The Science of IS Development — Implications for

Applications?

Joerg Evermann
School of Information Management
Victoria University Wellington
Box 600, Wellington, New Zealand

Abstract

Information Systems (IS) are understood as models or representations of an ap-
plication domain. The first step in IS development is the analysis and description
of this domain. A good understanding is important for effective software design and
implementation. Scientific inquiry also aims towards an analysis, description, and un-
derstanding of a domain. In contrast to IS development and IS analysis, scientific
inquiry is not a recent activity but is based on a 4000 year history. Its processes and
methods are well accepted and arguably successful.

This paper suggests that IS development activities can and should be informed by
the process of scientific inquiry. It explores the parallels between the two and shows
potential implications of viewing IS development, and system analysis in particular, as
a kind of scientific inquiry. From this, specific recommendations for IS development
projects are derived. The paper is intended as a contribution to the discussion of a

philosophical foundation for IS development.

Keywords : Philosophy of science, system analysis, IS development, IS implementation,

IS project management



1 Introduction

Information systems (IS) are representations or models of an application domain (Iscoe et al.,
1991; Jackson, 1995; Wand and Weber, 1993). For example, a production planning and
control (PPC) system is intended to represent, with its software structures and its data, the
production facilities of the business. When things change on the shop floor, the PPC system
must reflect this change. Hence, building an effective and efficient IS, which represents the
domain, solves identified problems, and interacts with domain elements and users, requires
a good understanding of the application domain.

IS development occurs as well defined projects. The development process begins with the
analysis and documentation of the application domain and leads to the implementation and
use of the final software system. Good system analysis has been argued to reduce project
risk (Offen, 2002), enhance the completeness and consistency of software requirements (Iscoe
et al., 1991), and reduce costly later re-work (Boehm, 1988).

IS development and system analysis are relatively young fields, and there still exists
much debate about its methods and processes (e.g. Brooks, 1986). In contrast, there exists
a rigorous process of inquiry into a domain, which is much older, accepted in the commu-
nity practicing it, arguably successful as measured by the usefulness of its results, and well
regarded by its wider audience. This is the process of scientific inquiry.

This paper explores the parallels between the processes and artifacts of science and IS
development. As both IS development, specifically system analysis, and scientific inquiry
are concerned with the investigation and description of a domain, we suggest that much can
be learned by applying well-accepted and successful scientific methods to the process of 1S
development and system analysis. This presents a new and different perspective on IS de-
velopment and system analysis, and can provide theoretical foundations for IS development.

The paper also makes recommendations for project managers and system analysts. These
are specific and operationalizable, and are based on transferring accepted, successful scientific

practices to IS development. In summary, this paper can contribute to the discussion on



foundations of system analysis and the IS development process.

Process

Science is defined by its process rather than its outcome. This process distinguishes it
from other types of inquiry and makes science 'respectable’ (Thagard, 1998; Casti, 1989).
The process is iterative. In a simplified form, each iteration proceeds from a problem to a
candidate solution or hypothesis, which is then tested and the test results evaluated (Bunge,
1998; Popper, 1968, 1972).

IS development is analogous to science: Starting with an initial business problem, e.g.
frequent out-of-stock situations, the analyst forms a theory about the organization in the
form of a conceptual or domain model, which expresses the analysts understanding of the
domain (Arango, 1989; Mylopoulos, 1992). For example, for out-of-stock situation, the
conceptual model may represent the procurement process, its participants, and information
about warehouses and stock withdrawals. This conceptual model then forms the basis for
subsequent software design and implementation. The resulting IS is understood to be not
only a representation of the domain but also a solution to the out-of-stock problem. The IS
is then tested to evaluate whether it is functional and solves the identified problem.

From this very general characterization of the scientific process and its analogy in IS
development, we can draw a first implication. As repeated hypothesis formation and testing
are a normal process in the sciences, IS development should similarly be expected and
managed as an iterative process. Iterations are necessary for the development process, rather
than failures of the process. With this expectation, project managers needs to facilitate
the iterative nature of the process by supporting and guiding the evaluation of successive
conceptual models and successive versions of the software system. Iterations need to be
planned into the process, e.g. in terms of project milestones, budget, and staffing. Criteria
that determine the activities and schedule of the iterations need to be established. The

iterative nature of IS development has been recognized as useful for example to manage



project risk (Boehm, 1988), and is found in evolutionary prototyping approaches (Floyd,
1984; Riddle, 1984) as well as in the more recent Rational Unified Process (Kruchten, 2002).

No scientific theory is entirely accurate. It will necessarily be revised and replaced by
more accurate, more predictive, or more explanatory theories. The process of scientific
discovery does not end, but proceeds along theories of increasing accuracy and explanatory
power.

Similarly, no conceptual model or software system can be expected to be completely
accurate in representing the organization and achieving all its aims. Instead, it will need
constant adjustment and revision. Consequently, IS development should not be expected to
be a one-off endeavour. Analogous to the way in which new scientific theories are continu-
ously built on, and improve, old ones, analysis of a domain cannot be considered complete
at the end of the first iteration of the development process (Sotirovski, 2001). This suggests
that IS development should be viewed as a continuous and ongoing activity in the organiza-
tion, rather than as being partitioned into discrete projects. Development, adaptation, and
improvement of the IS must be actively managed throughout the period where the need for
the system remains.

For example, as long as the company is ordering and warehousing items, there is a need for
an inventory management system. Instead of analyzing the domain as part of a project effort
outside of general inventory management group, we suggest instead that within that group
a small team of analysts should continuously update the models of the domain. Depending
on changes to these models, at certain points in time, the existing software system needs to
be adapted, or a new system implemented. These latter activities may be done as discrete
projects, as theory testing and instrument are resource intensive activities. However, the
analysis of the domain should be an ongoing activity.

Rather than bringing together a team of analysts with diverse backgrounds for a short
duration, analysts should be permanently assigned to manage and carry out the continuous
investigation of the domain. Just as scientists work on a topic for a long period, domain

or business analysts should not be moved from one project to another. Like scientists, they



should be expected to increase their expertise in a particular application domain. In essence,
this moves the system analysis activity from a dedicated organizational department into the
line units.

The iterative nature of the scientific process requires it to be guided by the analysis
of empirical data of scientific experiments. These data can point to specific aspects of a
theory that may not be supported. Similarly, IS developers need to be able to perform
such analyses. For example, the fact that inventory is not ordered in a timely fashion, may
point to a fault in the model that describes the ordering process. In this case, the theory is
not a good description of reality, and needs to be changed. Requirements traceability and
requirements management (Jarke, 1998) become increasingly important for this purpose.
They help trace back the failure of certain software features to achieve intended goals to
elements of the conceptual model, which specified or determined those software features.
Development projects need to establish and manage both forward and reverse traceability,
putting in place appropriate tools and procedures.

In science, theories are tested based on a-priori acceptance criteria. They determine
whether test results can be accepted as valid, either confirming or refuting the tested theory.
These are not only criteria for statistical validity, but also criteria for acceptable research
design, etc. Similarly, IS development and system analysis need to develop and establish
acceptance criteria that determine whether a particular IS or software system is a valid rep-
resentation of a domain. Such acceptance criteria need to extend beyond software acceptance
testing to include acceptance testing of conceptual models, user acceptance, and delivery of
business benefits. This in turn requires that user acceptance, business requirements, and

business goals are measurable.

Theories

Scientific theories are more than mere sets of logical statements or a number of axioms.

Theories, as tested and evaluated by science, are structures with a central axiomatic core



and surrounding corollaries and derived laws (Lakatos, 1978). While the outermost elements
can be changed with relative ease, scientists are reluctant to give up elements that are
increasingly more central and serve as foundations for larger numbers of corollaries and
laws.

In principle, an experiment tests the entire logically connected structure of a theory.
In practice, when observation disagrees with prediction, scientists will attempt to find the
'weakest link” in the argument and adapt or discard it (Duhem, 1954; Quine, 1953). The
weakest links are those that connect the fringes of the theoretical structure to empirical
reality (Quine, 1953). However, re-evaluation of a particular statement of a theory may in
turn require re-evaluation of connected statements. This iterative process continues until
the whole theory structure is again logically consistent and coherent.

Drawing the analogy to IS development, the implemented software forms the outer fringe
of the theory. This is where theory meets reality (the domain or organization). The software
is constructed from a domain model by means of rigorous intermediate transformation steps
(software engineering). When the software does not perform as expected, developers begin
looking for failures. For example, when the IS does not solve the frequent out-of-stock
situations, some software parameters may be set incorrectly (implementation), or some design
decision is inadequate (e.g. overnight batch updates are too slow), or perhaps there was a
failures in the domain analysis (e.g. intermediary warehouses were not considered).

Project managers need to establish principles that guide this Quinean process of recur-
sive re-evaluation of theory elements. Well-documented criteria must be put in place to
determine when changes need to be escalated to more central elements, such as conceptual
models. Kuhn (1977) points out that such guidelines or criteria are necessarily social in
their nature. Hence, project managers must put in place communication and negotiation
procedures so that change escalation criteria can be communicated and agreed upon by the
entire development team.

Scientific theories include statements about properties of the domain elements, including

their dynamics. Traditional database driven IS development often neglects this aspect, and



even object-oriented IS may be limited in the analysis of domain dynamics. However, sim-
ulation science can provide dynamic modelling and evaluation techniques on an abstraction
level suitable for system analysis (Fishwick, 1995; Evans, 1988). Hence, we suggest that
simulation models need to be employed during IS development and should become part of
the domain model. Comparison of simulation results to the actual domain dynamics can
help validate conceptual models. For example, while a UML activity diagram can be used
to model the stock ordering process, a simulation tool can be used to simulate and compare

the model to observed reality.

Paradigms

When a theory is viewed as an onion-like layering of logical statements or elements, the core
of a theory is the scientific paradigm. It determines a scientist’s perspective on the domain,
and determines the ontology, the way we think and speak about the domain (Kuhn, 1996).

Similarly, in IS development, the conceptual model is a theory of the domain. It relies
on the modelling language that was chosen. This, in part, determines the ontology, the
terms in which the application domain is described. For example, the analyst may realize
that the modelling language is ill-suited, e.g. the business can be better described in terms
of objects and their behaviour rather than functional units and the processes they execute.
An even more central aspect of the theoretical structure is the chosen perspective on the
business itself. While the view of the business as a system of functional units is the dominant
paradigm, it is not the only possible one. Hirschheim and Klein (1989); Hirschheim et al.
(1995) have used a framework by Burrell and Morgan (1979) to explicate assumptions about
the organizational context of IS development and Reed (1992) has identified five ”analytical
frameworks” of organizations, which can be likened to scientific paradigms.

First, organizations can be viewed as social systems with collective goals and institutional
needs. When taking this perspective, information systems support and reflect the goal-

oriented nature of the organization. Descriptions and models may focus on goal-structures,



and business requirements, e.g. in the form of agent-oriented systems (Yu, 2001).

A second framework understands an organization as negotiated orders that are ”created,
sustained and transformed through social interaction” (Reed, 1992). These orders are tem-
porary and continually reconstitute themselves. In this case, the analysis will focus on the
negotiation processes (Chang and Woo, 1994), rather than the constituents and their fixed
roles. Descriptions and models emphasize interactions (Auramaki et al., 1988; Janson et al.,
1993; Winograd and Flores, 1986) such as advanced e-mail, instant messaging, workflow
management systems, and other communication technologies.

Third, organizations are understood as power structures, which serve to maintain po-
sitions of dominance. From these macro-level considerations, implicit and unquestioned
objectives such as ’'rationality’, 'profitability’, ’efficiency’, etc. are derived. In this case,
descriptions and models will focus on identifying or defining control and command relation-
ships between functional, organizational units. Projects must identify, explore, and manage
their relation to such power position in order to gain acceptance.

Fourth, organizations as constructions of cultural artifacts are generated by the ”values,
ideologies, rituals, and ceremonies that express and make sense of participation” (Reed, 1992).
Consequently, the culture "requires support and supplementation through symbols, myths
and rituals.” Business analysts can utilize these symbols and rituals as devices to effect
change, gain acceptance, communicate with stakeholders and to solve problems (Hirschheim
and Newman, 1991; Kendall and Kendall, 1993). When taking this perspective, the IS must
be designed with these rituals and ceremonies in mind. It must support them with its user
interfaces and interactions, and play an active role in them.

The fifth framework sees organizations as social practices in which they are ”repro-
duced through the design and deployment of various administrative mechanisms by means
of which managers attempt to realize effective regulation or control over the performance of
work” (Reed, 1992). Thus, business analysis will focus on and administrative issues, e.g. by
means of business rules.

It is important that IS development projects explicate the framework or frameworks they



adopt. Each of the different perspectives or frameworks may lead to different requirements,
can be expressed in different languages, and can be analyzed using different methods. Ex-
amples in (Checkland and Holwell, 1998; Dahlbom and Mathiassen, 1993; Hirschheim et al.,
1995; Winograd and Flores, 1986) show the strong influence of different organizational per-

spectives on IS development.

Paradigm Changes The assumptions about the nature of the organization or business
form the core or the paradigm of the theory about the business. Consequently, these are
hardest to change. In science, the failure of "normal science”, i.e. the incremental and
iterative changes to a theory, gives rise to a ”scientific revolution” (Kuhn, 1996). The
paradigm is discarded and with it the language and any theories of the previous paradigm.
Failure of a paradigm becomes evident when too many phenomena are either left unexplained
or require a large number of ad-hoc assumptions.

Similarly, in system analysis, such a revolution discards the conceptual model, the mod-
elling language, and the adopted perspective on the nature of the business. For example,
instead of tackling the problem of long lead times by improving the efficiencies and con-
trol structures of each organizational unit, the analyst may instead decide to focus on the
collaborative nature of the participants and their interactive needs. Hence, the organiza-
tion is not viewed as a rigid system that must be optimized, but as an organic system of
interacting agents. The ontology and the modelling language change from describing ma-
chinery, efficiency, and optimality, to describing actors, agents, communicative needs, and
communication channels.

If important aspects of the organization cannot be explained or expressed in the con-
ceptual model, or if this requires too many ad-hoc assumptions, then the perspective of the
analysis needs to be redefined, i.e. a new organizational framework must be chosen. The
challenge for IS project management is to recognize and facilitate necessary change, rather
than oppose it (Dahlbom and Mathiassen, 1993). Continuous assessment of the current the-

ories in terms of their acceptance by domain experts and their usefulness to IS design needs



to be in place, together with guidelines on how changes are escalated from the conceptual
model to the modelling language, and to the organizational perspective. How much ad-hoc
modification should be allowed for the domain model before it becomes necessary to switch
the perspective on the nature of the organization? How many aspects of the domain can be

reasonably excluded from the conceptual model before it fails to accomplish its purpose?

Co-existing Paradigms A different interpretation of Kuhnian scientific paradigms views
them not as successive and mutually exclusive, but as co-existing on different temporal,
spatial, or organizational levels of abstraction. For example, Maxwellian electrodynamics re-
mains valid and valuable for everyday electronic engineering, while quantum electrodynamics
is evidently more accurate.

Drawing the analogy to IS development, it may be possible to apply different organi-
zational paradigms (Burrell and Morgan, 1979; Reed, 1992) at the same time, each being
applicable in a well-defined domain of abstraction. For example, examining an organization
on the level of business units, one can make out functional structures and control relation-
ships. When examining an individual department within a business unit, one may need
to examine the dynamics of individual, goal driven actors and their activities. Hence, on
different level of abstraction, different paradigms can be chosen.

The challenge for development projects is to clearly delineate the respective domains
of the various organizational perspectives in terms of temporal, spatial, or organizational
abstraction levels. In order to gain an understanding of the organization as a whole, the
analysts need to develop points of integration between the perspectives and the associated
domain models. For example, business process descriptions using the language of UML
Activity Diagrams need to be integrated with models of spontaneous goal driven behaviour
of agents. While the process model captures one aspect of the organization (one paradigm),
the agent model provides, at the same time, another perspective on a different level of
abstraction.

How does goal driven behaviour on the individual level give rise to business processes

10



on the more abstract level? How can the two descriptions be reconciled? In science, such
integration usually involves approximations. For example, Newton’s theory of gravitation
approximates of General Relativity for small distances. In the case of an organization, one
can for example investigate how business process level descriptions can be considered an

approximation of intelligent actor dynamics.

Choice of Theory

Choosing a new paradigm or theory is not always a rational activity (Kuhn, 1996). Many
theories can account for the same observations. Moreover, there is no theoretic or scientific
reason to choose between altering a theory in the fringes and replacing it entirely. These ques-
tions must be approached by "reasons of good sense” (Duhem, 1954), which include criteria
such as accuracy, internal and external consistency, broad scope beyond the particular ob-
servations it was designed to explain (predictive), simplicity (or efficiency, elegance, beauty),
and disclosure of new phenomena and relationships (Kuhn, 1977). A theory is preferable
to another, if it has withstood more attempts at refutation (Popper, 1968; Lakatos, 1978).
These guidelines, like the overall scientific process, are the result of social agreement (Lau-
dan, 1990). Other criteria concern the relative importance assigned to the explanation of
existing observations versus the confirmation of predictions (Snyder, 1994; Achinstein, 1998).

Consequently, in IS development, decisions regarding the choice of conceptual models
or perspectives of the nature of an organization are not necessarily rational. Hence, they
should not be managed as if they were rational. Instead of a-priori fixed criteria, project
management needs to support the social nature of the decision making process. Criteria such
as simplicity and elegance are important characteristics and need to be included. Experienced
system analysts, like experienced scientists, will recognize these values in a theory, even if
they defy precise measurement.

Based on initial criteria, project managers must initiate and manage the social process

to arrive at shared final quality criteria for conceptual models and software. Quality frame-

11



works, like those proposed by Krogstie et al. (1995); Moody and Shanks (1994, 1998); Schiitte
and Rotthowe (1998), can be used to begin this effort. However, they should be used only
as a starting point for discussion, rather than as absolute metrics of model quality or theory
quality.

Scientific theories cannot be proven; they can only be disproven (Popper, 1972). Hence,
theories must explain observed phenomena as well as make falsifiable predictions. For IS
development, this has two implications.

First, the conceptual model should give rise to predictions, i.e. it cannot be purely
descriptive. Some of the possible predictions need to be explicated and tested.

Second, testing of the conceptual model (and predictions based on it), or the software
system, must attempt to falsify it. Test plans, test protocols and test procedures must reflect
this aim. Project managers must ensure that all aspects of the theory, not only the final
implemented software, are tested. Statement and predictions of the conceptual model can
be tested and attempted to be falsified by actively looking for counter-examples within the
domain. Analogous to peer review in the scientific process, the conceptual model should be
reviewed and critically assessed by analysts and organizational staff outside the development

team before final acceptance.

Models and Scientific Realism Two scientific theories or paradigms may specify differ-
ent entities in the domain, i.e. different ontologies. In IS development, one conceptual model
may suggest that the domain consists of functional units that are integrated into processes.
Another conceptual model may represent the same domain as a set of interacting actors with
goals and constraints. As different ontologies can account for the same observations, there is
no criterion that could tell us whether the underlying ontological entities actually exist (van
Fraassen, 1980; Laudon, 1981). For example, actual observations show only human actors
behaving in various ways. The notion of functional units and processes is superimposed on
these observations, as is the notion of goals and constraints. We cannot physically point to

a functional unit or a goal.

12



Consequently, the often implicit requirement that models and modelling languages be
isomorphic to, or be true representations of, the application domain (e.g. Wand and Weber,
1993), must be given up. No absolute criteria for correctness of a model can be given, only one
of adequacy. Similarly, modeling languages also may only be found adequate, or inadequate,
for a particular purpose. Model quality criteria need to focus on such social adequacy in the
construction of the model and its problem solving abilities, rather than on its correspondence
to reality (Schiitte and Rotthowe, 1998). For example, a process-centered description may
be as good as an object-oriented or agent-oriented one; two different object-oriented models

may capture the world equally well.

Scientific Instruments

Theories are tested by building instruments. In the process of testing successive conceptual
models during IS development, the actual IS (the software system) plays the role of instru-
ment. It is derived from and based on the central aspects of the theory that it is intended to
test. Similar to an electron microscope embodying the central aspects of quantum physics,
an IS embodies the central beliefs about the business or organization as described by the
conceptual model.

Using a finished IS as experimental instrument is not desirable for two reasons. (1) It
is a very expensive instrument, available only after considerable amount of work has been
invested. (2) It is generally not a simple tool; hence, any problems discovered may be with
the instrument, rather than the theory. Thus, cheaper and more direct testing of theories
(conceptual models) is desirable.

Prototype approaches (Floyd, 1984; Riddle, 1984) provide both a cheaper and more di-
rect instrument, as they focus on one particular aspect of the theory that is tested. Because
they are simpler than the final IS, it is easier to demonstrate their correctness as theory
testing instrument. Rather than using prototypes in an evolutionary way or for require-

ments gathering, prototypes need to be specifically aimed at testing one or more particular

13



statements in the conceptual model. These prototypes must be as simple as possible, so that
their correctness can be demonstrated. Every important statement of the conceptual model
should be tested by prototyping. To achieve this requires suitable management processes,

budgeting, scheduling, and staffing considerations.

Social Aspects

Scientists are mutually dependent on each other for sharing of ideas, instruments, etc.
(Longino, 1990). The community of scientists admits new members by training; one cannot
simply declare to be a scientist. Moreover, this community is embedded in the larger society,
depending on its values and support, monetary and otherwise (Longino, 1990).

This has three implications for IS development as scientific inquiry. First, IS development
must be a team effort and good communication must be ensured. Projects need to ensure
exchange of ideas and instruments, e.g. in the form of meetings, notes, public models, formal
discussions, and informal exchanges. Mechanisms must be provided to facilitate exchange
also of incomplete, initial, and informal ideas, not only of finished deliverables. Analysts
cannot use strict division of labor and compartmentalized thinking. To maintain consistent
theories or models, they must be aware of related and competing work. This exchange of
ideas and instruments should extend beyond the scope of a particular project, just as it is
in science. Best practice approaches, reference models (Scheer, 1994), analysis and design
patterns (Eriksson and Penker, 2000; Larman, 2002) and open source software (Raymond,
2001) are examples of IS development approaches embodying these requirements.

Second, the argument for user participation in the process becomes problematic. In
scientific studies, non-scientists are sources of information or experimental subjects. How-
ever, non-scientists are generally not involved in theory construction, although they may
participate in instrument building and theory testing (engineers).

Similarly, in IS development, users are sources of information, e.g. as user focus groups,

or subjects of inquiry, e.g. interface development testing. However, participation in the

14



domain analysis should be limited to trained analysts while software construction, i.e. the
building of the instrument, can and should involve software engineers.

Analysts must understand the implications of analysis being a scientific process of theory
development. Just as scientists are trained to become accepted in their social community,
user participants in system analysis need to be trained in system analysis. Similarly, user
representatives on project management teams and steering committees must understand the
implications of IS development as a scientific processes, to ensures realistic expectations and
understanding of the process and outcomes.

Third, the reliance on the wider society, i.e. the organization and general business staff,
for support is critical. IS development projects must maintain communication with the rest
of the organization. They need to share information about current conceptual models to gain
and judge the support for those models and the entire project. This cannot be postponed
until the IS is fully constructed and about to be rolled-out.

For example, focusing on command and control may be inappropriate and discussions
with the future user base shows reluctance to support any models with these features. Such
lack of support may be voiced directly, but may also show itself through indirect means, e.g.
the withholding of information, of funds, or of personnel, all of which the project depends
on. This is similar to the way in which scientific research relies on, and can be controlled by,
access to support, such as information, funding, and personnel.

Communication requires language that is understandable both to the analysts as well as
to the wider community. When the conceptual modelling language that is used in a project
is not suitable for communication with non-analysts, the domain understanding must be
translated to a different, simpler form. Communication also requires a managed process of
both dissemination of the results of the analysis, e.g. in the form of project newsletters,
and, more importantly, community input that may influence the values of the development
project, e.g. in the form of informal ”"town hall meetings” or more formal and structured

exchanges.

15



Discussion

The previous sections have shown many parallels between scientific inquiry into a domain
and IS development, specifically system analysis. However, there are also differences between
scientific inquiry and IS developments.

First, an IS is generally built in response to a particular business need. This is different
from the environment in which scientific theories are developed. While development of
theories reflects primarily explanatory needs, businesses have a need for the IS to play a role
in adapting to changing external influences (Porter, 1980), which can range from government
intervention (taxes, subsidies, etc.) to the emergence of new competitors, markets and
technologies.

However, although scientific theories are explanatory in nature, the explanations they
provide are used by engineers to develop useful solutions to problems. Similarly, system
analysis can be explanatory in nature, but the conceptual models are used by software
engineers to develop useful solutions. Just as good scientific theories can lead to successful
engineering, good domain analysis can lead to successful software engineering and hence to
successful IS.

Second, unlike science, which is assumed to operate in a relatively stable environment, IS
development is an inquiry into often constantly changing domains. However, rapid change
may be an indication that the models and theories about the business are not on a suitably
abstract level. For example, while the specific business processes may change, the structure
of the business and the behaviour of its agents may be stable, so that rapid change and
perceived volatility is an indication of an unsuitable ontology, organizational perspective, or
level of description.

Information systems will become part of the domain. Their purpose is not only to rep-
resent the domain but also to influence and change the domain. For example, in Business
Process Re-engineering (Hammer and Champy, 1994), information systems are used as cata-

lysts and enablers for considerable change in a business or organizational domain. In contrast

16



Scientific Inquiry IS Development

Theory Conceptual (Domain) Model, Software model
Instrument Software system, Prototype

Paradigm Organizational framework

Ontology Modelling language

Theory building System analysis

Instrument building | Software engineering

Theory testing Prototyping and evaluation
Scientists System analysts
Engineers Software engineers

Table 1: Parallels between scientific inquiry and IS development

scientific theories and instruments do not effect substantial changes within the domain.

Conclusion

This paper set out to explore the parallels between IS development, especially system anal-
ysis, and scientific inquiry. We have drawn parallels between activities and artifacts of the
two fields. These are shown in Table 1. From these parallels, implications have been derived
that have the potential to improve IS development efforts.

Science has a long tradition and there is a good and well-accepted understanding of it. It
appears informative to use the identified parallels to inform the process of IS development,
especially the system analysis activities. This leads to a number of recommendations for the
management of IS development projects. Most important, IS development should not be
viewed as a one-off project, but instead is an ongoing, iterative process, that is in place as
long as the need for the IS exists. Furthermore, system analysis is primarily a social activity

that relies on communication, shared assumptions and values, and agreements. It needs the

17



support, and must be based on the values, of the organization in which it is situated.

Some of the proposed recommendations can be found already in one analysis method or
another, while others are novel. Some are well-accepted principles while others may appear
controversial. In conclusion, this paper advocates a pragmatic approach to suggesting a
philosophical foundation for system development practices, by basing it on the well-accepted
process of scientific inquiry. The recommendations proposed in this paper should not be
considered absolutes, but rather as starting points for debate. It is hoped that this paper
can be part of a fruitful discussion on the process and methods of IS development and system

analysis.

References

Achinstein, P. (1998). Explanation v. prediction: Which carries more weight? In M. Curd
and J. Cover, editors, Philosophy of Science — The central issues. W.W. Norton and
Company, New York, NY.

Arango, G. (1989). Domain analysis: From art form to engineering discipline. In Proceed-
ings of the 5h International Workshop on Software Specification and Design, IWSSD-5,
Pittsburgh, PA, pages 152—-159.

Auramaki, E., Lehtinen, E., and Lyytinen, K. (1988). A speech-act-based office modeling
approach. ACM Transactions on Office Information Systems, 6(2), 126-152.

Boehm, B. (1988). Understanding and controlling software costs. IEEE Transactions on
Software Engineering, 14(10), 1462-1477.

Brooks, F. P. (1986). No silver bullet. In H.-J. Kugler, editor, Proceedings of the IFIP Tenth
World Computing Conference, pages 1069-1076.

Bunge, M. A. (1998). Social Science under Debate: A Philosophical Perspective. University

of Toronto Press, Toronto.

18



Burrell, G. and Morgan, G. (1979). Sociological Paradigms and Organizational Analysis.

Heinemann, Exeter, NH.
Casti, J. (1989). Paradigms Lost. Avon Books, New York, NY.

Chang, M. K. and Woo, C. C. (1994). A speech-act-based negotiation protocol: Design,
implementation, and test use. ACM Transactions on Information Systems, 12(4), 360

382.

Checkland, P. and Holwell, S. (1998). Information, Systems and Information Systems: Mak-
ing Sense of the Field. John Wiley & Sons, Chichester, West Sussex.

Dahlbom, B. and Mathiassen, L. (1993). Computers in Context: The Philosophy and Practice
of Systems Design. Blackwell Publishers, Oxford.

Duhem, P. (1954). The Aim and Structure of Physical Theory. Princeton University Press,

Princeton. Translated by P. Wiener.

Eriksson, H.-E. and Penker, M. (2000). Business modelling with UML: Business patterns at
work. John Wiley & Sons, New York, NY.

Evans, J. (1988). Structure of Discrete Event Simulation: An Introduction to the Engagement
Strategy. Elis Horwood Ltd, Chichester.

Fishwick, P. (1995). Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice-Hall, Englewood Cliffs, NJ.

Floyd, C. (1984). A systematic look at prototyping. In R. Budde, K. Kuhlenkamp, L. Math-

iasssen, and H. Zullighoven, editors, Approaches to Prototyping. Springer Verlag, Berlin.

Hammer, M. and Champy, J. (1994). Reengineering the Corporation: A Manifesto for
Business Revolution. Allen & Unwin, St. Leonards, NSW.

Hirschheim, R. and Klein, H. (1989). Four paradigms of information systems developement.

Communications of the ACM, 32(10), 1199-1216.

19



Hirschheim, R. and Newman, M. (1991). Symbolism and information systems development:

Myth, metaphor and magic. Information Systems Research, 2(1), 29-62.

Hirschheim, R., Klein, H., and Lyytinen, K. (1995). Information Systems Development and
Data Modeling: Conceptual and Philosophical Foundations. Cambridge University Press,

Cambridge.

Iscoe, N., Williams, G. B., and Arango, G. (1991). Domain modeling for software engineering.
In Proceedings of the 13th International Conference on Software Engineering ICSE 91,
Austin, TX, pages 340-343.

Jackson, M. (1995). The world and the machine. In Proceedings of the 17th International
Conference on Software Engineering ICSE 95, Seattle, WA, pages 283-292.

Janson, M. A., Woo, C. C., and Smith, L. D. (1993). Information systems development and

communicative action theory. Information € Management, 25, 59-72.
Jarke, M. (1998). Requirements tracing. Communications of the ACM, 41(12), 33-36.

Kendall, J. and Kendall, K. (1993). Metaphors and methodologies: Living beyond the
systems machine. MIS Quarterly, 17(2), 149-172.

Krogstie, J., Lindland, O. I., and Sindre, G. (1995). Towards a deeper understanding of
quality in requirements engineering. In Proceedings of the CAISE’95 Conference, pages
82-95.

Kruchten, P. (2002). The Rational Unified Process: An Introduction. Addison-Wesley, Read-
ing, MA.

Kuhn, T. (1996). The Structure of Scientific Revolutions. The University of Chicago Press,

Chicago, third edition.

20



Kuhn, T. S. (1977). Objectivity, value judgment, and theory choice. In The Esssential
Tension: Selected Studies in Scientific Tradition and Change. University of Chicago Press,
Chicago, IL.

Lakatos, 1. (1978). Philosophical papers. Cambridge University Press, Cambridge, NY.

Larman, C. (2002). Applying UML and patterns: An introduction to object-oriented analysis

and design and the unified process. Prentice-Hall, Upper Saddle River, NJ.

Laudan, L. (1990). Demystifying underdetermination. In C. W. Savage, editor, Scientific

Theories, Vol. 14. University of Minnesota Press, Minneapolis, MN.
Laudon, L. (1981). A confutation of convergent realism. Philosophy of Science, 48, 19-49.

Longino, H. E. (1990). Science as Social Knowledge: Values and Objectivity in Scientifi

Inquiry. Princeton University Press, Princeton, NJ.

Moody, D. and Shanks, G. (1994). What makes a good data model? evalutating the quality
of entity relationship models. In Proceedings of the 1994 International Conference on

Conceptual Modelling ER’94, New York, NY. Springer Verlag.

Moody, D. and Shanks, G. (1998). Improving the quality of entity relationship models -
experience in research and practice. In Proceedings of the 1998 International Conference

on Conceptual Modelling EFR’98, New York, NY. Springer Verlag.

Mylopoulos, J. (1992). Conceptual modeling and Telos. In P. Locuopoulos and R. Zicari,
editors, Conceptual Modeling, Databases and Cases. John Wiley & Sons, Inc, New York

et. al.

Offen, R. (2002). Domain understanding is the key to successful system development. Re-

quirements Engineering, 7, 172-175.

Popper, K. (1968). The Logic of Scientific Discovery. Harper & Row, New York, NY.

21



Popper, K. (1972). Objective Knowledge. Clarendon Press, Oxford.

Porter, M. (1980). Competitive Strateqy: Techniques for Anlyzing Industries and Competi-
tors. The Free Press, New York, NY.

Quine, W. v. O. (1953). Two dogmas of empiricism. In From a Logical Point of View.
Harvard University Press, Cambridge, MA.

Raymond, E. S. (2001). Cathedral and the Bazaar. O’Reilly, Sebastopol, CA.

Reed, M. (1992). The Sociology of Organisations: Themes, Perspectives and Prospects.

Harvester Wheatsheaf, Hemel Hempstead, Hertfordshire.

Riddle, W. (1984). Advancing the state of the art in software system prototyping. In
R. Budde, K. Kuhlenkamp, L. Mathiasssen, and H. Zullighoven, editors, Approaches to

Prototyping. Springer Verlag, Berlin.

Scheer, A.-W. (1994). Business Process Engineering. Reference Models for Industrial Enter-

prises. Springer Verlag, Berlin, 2nd edition.

Schiitte, R. and Rotthowe, T. (1998). The guidelines of modeling - an approach to enhance
the quality in information models. In Proceedings of the 1998 International Conference on

Conceptual Modelling ER’98, pages 240-254.

Snyder, L. J. (1994). Is evidence historical? In P. Achinstein and L. J. Snyder, editors,
Scientific Methods: Conceptual and Historical Problems. Krieger Publishing Company,
Malabar, FL.

Sotirovski, D. (2001). Heuristics for iterative software development. [IEEE Software, 18,
66-73.

Thagard, P. R. (1998). Why astrology is a pseudoscience. In M. Curd and J. Cover, editors,
Philosophy of Science — The central issues. W.W. Norton and Company, New York, NY.

22



van Fraassen, B. C. (1980). The Scientific Image. Clarendon Press, Oxford, UK.

Wand, Y. and Weber, R. (1993). On the ontological expressiveness of information systems

analysis and design grammars. Journal of Information Systems, (3), 217-237.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition: A New
Foundation for Design. Addison Wesley, Reading, MA.

Yu, E. (2001). Agen orientation as a modelling paradigm. Wirtschaftsinformatik, 43(2),
123-132.

23



