',
lastName:'AKROYD'})

-[:ACTS_IN]->(m)<-[:ACTS_IN]-(coActors),
(coActors)-[:ACTS_IN]->(m2)
<-[:ACTS_IN]-(a2:Actor {firstName:'SUSAN',

lastName:'DAVIS'})
RETURN a1, m, coActors, m2, a2

35 / 37

Further Information

Getting Started https://neo4j.com/docs/
getting-started/

Cypher Manual https://neo4j.com/docs/cypher-manual

Graph Data Science https://neo4j.com/docs/
graph-data-science

APOC Library https://neo4j.com/docs/apoc/current/

Use Cases https://neo4j.com/use-cases/

Resources https://neo4j.com/resources/

36 / 37

https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/cypher-manual
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/apoc/current/
https://neo4j.com/use-cases/
https://neo4j.com/resources/

Hands-On Exercises

1 Are there two customers that have the same address?
2 Which customers have rented the same set of films?
3 Find all films with a single actor
4 Calculate the rental revenue per customer. Who are the

top 5? Bottom 5?
5 Calculate the rental counts for each country of customer.

Are there countries with no rentals?
6 Create a graph that represents a product hierarchy.

37 / 37

	Introduction
	Graph Databases

