Developing a Realistic Workflow Management
Environment for Teaching: An Interface from YAWL to
OpenERP

Joerg Evermann

Faculty of Business Administration, Memorial University of Newfoundland, Canada
jevermann@mun.ca

Abstract. The paper describes an interface from the YAWL workflow man-
agement system to the OpenERP enterprise system. The interface is implement-
ed as a codelet, and provides access to the full range of OpenERP information
and functions. The paper provides an overview of the design of the codelet, the
data types for its use, and an example application.

Keywords. YAWL, OpenERP, workflow management, enterprise system

1 Introduction

The YAWL (Yet Another Workflow Language) workflow management system is
developed for teaching and research. Together with the YAWL book [1] it provides a
state-of-the-art open-source environment for teaching business process management
and automation, in an affordable and easily accessible way. The YAWL system is
currently used in an introductory, core course on Business Process Management
(BPM) in the general business degree curriculum at Memorial University. While this
course covers all aspects of BPM, strategic, managerial, operational, and technical,
YAWL plays a prominent part in the course to illustrate the capabilities and benefits,
but also the complexities of process automation.

In the fall of 2011, Memorial University funded, through a $5000 Instructional De-
velopment Grant, a course improvement project aimed at introducing hands-on ERP
systems experience into the business undergraduate curriculum. The initial targets of
this initiative were three courses: Information Systems, Operations Management, and
Business Process Management course. From the BPM course perspective, integrating
the workflow management with “’legacy’’ information systems provides for a more
realistic environment for students to experience and learn about workflow manage-
ment and process automation.

While the business benefits of integrating workflows and enterprise systems are
easy to describe, they are difficult for students, especially those at an early stage in the
degree program, to fully appreciate without hands-on experience. Experiential learn-
ing, defined as “the sense-making process of active engagement between the inner
world of the person and the outer world of the environment” [2, pg. 2], is a “more

10

mailto:jevermann@mun.ca

effective and long-lasting form of learning” that “involves the learner by creating a
meaningful learning experience,” [2, pg. 1] and “learning from experience is one of
the most fundamental and natural means of learning available,” [2, pg. 15].

The project’s intended learning outcomes are an improved understanding and ap-
preciation of the capabilities and importance of integrated enterprise IT to business
operations.

Given the size of the development grant, and the inability of the faculty to provide
additional monetary or human resources to this project, the scale of the project was
quite limited. The chosen enterprise system was OpenERP?, an open-source system
that provides core modules such as sales, purchasing, accounting, production man-
agement, as well as extensions for point-of-sales, project management, etc. Among
open-source ERP systems, it is one of the most mature and feature complete systems.
OpenERP provides its own process model and workflow engine. However, the con-
figuration language is XML based and there is no recognizable formal underpinning
for the workflow description language.

This suggested the development of an interface from YAWL to OpenERP, so that
OpenERP functionality can be used in a YAWL workflow. The remainder of the pa-
per describes the implementation of this interface as a YAWL codelet. The next sec-
tion provides an introduction to the OpenERP system, followed by design choices for
the interface codelet. This is followed by a description of the codelet parameters and
data types, and an example workflow.

The codelet, associated XML Schema data type definitions, and YAWL example
workflow definitions are available under the GPL v2 license?.

2 The OpenERP System from the YAWL perspective

OpenERP is developed using the Python language and provides a business object
model that abstracts, through an object-relational mapping layer, from the underlying
physical data structures and functions. On top of this object model, OpenERP defines
a process model and workflow mechanism for many of the business objects. The
OpenERP workflow model is based on object states and transitions between them.
Each object state is associated with a method, whereas transitions are either triggered
by signals, or triggered by changes in attribute values.

OpenERP provides an XML-RPC based web-services interface to both its business
objects and its workflow mechanism. This interface provides the following generic
operations on all business objects:

o Create (returns the new business object ID)

e Search (returns a set of business object IDs that match a query)

e Read (returns a set of attribute values for a given list of business object IDs and a
given list of attribute names)

! http://www.openerp.com
2 http://www.yawlfoundation.org/pages/resources/contributions.html

11

e Write (updates the provided attributes of business objects with a given list of IDs
with the provided new value)
e Delete (“Unlink™)

OpenERP also provides a means to call any method defined on the business ob-
jects. However, calling the methods directly (outside the built-in, intended workflow)
may lead to issues such as the (implicit) pre-conditions (as per the built-in workflow)
not being met, or the consequent actions (as per the built-in workflow) not being exe-
cuted. Thus, calling the business object methods directly is not recommended. In-
stead, OpenERP provides a mechanism to send “signals” to its workflows. These
signals can be used to advance the built-in workflow for a business object. For exam-
ple, a signal may be sent to confirm a draft sales quotation and transform it to a sales
order. The OpenERP workflow mechanism then calls the appropriate methods on the
business object.

While this is a “safe” mechanism to interact with the OpenERP system, the exter-
nally defined and controlled workflow (e.g. from YAWL) must be essentially isomor-
phic to the workflow configured in OpenERP and can only ‘mimic’ that workflow.
Further, developing an external workflow requires a thorough understanding of the
built-in workflow and the states of the business objects. However, the codelet is not
limited to this “safe” way of interacting with OpenERP, and it can in principle be
used to call any method in any order. This, however, requires a thorough understand-
ing of the OpenERP pre-conditions and consequent actions.

3 Interface Design

YAWL provides different ways to integrate external systems, the three most prom-
inent being the web-services invoker service, the codelet mechanism, and the external
data gateway. Any of these can in principle be used to develop the interface.

As the YAWL web-service invoker service requires a valid WSDL file and uses
SOAP rather than XML-RPC, this would have required a translation server that ac-
cepts SOAP requests and issues XML-RPC requests in turn. Alternatively, a new
XML-RPC web-service invoker service could have been built as an alternative to the
existing SOAP based one. Either of these alternatives was considered to be too tech-
nically complex for the limited time-frame of the project.

An external data gateway could be constructed to access either the business object
information in OpenERP, or directly access the underlying relational data. Technical-
ly, one could also imagine that this might be used to access methods or send work-
flow signals, but this would be conceptually confusing, as the data gateway is intend-
ed primarily for data access.

Instead, a simple codelet was developed that accepts input and provides output us-
ing pre-specified data types. Two options were investigated:

o Offer access to specific OpenERP business objects, their data, methods, and work-
flow signals. In this scenario, XML data types would need to be developed that re-
flect the OpenERP business object model, e.g. a data type for the “sales order” ob-

12

ject, a data type for “sales order line” object, etc. This would remove the burden of
data type development from the YAWL process designer, but would at the same
time limit the flexibility of the codelet to a fixed set of business objects, their data
and methods as determined by the codelet design.

o Offer access to generic as well as specific OpenERP operations with no abstraction
from the OpenERP XML-RPC API. This requires the codelet user, i.e. the YAWL
process designer, to develop appropriate business object data types and deal with
the specifics of data transformation to the OpenERP API on the YAWL side, e.g.
as part of the input and output mappings for tasks. The benefit is that the codelet
does not prescribe specific data types, and it can access any OpenERP business ob-
ject or workflow. The codelet was developed based on this, second model.

The codelet itself is stateless and establishes a new connection to the OpenERP
system for every call, thus requiring the OpenERP connection information with every
call. While this may not be as efficient as returning a connection handle to the YAWL
workflow, the fact that the YAWL workflow may be long-running means that a con-
nection handle in the YAWL workflow data might expire. Further, as tasks in the
YAWL workflow may be assigned to different (human) resources, maintaining a
quasi-persistent connection handle would also force the same OpenERP user account
for the entire workflow, which may not be desirable in practice.

4 Use and Example

Table 1 lists the input parameters for the codelet. The content of the method
parameter is limited to the five generic methods for OpenERP business objects:
search, write, read, delete, create, and the additional action, which is
used for sending signals to OpenERP workflows. The results that the codelet returns
depend on the invoked method. Alternatively, the codelet returns an error, either
passed back from OpenERP, or an exception in the codelet, or an error encountered
by the codelet, e.g. when the input paramters do not match the invoked method type.

Parameter Type Description

URL xsd:String Hostname for OpenERP

Port xsd:Integer Network port for OpenERP

Database xsd:String OpenERP database to select

Username xsd:String Username for OpenERP

Password xsd:String Password for OpenERP

Object xsd:String Type of OpenERP business object on which
method or action is to be called

Method xsd:String OpenERP method name

Parameters | ParameterType | Parameters appropriate for the called method

Table 1. OpenERP codelet input parameters

13

Figure 2 below shows the YAWL workflow for creating and processing sales or-
der. That workflow is based on managing sales orders in OpenERP, shown in Figure
1 above. The codelet design decisions have an impact on the usage of the codelet in
two important ways. First, the direct representation of the basic OpenERP method
calls (search, read, etc.) leads to typical combinations of search-read sequences as two
automated tasks in the YAWL workflow. Second, the relatively low degree of ab-
straction of the codelet parameters suggests that the data transformations in the
YAWL task input-/output-mappings are not trivial. Thus, the use of the codelet re-

quires considerable XQuery expertise.

Specification I Sel\PruductManuaHnuolceFlnaI MNet ID: SellProductManualinvoice
®] L
SelectCustomer SelectShlpplngA}Iﬁe\ /gelectPl oducts CreateSalesOrder
SelectBlIImgAddl ess O
— ——
Conf% der CancelQﬂﬂOl rder

elDraft

=

DoConfirm DoCan

J —

{ . ’
Createlnvoice Createlnvoice

DoProcefslnvoicesProcesslnvoice GetlnvoicelDs

PracessDelivery GetPickinglDs

Fig. 2. Sales order process

5 Use in Teaching and Current Status

When the project was initiated, the intended use of the YAWL-OpenERP interface
was to allow students to create realistic workflow definitions for simple processes like
sales order processing, as part of an assignment or course project. It was hoped that by
using a realistic integration with business data in the ERP system, the usefulness of
workflow management could be demonstrated to students and lead to better apprecia-
tion and understanding of the business value of process automation. Specifically, the

experiential learning is argued to:

e increase student engagement,
e improve student skill development,
e increase student learning and understanding.

14

As the codelet implementation is now complete and an example process (Figure 2)
is implemented, we have found that the level of YAWL, OpenERP, and XML
knowledge required to develop integrated workflows is beyond what can be taught in
an introductory course that has no computer science or programming pre-requisites.

There are a number of possible responses to this situation. First, we are aiming to
have students interact with the process, rather than create their own workflows. For
the coming fall semester, we are working to make the defined workflow more robust
to user error and to provide a better user interface. At the same time we are develop-
ing computer lab exercises for students to use the pre-defined workflow. Finally, we
are developing workflows for processes other than sales order management.

A second possible response is to investigate the aggregation of lower-level tasks
that access the codelet into higher-level workflow fragments, whose use does not
require knowledge of OpenERP, XML, or the codelet design. One option for this is
the use of worklets which can then be assembled by students. However, the current
course design does not include worklets or declarative workflow design. Another
alternative is to provide students with a workflow specification that contains a number
of YAWL nets, which can either be copied-and-pasted into students” own work, or to
which composite tasks that students create as part of their own workflows can be
unfolded. The current example process (Figure 2) already contains many such ab-
stractions as composite tasks. Again, a set of computer lab exercises for students will
be developed around this idea in time for the fall semester.

5.1 Evaluation

The intended learning outcomes will be evaluated using questionnaires measuring
student engagement, adapted from [3, 4], perceived skill development, adapted from
[5]. Further, questions on student’s understanding of workflow management princi-
ples and the role and capabilities of YAWL in process automation will be used:

e In your own words, describe what the YAWL system is. (Q1)
e In your own words, describe the place of the YAWL system in a company. (Q2)
e In your own words, describe how the YAWL system relates to other information
systems in a company.(Q3)
e In your own words, describe why and how the YAWL system can be useful to a
company. (Q4)
Additionally, Likert-type scales will be used for the following questions:
I have a good understanding of workflow management (Q5a)
I am able to explain workflow management to other students (Q5b)
I am able to use workflow management systems (Q5c)
I am able to make a business case for workflow management. (Q5d)
. These questionnaires will be administered using a pre- and post-test design before
and after a computer lab class that involves the OpenERP interface. This allows us to
measure the changes in students introduced by the realistic workflow environment.
Additionally, on the post-test questionnaire, students motivation was assessed, using
the following Likert-type scales:
e | would discuss related topics outside the class. (Q6a)

15

e | would do additional reading on related topics. (Q6b)
e | would do some thinking for myself about related issues. (Q6c)

5.2 Initial Results

To satisfy the requirements of the instructional development grant under which the
project was funded, a preliminary evaluation of benefits had to be assessed, even
though the OpenERP interface was not yet fully integrated into the pedagogics of the
course. To meet the deadline, the integration between WfMS and ERP was demon-
strated by the course instructor using the sales order management process in Figure 2.
Students were shown the workflow definition, the OpenERP data, and the running
workflow. As expected, a demonstration is not as engaging or interesting as experien-
tial learning, and the initial results reflected this.

From a total of 77 students, 57 responses were received, of which 53 provided in-
formation on both the before and after questionnaire.

The understanding questions (Q5a-Q5d) were averaged as they all represent under-
standing of WfMS. There was no significant difference between the means for the
before and after questionnaire (before = 3.80, after = 3.97, on a 7-point scale).

The motivation questions (Q6a-Q6c) were used only on the post-test questionnaire.
The results indicate moderate motivation levels (approx. scale mid-point) for Q6a and
Q6bh, whereas Q6¢ shows good motivation levels. The difference is not surprising, as
the Q6a and Q6b asked students whether they would take some action, whereas Q6c¢
only asked whether they would “think about” the topic.

Finally, we examined the engagement [3, 4], perceived skill development [5] and
perceived usefulness (single item). The descriptive results are shown in Table 2.

Mean SD
Perceived Engagement 3.33 1.39
Perceived Skill-Development 4.04 1.29
Perceived Usefulness 4.26 1.58

Table 2. Results for engagement and skill development, on 7-point Likert scales

The results indicate that the demonstration was not engaging to students (mean less
than scale mid-point, but not significant as per t-test). However, the demonstration
was perceived as improving skill development (mean significantly above scale mid-
point, p<0.01) and useful (mean significantly above scale mid-point, p<0.01). The
result with respect to engagement is not surprising as the demonstration required stu-
dents to watch for 15 minutes rather than interacting with the system themselves in a
true experiential way, as originally intended. The results with respect to skill devel-
opment and usefulness are encouraging, especially given the low level of student
engagement. We believe that this can be significantly increased once true experiential
interaction with the system is available.

16

Only 18 responses were received with answers for Q1-Q4 differing between the
before-demonstration and after-demonstration questionnaire. The answers were exam-
ined to identify improvements in understanding. Of the 18 respondents, only 12
showed improvements in understanding and even fewer showed a marked improve-
ment across all four questions. The low response rate is likely due to the low level of
engagement..

6 Discussion and Conclusion

This paper presented a YAWL codelet to access the OpenERP system. The codelet
exposes low-level access functionality, rather than business-level objects or methods.
This low level of abstraction requires the codelet user to have a thorough understand-
ing of the OpenERP data model, methods and workflows. At the same time, this de-
sign makes the codelet useful for the widest range of applications. Codelet users and
workflow designers may also use YAWL features to build additional layers of ab-
straction on top of this foundation. For example, YAWL worklets could be defined
that aggregate some of the codelet functions, e.g. the search-read combinations, into
assemblies that are meaningful at the business level.

Designed as part of a project to introduce experiential learning into an undergrad-
uate business degree, the codelet is essentially feature-complete and robust, but the
development of teaching material, example workflows, and associated documentation
is still in progress. An evaluation of the usefulness of the OpenERP interface for
teaching workflow management is planned, based on goals such as increased under-
standing, increased student engagement, and increased skill development. An evalua-
tion that was not based on experiential learning has only shown limited improvements
on these dimensions, but this is expected to improve once the interface is ready for its
intended use in the classroom and computer lab tutorials.

While this project focused on the OpenERP system, we believe that the challenges
we faced, and the design decisions we made, e.g. w.r.t. having to “mimic” the internal
workflow or the choice between providing abstraction or a direct interface, are not
unique to OpenERP and applicable to other open-source or commercial ERP systems.

7 Bibliography

1. Ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russel, N.: Modern Business
Process Automation. Springer, Heidelberg (2010)

2. Beard, C.M., Wilson, J.P. (2006) Experiential Learning: A Best Practice Handbook for
Educators and Trainers (2nd. Ed.). Kogan Page Limited, Philadelphia, PA.

3. Webster, J. and Ahuja, J.S. (2006) “Enhancing the design of web-navigation systems: The
influence of user disorientation on engagement and performance,” MIS Quarterly, (30:3),
pp. 661-678.

4. Webster, J. and Ho, H. (1997) “Audience Engagement in Multimedia Presentations,” The
DATABASE on Advances in Information Systems, (28:2), pp. 63-77.

5. Alavi, M. (1994) "Computer-Mediated Collaborative Learning: An Empirical Evaluation,”
MIS Quarterly, (June), pp. 159-174.

17

