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Abstract—Process discovery is an approach to extract process models from event logs. Given the distributed nature of modern
information systems, event logs are likely to be distributed across different physical machines. Map-Reduce is a scalable
approach for efficient computations on distributed data. In this paper we present Map-Reduce implementations of two well-
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1 INTRODUCTION

Process mining is the analysis of event logs. Many
information systems produce event logs that capture
the actions of their users. Examples of event logs
are page requests of web-servers and business-object
method calls in ERP systems. Process discovery is
that area of process mining that deals with the iden-
tification of the processes followed by system users,
for example the process of ordering a product on an
e-commerce web-site, or the process of scheduling
a manufacturing order in an ERP system. Process
discovery is important when the underlying systems
are not process-aware [1], [2]. Another area of process
mining is compliance assurance, determining whether
the actually executed process conforms to a prescribed
one [3]. Recently, process mining has been applied to
web-service discovery and improvement [4].

Modern information systems, such as web-crawlers,
web-servers, ERP systems, databases, etc., are increas-
ingly distributed, with replicated instances deployed
on multiple physical machines, for example as part of
a load-balancing architecture or for geographic prox-
imity to users. Given the distributed nature and the
increasing size of event logs, it is natural to look for a
distributed way to mine these for processes. The Map-
Reduce approach [5] is a scalable means of analyzing
distributed data and performing distributed computa-
tions on such data. In this paper, we describe how two
well-known process mining algorithms, the Alpha
algorithm [6] and the Flexible Heuristics Miner (FHM)
[7], [8], [9], can be implemented using Map-Reduce.
Such implementations take advantage of the natural
fit between distributed event logs and distributed
computations, to make the algorithms scalable to large
data sets.

The remainder of the paper is structrured as fol-
lows. We first briefly present the general idea of pro-
cess mining and the general Map-Reduce approach
to distributed computation. We then describe our
implementation of the Alpha algorithm using Map-
Reduce, with a detailed description of the required
mappers, reducers, and data types. Following this, we
describe our implementation of the FHM algorithm
using Map-Reduce, again with a detailed description
of the mappers, reducers, and data types. Experi-
mental results are presented for both algorithms to
demonstrate performance and scalability. We then
discuss our results and the relationship to prior work,
before concluding with an outlook to future work.

2 PROCESS MINING FROM EVENT LOGS
AND RUNNING EXAMPLE

In this section, we illustrate the general concepts of
process mining, using an example from [6]. We use
this as a running example throughout the remainder
of the paper.

Event logs minimally contain information about
events referring to a case (process instance), the event
type, and a timestamp. Events indicate the execution
of instances of activities or tasks (e.g. the completion
of a work item in a workflow-management system).
Hence, event types refer to activities and we use the
terms event type, task, and activity interchangeably
in this paper. Consider the event log of 19 events for
5 cases presented in Table 1. Each case begins with
execution of A and finishes with execution of D. If
activity B is executed, then activity C is also executed.
However, for some cases, activity C is executed before
activity B. The time-ordered sequence of activities for
each case is called a trace.
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TABLE 1
An example event log

Case ID Activity ID Time Stamp
Case 1 Activity A 1
Case 2 Activity A 2
Case 3 Activity A 3
Case 3 Activity B 4
Case 1 Activity B 5
Case 1 Activity C 6
Case 2 Activity C 7
Case 4 Activity A 8
Case 2 Activity B 9
Case 2 Activity D 10
Case 5 Activity A 11
Case 4 Activity C 12
Case 1 Activity D 13
Case 3 Activity C 14
Case 3 Activity D 15
Case 4 Activity B 16
Case 5 Activity E 17
Case 5 Activity D 18
Case 4 Activity D 19

Definition 1. (Trace) A trace σ = t1 . . . tn is a temporally
ordered sequence of events for one case (process instance)
in an event log.

Our example log in Table 1 contains five traces, of
which only three are unique:

σ1 = σ3 = ABCD, σ2 = σ4 = ACBD, σ5 = AED

The workflow net [10] in Figure 1 shows one of an
infinite number of process models that can give rise
to the event log in Table 1.

Process mining approaches can be distinguished to
what extent they are able to accommodate ”noisy”
data, where noise is defined not as errors in the log,
but as ”outliers” [1], i.e. highly unusual traces. For ex-
ample, the Alpha algorithm [6] does not take ”noisy”
data into account, resulting in overly complex process
models as the algorithm attempts to account also for
unusual traces. In contrast, the Flexible Heuristics
Miner (FHM) [7], [8], [9] was specifically designed to
work on noisy data and in low-structured domains,
i.e. domains where very different traces may be found.

Generally, process mining first defines and com-
putes log-based ordering relations between the el-
ements of a trace. The specific log-based ordering
relations differ between process mining approaches,
but are generally based on the concept of which
activity follows (or does not follow) which other activ-
ity. The log-based ordering relations are subsequently
aggregated. For example, it may be important to know
whether or how often two events follow each other,
but it is not important to retain each instance or
associated trace. Because of this, once the log-based
ordering relations are computed, the process mining
algorithms operate on a comparatively small data set
to derive the process model. However, the FHM algo-
rithm does require individual traces for later phases
of the algorithm (Section 5)

3 THE MAP-REDUCE FRAMEWORK

Map-Reduce is a programming approach for large
scale data processing in a distributed computing en-
vironment [5]. Conceptually, it uses a two-phase ap-
proach.

In the first phase, the map() function accepts as
input a series of (InKey, InValue) pairs from
an input reader and provides as output a series of
(OutKey, OutValue) pairs. Figure 2 illustrates this
using a simple example from [11]. The input text
files are provided to map() as a series of (InKey,
InValue) pairs where the key represents the file
offset, and the values represent distinct lines in the
file. The output of map() is a series of (OutKey,
OutValue) pairs where the key represents a year,
and the value represents an observed temperature.

In the intermediate phase, this output of map() is
presented to shuffle() which sorts the input by key
and collects the values for different keys. It provides
output as a series of tuples of the form (OutKey,
OutValue1, OutValue2, ...). In the example in
Figure 2, this creates a list of temperatures for each
year. This output set is partitioned and each partition
sent to a reducer in the second phase.

In the second phase, the reduce() function takes
as input a series of tuples of the form (OutKey,
OutValue1, OutValue2, ...) and provides as
output a series of (Out2Key, Out2Value) pairs. In
the example in Figure 2, the reducer computes the
maximum of the list of temperatures for each year.

The data types for InKey, InValue, OutKey,
OutValue, Out2Key, Out2Value may be differ-
ent from each other, and may be arbitrarily complex
data types, provided that OutKey is comparable (i.e.
a compareTo() function is provided). Hence, the im-
portant aspect in implementing a Map-Reduce based
algorithm is the combination of suitable sequences of
map() and reduce() function with appropriate data
types for the keys and values.

The following sections define such a sequence of
mappers, reducers, and data types for the Alpha and
the FHM algorithm. Both algorithms require two map-
reduces phases (”jobs”) to compute the log-based
dependency relations that form the basis for the al-
gorithms. The general idea for both implementations
is to design the key and value data types so that the
first reducer sees and operates on complete traces,
and the second reducer sees and operates on complete
information about the log-based ordering relations of
an event pair (e.g. (A,B)) and its inverse (e.g. (B,A)).
The FHM algorithm requires further map-reduce jobs
to mine the split and join types.

4 IMPLEMENTING THE ALPHA ALGORITHM
USING MAP-REDUCE

This section describes our implementation of the Al-
pha algorithm using the Map-Reduce framework. We
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Fig. 1. A workflow net corresponding to the workflow log in Table 1

0067011990...
0043011990...
0043011990...
0043012650...
0067012650...

(0,0067011990...)
(106,0043011990...)
(212,0043011990...)
(318,0043012650...)
(424,0067012650...)

input

(1950,0)
(1950,22)
(1950,-11)
(1949,111)
(1949,78)

map (1949,[111,79])
(1950,[0,22,-11])

shuffle (1949,111)
(1950,22)

reduce 1949,111
1950,22

output

Fig. 2. Map-Reduce example, from [11]

begin by describing the algorithm with a focus on the
log-based ordering relations.

4.1 The Alpha Algorithm
The Alpha process mining algorithm discovers one
possible workflow net [10] from the observed event
logs under the assumption that there is no noise in
the event log data. The Alpha algorithm first identifies
log-based ordering relationships between activities.
These are termed ”causal” relationships in [6]. For
example, when an activity always follows another
activity but not vice-versa, there may be a causal
relationship between the activities. The identification
of possible causal relationships is based on four types
of ordering relations.

Definition 2. (Log-based ordering relations for the Alpha
algorithm) Let T be a set of activities and W be an event
log over T . Let a, b ∈ T :
• a >w b iff there is a trace σ = t1t2t3 . . . tn−1 in
W such that σ ∈ W and ti = a and ti+1 = b for
i ∈ {1, . . . , n− 2}

• a→w b iff a >w b and b 6>w a
• a ‖w b iff a >w b and b >w a
• a#wb iff a 6>w b and b 6>w a

The first relation (>w) is the basic temporal order in
the event log from which the other relations are com-
puted. The second relation (→w) represents a possible
causal order between activities. The third relation (‖w)
represents potential parallelism. The last relation (#w)
represents those activities that never follow each other
directly.

From these log-based ordering relations, the Al-
pha algorithm generates a workflow net (Pw, Tw, Fw).
Specifically, Tw consists of event types which occur in
at least one trace in W , Ti ⊆ Tw consists of event types
at the begining of traces in W and To ⊆ Tw consists of
event types at the end of traces in W . In our example:

Tw = {A,B,C,D,E}, Ti = {A}, To = {D}

Next, the set Xw is determined from the log-based
ordering relations as follows. Let Q,R be sets of
activities. Then (Q,R) ∈ Xw iff there is a causal
relation from each element of Q to each element of R
(i.e. all pairwise combinations of elements of Q and
R are in →w) and the members of Q and R are not in
‖w. In our example:

Xw ={({A}, {B}), ({A}, {C}), ({A}, {E}), ({B}, {D}),
({C}, {D}), ({E}, {D}), ({A}, {B,E}),
({A}, {C,E}), ({B,E}, {D}), ({C,E}, {D})}

The set Yw are the maximally contained elements of
Xw. In our example:

Yw ={({A}, {B,E}), ({A}, {C,E}), ({B,E}, {D}),
({C,E}, {D})}

The set of places Pw contains an input place iw,
an output place ow and one place p(Q,R) for every
member of Yw. In our example:

Pw ={iw, ow, p({A},{B,E}), p({A},{C,E}), p({B,E},{D}),

p({C,E},{D})}

Finally, the flow relation Fw is determined as the
union of the following sets:

Fw ={(a, p(Q,R))|(Q,R) ∈ Yw ∧ a ∈ Q}∪
{(p(Q,R), b)|(Q,R) ∈ Yw ∧ b ∈ R}∪
{(iw, t)|t ∈ TI} ∪ {(t, ow)|t ∈ TO}

In our example:
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Fw ={(iw, A), (A,P({A},{B,E})), (P({A},{B,E}), B),

. . . , (D, ow)}

It is important to note that the computation of the
log-based ordering relations occurs on the event logs.
The subsequent computations of Pw, Tw and Fw are
performed on considerably smaller data sets, whose
upper bound is a function of the number of distinct
event types in the event logs, rather than the size
of the event logs themselves. Hence, it is primarily
the computation of the log-based ordering relations
that can benefit from the distributed computation
model provided by Map-Reduce. To compute these
relations, we define two sets of mappers and reducers,
following each other.

4.2 Map-Reduce for >w and 6 >w

In general, information for each case may not be
entirely contained on a single physical compute node.
For example, a single user session may span multiple
physical compute nodes because of load-balancing
reasons; a single user session may involve the logs
of multiple systems on different nodes; or automatic
log rotation may have split a single user session into
different event log files. Hence partial case informa-
tion may be present on different compute nodes and
a mapper cannot assume complete case information.
Thus, the first step is to extract the events and time-
stamps for each case from the log on each node so
that complete case information is presented to the
subsequent reducer.

The input to map() is a log file in the
form of Table 1. The standard TextInputFormat
presents a line of the log file to the map() func-
tion, which is parsed and emitted as a series of
(CaseID, (Event, T imeStamp)) tuples. The output
key is CaseID so that the subsequent reducer sees the
complete trace information. The timestamp informa-
tion is retained because the subsequent shuffle()
makes no guarantees about the order of the values in
the list presented to reduce(). Formally:

map1 :(Int,Text)
→ set(CaseID, (Event,TimeStamp))

This set of tuples is the input to shuffle(), which
collects the set of activities for each case ID, i.e. a
trace as defined in Definition 1, as input to reduce().
Formally:

shuffle1 :set(CaseID, (Event,TimeStamp))
→ (CaseID, set(Event,TimeStamp))

The first reducer computes the log relation >w. Each
trace itself is sufficiently small, relative to the size

of the event log. Hence, the reducer can operate on
it as a whole in memory to sort events by time. As
Definition 2 shows, further computations also require
information about pairs of activities that are not in >w,
i.e. are in the log relation 6>w. However, the absence
of an activity pair in >w for a single trace does not
imply that the activity pair is in 6>w as it may be in
>w for a different case. Thus, we explicitly keep track
of activity pairs in 6>w for each trace.

For example, consider the trace for case 1
in our example as emitted by shuffle():
(1, ((A, 1)(B, 5)(C, 6)(D, 13))). The trace consists
of four activities and hence sixteen possible
event pairs. Because the computations of the log-
based ordering relations in the subsequent reducer
require information about (A,B) as well as (B,A),
information about both event pairs must be presented
to the same reducer instance, and thus require the
same key for the subsequent shuffle(). Hence,
we write each pair of event IDs in a canonical form,
e.g. lowest event ID first, and additionally maintain
information about the direction of the collected
information, i.e. whether it represents (A,B) or
(B,A). Thus, for our example, we need to consider
only 10 distinct event pairs: (A,A), (A,B), (A,C),
(A,D), (B,B), (B,C), (B,D), (C,C), (C,D), (D,D).
For each pair, we must determine whether it (e.g.
(A,B)) is in >w or 6>w for this trace and whether its
”inverse” (e.g. (B,A)) is in >w or 6>w for this trace.

Consider the first event pair (A,B). According
to the trace, A is immediately followed by B,
while the opposite is incorrect, so that we write
[AB, (F+, NF−)]. In our notation ’F ’ stands for ”fol-
lows” and ’NF ’ for ”not follows”, expressing the
relations >w and 6>w, respectively. We use the su-
perscripts + and − to indicate the ”directionality”,
i.e. order of the pairs in the relation. Again, rather
than associating information with (A,B) and (B,A)
separately, we associate this information only with
the pair (A,B). The superscripted + shows whether
the second event follows (not follows) the first one,
while the superscripted − means that the first event
follows (not follows) the second one (i.e. signifies the
”inverse” of the event pair). Thus, (AB, (F+, NF−))
means that (A,B) is in >w and (B,A) is in 6>w.

The reduce() function computes the log-based
ordering relations in this form for each case (trace)
and emits them as key-value pairs, where the com-
posite key is the event pair, while the value is a log
relation, either F+, F−, NF+ or NF−, as illustrated
in Figure 3. Formally,

reduce1 :(CaseID, set(Event,TimeStamp))
→ set((Event,Event), (Boolean,Boolean))
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(1,<A,1>)
(2,<A,2>)
(3,<A,3>)
(3,<B,4>)
(1,<B,5>)

...

(1,[<A,1>,<B,5><C,6><D,13>])
(2,[<A,2>,<C,7>,<B,9>,<D,10>])

(3,[<A,3>,<B,4>,<C,14>,<D,15>])
(4,[<A,8>,<C,12>,<B,16>,<D,19>])

(5,[<A,11>,<E,17>,<D,18>])

map

(1,[AB,F+], [AB,NF-],
[AC,NF+],[AC,NF-],
[AD,NF+],[AD,NF-],

[BC,F+],[BC,NF-],
[BD,NF+],[BD,NF-],

[CD,F+],[CD,NF-])
...

reduce

Fig. 3. The first Map-Reduce logical data flow for the Alpha algorithm

4.3 Map-Reduce for ‖w, #w and→w

The possibly multiple reduce nodes in the first Map-
Reduce phase may leave the information about each
pair of event IDs scattered across different nodes. In
the second phase, we use an identity map() func-
tion to read this information and use a combiner
(combine()) to aggregate information for each pair
of event IDs by removing redundant information.
Formally:

map2 :((Event,Event), (Boolean,Boolean))
→ ((Event,Event), (Boolean,Boolean))

combine2 :((Event,Event), (Boolean,Boolean))
→ ((Event,Event), (Boolean,Boolean))

Consider the following information that is passed
unchanged by map() to combine().

(AB,F+)
(AB,NF−)
(AB,NF+)
(AB,NF−)
(AB,F+)
. . .

Removing the duplicate log relation values using
combine(), the intermediate shuffle phase collects
information for the same key (i.e. event pair) and
provides the following input to reduce():

(AB, (F+, NF−, NF+))
. . .

Note that it is not possible to compute the log-based
ordering relations in the combine() function, as the
combiners are not guaranteed complete information
about a pair of event IDs.

Each reducer is then presented with the complete
information about each event pair (A,B) and its
inverse (B,A). The reduce function can now compute
and emit the log-based ordering relations→w, #w and
‖w according to Definition 2. Formally:

reduce2 :((Event,Event), set(Boolean,Boolean))
→ set((Event,Event),LogRelation))

The distinction between F and NF is formally
a boolean, and the distinction between + and is

formally a boolean. Hence, {F+, NF−, NF+} is for-
mally set of 3 pairs of booleans.

In the example we have:
(AB, ‖w)
. . .

The second data flow is illustrated in Figure 4. The
output of this final reduce() function provides the
input of the later phases of the Alpha algorithm which
constructs the workflow net.

The multiple reducers of this phase may leave
outputs scattered in different files. As each key is
processed only once, there are no duplicates to filter
and the separate output files need only be combined.
This can be done as a subsequent map-reduce job or
after retrieving the results from the Hadoop cluster.

4.4 Performance
We conducted an experimental study to evaluate the
scalability and effectiveness of our Alpha implementa-
tion. The PLG process log generator [12] can randomly
create process models based on parameters such as
the proportion of XOR splits, AND splits, etc. We
used this to create a process model containing 47
activities. We then used PLG to create an event log
with 10,000 randomly created traces from this process
model. We replicated this event log 500 times, for a
total of 5,000,000 event traces. The total file size was
approximately 80GB, a size where the use of the Map-
Reduce approach becomes viable. We processed these
logs using the Amazon Elastic Map-Reduce (EMR)
service that provides the Hadoop system1, a widely
adopted open-source implementation of Map-Reduce.
Input, intermediate results and outputs were stored
on the Amazon S3 service.

To provide a baseline for demonstrating the bene-
fits of using the scalable map-reduce framework, we
first configured a Map-Reduce cluster with a single
medium size compute node2, and specified a single
map and single reduce task. Specifying the number
of map tasks does not impose a hard constraint but
is only a suggestion to the Hadoop framework. As
a result, EMR ran two concurrent map tasks on the
single compute node. This represents a single-server

1. http://hadoop.apache.org
2. AWS EC2 m1.medium machine type, single thread, 3.75GB
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AB,F+
AB,NF-
AC,NF+
AC,NF-

...

(AB, [F+,NF-,NF+])
(AC,[NF+,NF-,F+])

...

map
(AB, [F+,NF-])
(AC,[F+,NF-])

...

reduce
(combine)

(AB,||)
(AC,->)

...

reduce

Fig. 4. The second Map-Reduce logical data flow for the Alpha algorithm

TABLE 2
Performance results for a single medium size Map-Reduce task node, total job execution time 1 day 1 hour

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:34:17.930 184,464,000 500 2
Phase 1, reduce 2:29:37.070 4,919,394,000 1 1
Phase 2, map 18:4:5.800 4,919,394,000 1113 2
Phase 2, combine 29,963,958
Phase 2, reduce 0:5:29.750 1,012 1 1

TABLE 3
Performance results for a cluster of 10 medium size Map-Reduce task nodes, total job execution time 1 hour 24

minutes

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:32:47.060 184,464,000 500 20
Phase 1, reduce 2:34:53.150 4,919,394,000 21 10
Phase 2, map 11:40:7.200 4,919,394,000 1113 20
Phase 2, combine 29,964,565
Phase 2, reduce 0:5:55.650 1,012 21 10

TABLE 4
Performance results for a cluster of 10 high performance Map-Reduce task nodes, total job execution time 8

minutes

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:54:58.430 184,464,000 500 480
Phase 1, reduce 2:2:59.620 4,919,394,000 108 120
Phase 2, map 8:43:31.160 4,919,394,000 1188 480
Phase 2, combine 30,203,398
Phase 2, reduce 0:9:46.610 1,012 108 120

setup and serves as a useful baseline. The perfor-
mance results and number of processed tuples at each
phase are shown in Table 2. The total job execution
time was 1 day and 1 hour.

We chose not to use existing implementations of
the Alpha algorithm as a baseline for comparison,
because these are in-memory implementations and
do not scale beyond a certain data set size. We also
wanted to focus on the scalability that can be achieved
by a parallel map-reduce implementation and rule out
differences in the use of internal data structures and
implementation details of the algorithm.

Next, for a more realistic case, we provisioned a
cluster with 10 medium instances as Hadoop task
nodes in addition to master and controller nodes. The
performance results and number of processed tuples
at each phase are shown in Table 3. The total job

execution time was 1 hour and 24 minutes. To further
demonstrate the scalability, rather than increasing the
number of nodes in the cluster, we increased the
performance of each node. Using a cluster of 10 high-
performance compute nodes3 reduced the total job
execution time to just 8 minutes (Table 4).

5 IMPLEMENTING THE FLEXIBLE HEURIS-
TICS MINER USING MAP-REDUCE

This section describes our implementation of the
Flexible Heuristics Miner (FHM) algorithm using the
Map-Reduce framework. This more recent algorithm
was developed to address the realities of noisy event
logs and low-structured domains [7], [8], [9].

3. AWS EC2 cc2.8xlarge machine type, 32 threads, 60.5GB
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5.1 The Flexible Heuristic Miner Algorithm
The Flexible Heuristic Miner (FHM) algorithm is de-
signed to be used with noisy event log data in that
it allows the exclusion of rare or unusual traces that
should be considered ”outliers” for the discovery of
the process model. The FHM algorithm defines three
log-based ordering relations:

Definition 3. (Log-based ordering relations for the FHM
algorithm) Let T be a set of activities and W be an event
log over T . Let a, b ∈ T :
• a >w b iff there is a trace σ = t1t2t3 . . . tn−1 in
W such that σ ∈ W and ti = a and ti+1 = b for
i ∈ {1, . . . , n− 2}

• a >>w b iff there is a trace σ = t1t2t3 . . . tn−1 in W
such that σ ∈W and ti = ti+2 = a and ti+1 = b for
i ∈ {1, . . . , n− 3}

• a >>>w b iff there is a trace σ = t1t2t3 . . . tn−1 in
W such that σ ∈W and ti = a and tj = b and i < j
for i, j ∈ {1, . . . , n− 1}

The first relation (>w) is the basic temporal order in
the event logs (sequence of activities) that is also used
by the Alpha algorithm and represents direct succes-
sors of activities in the log. The second relation (>>w)
represents loops of length two between activities. The
third relation (>>>w) represents the general succes-
sor relationship, either direct or indirect, irrespective
of the distance of the two activities in the log.

From these log-based ordering relations, the FHM
algorithm constructs ”dependency measures” that ex-
press the relative frequency of the occurrence of ele-
ments in each log-based ordering relation. These de-
pendency measures indicate the ”certainty” that there
is a true dependency relation between two events A
and B, or that there is truly a loop of length two.

Definition 4. (Dependency measures for the FHM algo-
rithm) Let T be a set of activities and W be an event log
over T . Let a, b ∈ T , |a| the number of times a occurs in
W , |a >w b| the number of times a >w b occurs in W ,
|a >>w b| the number of times a >>w b occurs in W ,
|a >>>w b| the number of times a >>>w b occurs in W .
Then:

a⇒w b =

(
|a >w b| − |b >w a|
|a >w b|+ |b >w a|+ 1

)
if (a 6= b)

a⇒w a =

(
|a >w a|
|a >w a|+ 1

)
a⇒2

w b =

(
|a >>w b| − |b >>w a|
|a >>w b|+ |b >>w a|+ 1

)
a⇒l

w b = 2

(
|a >>>w b| − abs(|a| − |b|)

|a|+ |b|+ 1

)

Consider the following example traces, which have
been slightly modified from the running example for
the Alpha algorithm to include loops of length two:

TABLE 5
Subset of log-based relation counts for FHM for the
example log. Counts for event types not listed are

zero.

|A >w B| = 2 |B >w A| = 2
|A >w C| = 4 |C >w A| = 0
|B >w C| = 2 |C >w B| = 2
|C >w D| = 4 |D >w C| = 0
|A >w E| = 1 |E >w A| = 0
|E >w D| = 1 |D >w E| = 0
|A >>w B| = 2 |C >>w B| = 2
|A >>>w A| = 2 |A >>>w B| = 2
|A >>>w C| = 4 |A >>>w D| = 7
|B >>>w D| = 4 |B >>>w C| = 2
|C >>>w C| = 2 |C >>>w D| = 2

TABLE 6
Subset of dependency measures for FHM for the

example log. Dependencies for event types not listed
are zero.

A⇒w B = 0 B ⇒w A = 0
A⇒w C = 4/5 C ⇒w A = 0
B ⇒w C = 0 C ⇒w B = 0

C ⇒w D = 4/5 D ⇒w C = 0
A⇒w E = 1/2 E ⇒w D = 1/2
A⇒2

w B = 2/3 C ⇒w B = 2/3

A⇒l
w A = 4/15 A⇒l

w B = −1/6
A⇒l

w C = 3/7 A⇒l
w D = 10/13

B ⇒l
w D = 3/5 B ⇒l

w C = 0
C ⇒l

w C = 4/13 C ⇒l
w D = 1/6

σ1 = σ3 = ABACD, σ2 = σ4 = ACBCD, σ5 = AED

Table 5 shows the frequencies for the log-based
ordering relations for the FHM algorithm. Table 6
shows the resulting dependency measures for the
different types of dependencies.

The FHM algorithm uses these frequency-based
dependency measures to define a dependency graph.
The algorithm to construct the dependency graph can
be found in Definition 6 in [9]. It is at this phase that
the algorithm can take noise into account by requiring
certain threshold frequencies to be met in order for the
dependency to be considered ”real” or ”true”. Five
such thresholds are defined:

• δa: The absolute dependency threshold
• δL1L: The length-one-loops threshold
• δL2L: The length-two-loops threshold
• δl: The long-distance dependency threshold
• δr: The relative-to-best threshold

By default, δa = δL1L = δL2L = δl = 0.9, δr = 0.05.
In our example, all dependencies are below the de-
fault thresholds of 0.9 because of the small log size.
This reflects the fact that such a small sample size
does not permit much confidence in the support of
the relation, even when relations are frequent in the
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TABLE 7
Dependency Graph for Running Example (with

δa = δL1L = δL2L = 0.5)

Pre X Activity X Post X
{B} A {B,C,D,E}
{A,C} B {A,C,D}
{A,B} C {B,D}
{B,C,E} D {}
{A} E {D}

TABLE 8
Augmented CNet for Running Example (with

δa = δL1L = δL2L = 0.5)

Pre X Activity X Post X
{{B}2} A {{B}2, {C}4, {E}1}

{{A}2, {C}2} B {{A}2, {C}2}
{{A}4, {B}2} C {{B}2, {D}4}
{{C}4, {E}1} D {}
{{A}1} E {{D}1}

log. For our example, the dependency graph with
δa = δL1L = δL2L = 0.5 is given in Table 7.

As the name implies, the dependency graph indi-
cates only which event types depend on other event
types, but does not indicate whether a particular
event type is followed by an AND, an XOR, or an
OR split (or, conversely, whether a particular event
type is preceded by an AND, an XOR, or an OR
join). To identify the splits in the process model,
each trace is run ”forwards” against the dependency
graph. For example, if the dependency graph, as in
our example, states that tasks B, C, D, and E depend
on task A (i.e. they can possibly be activated by the
occurrence of task A), we wish to find out whether
A in some traces activates B and in other traces C, or
whether in all traces B and C are activated, or some
combination. The first case would represent an XOR
split, the second case would represent an AND split,
and the third case an OR split. To identify joins in the
process model, the same process is used but the traces
are run ”backwards” against the dependency graph.
The result of this step is an augmenented causal net
(CNet) which contains information about the frequen-
cies with which one event activates another event in
the workflow log. The reader is referred to Section
IV B in [9] for details. The augmented CNet for our
example is shown in Table 8.

As with the Alpha algorithm, we focus on the
design of the appropriate mappers and reducers for
the computation of the dependency measures, the
dependency graph, and the augmented causal net. We
define five sets of mappers and reducers.

5.2 Map-Reduce for the Log-based Ordering Re-
lations

The first Map-Reduce phase computes the log-based
ordering relations >w, >>w, >>>w as well as the

element counts |a| that are required for computing
the long-distance dependency ⇒l

w in the next phase.
The mapper of the first phase is identical to the

first-phase mapper for the Alpha algorithm. Again,
the input to map() is a log file in the form of
Table 1, which is parsed and emitted as a series
of (CaseID, (Event, T imeStamp)) tuples. The output
key is CaseID so that the subsequent reducer sees the
complete trace for a case. The time stamp is retained
because shuffle() makes no guarantees about the
order of the values in the list presented to reduce().
Formally:

map1 :(Int,Text)
→ set(CaseID, (Event,TimeStamp))

shuffle1 :set(CaseID, (Event,TimeStamp))
→ (CaseID, set(Event,TimeStamp))

As Definition 4 shows, further computations re-
quire information about pairs of activities as well
as about the ”inverse” pair. Thus, the design of the
first-phase reducer is similar to that for the Alpha
algorithm, in that we again require information about
the pair (A,B) and the pair (B,A) to be seen by the
same subsequent reducer to compute the dependency
measures. For example, the computation of a ⇒w b
requires information about a >w b as well as b >w a.
Hence, as for the first-phase reducer for the Alpha
algorithm, we associate information about both ”di-
rections” with the same event pair and maintain an
indicator of the ”directionality”.

For example, consider the trace for case one
in our example as emitted by shuffle():
(1, ((A, 1)(B, 5)(A, 6)(C, 7)(D, 13))). As with the
first-phase reducer of the Alpha algorithm, we write
each pair of event IDs in a canonical form, e.g. lowest
first. Thus, we need to consider only 10 distinct event
pairs: (A,A), (A,B), (A,C), (A,D), (B,B), (B,C),
(B,D), (C,C), (C,D), (D,D). For each pair, we must
determine whether it (e.g. (A,B)) is in >w, >>w or
>>>w and whether its ”inverse” (e.g. (B,A)) is in
>w, >>w, or >>>w.

Consider the first event pair (A,B). According to
the trace, A is immediately followed by B, while the
opposite is not the case, so that we write [AB,F+].
In our notation, ’F ’ stands for ”directly follows” and
expresses the relation >w. Similar to the output of
the first-phase reducer for the Alpha algorithm, the
superscripted + and − signs indicate ”directionality”:
A superscripted + indicates that the second event
directly follows the first one, while − means that
the first event directly follows the second one (i.e.
signifies the ”inverse” of the event pair). We compute
information about the two other log-based ordering
relations (>>w and >>>w) in a similar way and
write [AB,L2+] or [AB,L2−] to signify that either
(A,B) ∈ >>w or (B,A) ∈ >>w (”L2” signifies
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length-two-loops). We write [AB,S+] or [AB,S−] to
signify that either (A,B) ∈ >>>w or (B,A) ∈ >>>w

(”S” signifies the general (direct or indirect) successor
relation). Additionally, we also compute the frequency
of each element and emit each occurrence of an event
A in the same format as [AA,C+] (”C” signifies the
count of each element). This last relation is direction-
less and by default associated with a + superscript.

The reduce() function computes the log-based
ordering relations in this form for each case (trace)
and emits them as key-value pairs. The composite key
is the event pair, while the value is a tuple comprising
an integer expressing the type of log-based ordering
relation (”F”, ”L2”, ”S”, or ”C”), a boolean value
indicating the directionality, and an integer expressing
the number of occurrences of this relationship in this
trace. Formally:

reduce1 :(CaseID, set(Event,TimeStamp))
→ set((Event,Event),

(Integer,Boolean, Integer))

Including the occurrence counts for each case,
rather than emitting each occurrence as a separate
tuple, significantly reduces the data volume written
to the file system after this phase, which must be read
in the subsequent phase. Figure 5 illustrates the data
flow in the first phase.

5.3 Map-Reduce for the Dependency Measures

The possibly multiple reduce nodes in the first Map-
Reduce phase may leave the information about each
pair of event IDs scattered across different nodes.
The map function for this phase is the identity map
that simply reads the information and allows the
shuffle phase to provide complete information for
each pair of event IDs to a subsequent reducer. As
with the implementation of the Alpha algorithm, we
are able to use a combiner for optimization. Because
the dependency measures (Definition 4) are commu-
tative, but not associative, as required for a combiner
function, the combiner does not compute dependency
measures, but instead it aggregates occurrence count
information for each relation for each event pair as a
key. Formally:

combine2 :

set((Event,Event), (Integer,Boolean, Integer))
→ set((Event,Event), (Integer,Boolean, Integer))

Consider for example the following output by the
mapper (subscripts indicate occurrence counts, du-
plicates occur because these tuple were produced by
different reducers of the previous phase):

(AB,F+
1 )

(AB,L2−1 )
(AB,L2+1 )
(AB,L2−1 )
(AB,F+

1 )
(AB,F−1 )
(AB,F+

1 )
. . .

The combiner counts, for each event pair, and for
each direction (indicated by the superscripted + or −),
the number of occurrences of the log-based ordering
relation in its input (subscripted). For this example, it
emits the following output tuples:

(AB,F+
3 )

(AB,L2−2 )
(AB,L2+1 )
(AB,F−1 )
. . .

The intermediate shuffle phase collects the complete
information for each event pair and provides it to
the reduce() function. In our example, assuming
that no other mapper processes information about the
event pair (A,B), the shuffle() function presents
the following as input to reduce():

(AB, (F+
3 , L2

−
2 , L2

+
1 , F

−
1 ))

. . .
The reduce function computes and emits the de-

pendency measures according to Definition 4. First,
the reducer aggregates the occurrence counts of the
log-based ordering relation that it receives for each
event pair and for each direction (indicated by the
superscripted + or −) in the same way as the com-
biner did. Thus, in our example, it computes |A >w B|
and |B >w A|, |A >>w B| and |B >>w A|, and
|A >>>w B| and |B >>>w A|. For our example, the
reducer determines the following counts:
|A >w B| = 3
|B >w A| = 1
|A >>w B| = 1
|B >>w A| = 2
. . .

Next, the reducer uses these occurrence counts to
compute the dependency measures (Definition 4). For
our example, the reducer emits the following depen-
dency measures:

A⇒w B = 0.4 (emitted as (AB,F, 0.4))
B ⇒w A = −0.4 (emitted as (BA,F,−0.4))
A⇒2

w B = 0.75 (emitted as (AB,L2, 0.75))
B ⇒2

w A = 0.75 (emitted as (BA,L2, 0.75))
. . . . . .

The reducer output, in contrast to the mapper out-
put, does not associate different directionalities with
the same event pair: A ⇒w B is emitted seperately
from B ⇒w A. To reduce the data volume, only
dependency measures > 0 are emitted.

The long-distance dependency measure ⇒l
w re-

quires not only information about the count of the
successor (direct or indirect) relation, but also the
occurrence counts for each of the events. Because
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(1,<A,1>)
(2,<A,1>)
(3,<A,2>)
(3,<B,3>)
(1,<B,5>)

...

(1,[<A,1>,<B,5><A,6>,<C,7><D,13>])
(2,[<A,1>,<C,6>,<B,8>,<C,9>,<D,10>])

(3,[<A,2>,<B,3>,<A,4>,<C,13>,<D,14>])
(4,[<A,7>,<C,11>,<B,15>,<C,16>,<D,19>])

(5,[<A,11>,<E,17>,<D,18>])

map
(AA,C+ 1), (BB,C+ 1), ...
(AB,F+ 1), (AB,F- 1), ...

(AB,L2+ 1), (BC,L2- 1), ...
(AC,S+ 1), ...

reduce

Fig. 5. The first Map-Reduce logical data flow for the FHM algorithm

it is not possible to join this information in this
Map-Reduce phase as it is associated with different
keys, the reducer emits the raw occurrence counts
|A >>>w B|, |B >>>w A|, |A|, and |B| instead of the
dependency measure.

Formally, a dependency measure is a tuple compris-
ing an event pair, an integer value expressing the type
of dependency measure (directly follows ”F”, length-
two-loops ”L2”, successor ”S”) and a floating point
value containing the measure itself. The key that is
created by the reducer is a constant integer value c for
all tuples, as the following phase (construction of the
dependency graph) requires all tuples to be provided
to the same reducer.

reduce2 :

((Event,Event), set(Integer,Boolean, Integer))
→ set(c, (Event,Event, Integer,Float))

The second data flow is illustrated in Figure 6.

5.4 Map-Reduce for the Dependency Graph
The third Map-Reduce phase constructs the depen-
dency graph from the information produced by the
previous phase. The map function for this phase is an
identity map that simply collects the information pro-
duced by the previous phase reducers (recall that each
tuple had the same constant key). This information,
and user-supplied information about the thresholds
δa, δL1L, δL2L, δl, δr, is provided to a single reducer.
The reducer uses the algorithm in Definition 6 of
[9] to construct the dependency graph. In contrast to
the description in [9] the long-distance relationships
are added to the dependency graph at this point,
rather than after the computation of the split/join
information in the next step, so that a recomputation
of that information is not required. Formally,

reduce3 :

set(c, (Event,Event), set(Integer,Float))
→ set(c, (Event,Event))

The dependency graph is simply a set of event
pairs that indicates which event depends on which
other event(s). For example, the dependency graph in
Table 7 is encoded as follows:

(1, (A,B))
(1, (A,C))
. . .
(1, (C,D))
(1, (E,D))

While the data volume flowing into the reducer
is very small compared to the size of the original
log information, this phase represents a bottle-neck
in the amount of possible parallelization of the FHM
algorithm, as the dependency graph is a pre-requisite
for the following phase of computing the split/join
information.

5.5 Map-Reduce for the Augmented Causal Nets
(Split/Join Information)

Phase 4 of the Map-Reduce implementation of the
FHM algorithm uses the dependency graph and the
event logs to compute the split and join frequencies
for each event type in the dependency graph. The
dependency graph that is produced in the previous
phase is ”side-loaded” through Hadoop’s distributed
cache mechanism to each compute node in this phase
and is read by each reducer instance on initialization.

The map function for this phase is identical to that
in the first phase, and in the first phase of the Alpha
algorithm. It reads the log files and emits a series
of (CaseID, (Event, T imeStamp)) tuples. The subse-
quent shuffle phase then provides complete traces to
each reducer. Formally, a trace is a tuple of a case ID
and a set of event-timestamp pairs.

map4 :(Int,Text)
→ set(CaseID, (Event,TimeStamp))

shuffle4 :set(CaseID, (Event,TimeStamp))
→ (CaseID, set(Event,TimeStamp))

The reducer function for this phase of the FHM
implementation accepts a trace and, with the aid
of the dependency graph, computes the split and
join information as described in [8], [9]. The output
of the reducer is an augmented causal net of the
form in Table 8 as a set of tuples comprising the
activating or activated event type (i.e. that event for
which split/join information is provided), a boolean
value indicating directionality (i.e. whether this tuple
expresses split or join information), a set of event
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(AB,F+)
(AB,L2-)
(AB,L2+)
(AB,L2-)
(AB,F+)
(AB,F-)
(AB,F+)

...

(AB,F+)
(AB,L2-)
(AB,L2+)
(AB,L2-)
(AB,F+)
(AB,F-)
(AB,F+)

...

map

(AB,F+ 3)
(AB,L2- 2)
(AB,L2+ 1)
(AB,F- 1)

...

reduce
(combine)

(1, AB F 0.4)
(1, BA F -0.4)

(1, AB L2 0.75)
(1, BA L2 0.75)

...
(1, AA S 2)
(1, AB S 2)
(1, AC S 4)

...
(1, AA C 7)
(1, BB C 4)

...

reduce

Fig. 6. The second Map-Reduce logical data flow for the FHM algorithm

(1, AB F 0.4)
(1, BA F -0.4)

(1, AB L2 0.75)
(1, BA L2 0.75)

...
(1, AA S 2)
(1, AB S 2)
(1, AC S 4)

...
(1, AA C 7)
(1, BB C 4)

...

(1, AB F 0.4)
(1, BA F -0.4)

(1, AB L2 0.75)
(1, BA L2 0.75)

...
(1, AA S 2)
(1, AB S 2)
(1, AC S 4)

...
(1, AA C 7)
(1, BB C 4)

...

map

Delta-a
Delta-L1L
Delta-L2L

Delta-l
Delta-r

(1, AB)
(1, AC)

...
(1, CD)
(1, ED)

reduce

Fig. 7. The third Map-Reduce logical data flow for the FHM algorithm

types (i.e. the set that is activated by or activates the
focal event), and the frequency count. For example,
the augmented CNet in Table 8 would be output as
key-value pairs as follows:

((A, {B},−), 2)
((B, {A},−), 2)
((B, {C},−), 2)
((C, {A},−), 4)
((C, {B},−), 2)
((D, {C},−), 4)
((D, {E},−), 1)
((E, {A},−), 1)
((A, {B},+), 2)
((A, {C},+), 4)
((A, {E},+), 1)
((B, {A},+), 2)
((B, {C},+), 2)
((C, {B},+), 2)
((C, {D},+), 4)
((E, {D},+), 1)

We use the information about the event types as
keys and the frequency count as value so that the
reducer of the subsequent phase can aggregate the

count information for the same keys. The data flow in
this phase of the FHM algorithm is shown in Figure 8.
Formally, the reduce function for this phase is defined
as:

reduce4 :(CaseID, set(Event,TimeStamp))
→ set((Event, set(Event), boolean), Integer)

Finally, to collect the information from different
reducers in this phase and to aggregate frequency
counts, a final map-reduce phase is added. The map
in this phase is an identity map function. The reducer
in this phase receives the specific event types as key
and a set of frequency counts as values. The output is
the sum of frequency counts for that key. The reduce
function is formally defined as:

reduce5 :((Event, set(Event), boolean), set(Integer))
→ ((Event, set(Event), boolean), Integer)
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(1,<A,1>)
(2,<A,1>)
(3,<A,2>)
(3,<B,3>)
(1,<B,5>)

...

(1,[<A,1>,<B,5><A,6>,<C,7><D,13>])
(2,[<A,1>,<C,6>,<B,8>,<C,9>,<D,10>])

(3,[<A,2>,<B,3>,<A,4>,<C,13>,<D,14>])
(4,[<A,7>,<C,11>,<B,15>,<C,16>,<D,19>])

(5,[<A,11>,<E,17>,<D,18>])

map
(A, {A}, -, 2), (B, {A}, -, 2), ...
(E, {A}, -, 1), (A, {B}, +, 2), ...
(C, {D}, +, 4), (E, {D}, +, 1)

Dependency
Graph

reduce

Fig. 8. The fourth Map-Reduce logical data flow for the FHM algorithm

5.6 Performance

Again, we conducted an experimental study to evalu-
ate the scalability and effectiveness of our FHM imple-
mentation. We used the same inputs as for the eval-
uation of our Alpha implementation. We also used
the same configuration of the Amazon Elastic Map
Reduce service. The performance results and number
of processed tuples at each phase are shown in Ta-
bles 9 to 11. On our base-line single compute node, the
total job execution time was 22 hours and 21 minutes.
On a cluster of 10 medium-sized compute nodes, the
total job execution time was 2 hours and 1 minute. To
further demonstrate the scalability, we again increased
the performance of each node. Using a cluster of 10
high-performance compute nodes reduced the total
job execution time to 17 minutes (Table 11). As with
the performance evaluation of the Alpha algorithm,
we conducted this experiment as a proof-of-concept
to demonstrate that our approach results in scalable
computation of the log-based ordering relations using
Map-Reduce.

6 DISCUSSION

We have seen that running both the Alpha and the
FHM algorithm on only a single machine takes ap-
proximately a full day on a data volume of only 5 mil-
lion event traces (80GB). Our experiments have shown
that both algorithms can be efficiently parallelized, as
the computation of log-based relations for different
pairs of event types are independent. Further, running
individual traces against the dependency graph in the
later stage of the FHM can also be done in parallel
as the individual traces are independent. Hence, we
have achieved total job execution times as low as
as 8 minutes for the Alpha algorithm, and as low
as 15 minutes for the FHM algorithm. Figure 9 also
shows the total job execution times as a function of
the number of total compute threads available on
the cluster, showing graphically how the algorithm
implementations scale with increasing computational
resources.

A look at Tables 4 and 11 shows that our high-
performance experimental condition is essentially the
limit of the parallelization for this input size, with
almost as many map slots as map tasks available in
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Fig. 9. Total job execution time as a function of avail-
able compute threads

most phases and fewer reduce tasks than available
slots in most phases. Further parallelization can pos-
sibly be achieved by splitting the input log files into
smaller partitions, although the configurations used
in our experiment are default Hadoop configurations
that represent a good balance between parallelization
and compute overhead. Both algorithms appear to
be of approximately the same complexity (taking the
same time), and the improvements due to paralelliza-
tion are approximately the same.

The performance results can still be improved upon
by carefully tuning the Map-Reduce cluster configura-
tion and by improving the individual compute node
performance, e.g. by including solid state drives (SSD)
for storage. However, we conducted this experiment
as a proof-of-concept in order to demonstrate that
our approach results in scalable, efficient computation
of the log-based order relations using Map-Reduce,
rather than as a demonstration of the many exist-
ing Map-Reduce tuning techniques [13]. While 80GB
log files do not necessarily require a Map-Reduce
approach and could possibly even be performed in-
memory on a single node, it is easy to imagine log
file sizes of 80TB or even 80PB, which do require
a distributed, secondary-storage based approach like
the one used here.

We note three features of the Map-Reduce imple-
mentations of these algorithms that may present chal-
lenges. First, both implementations require multiple
reducers that are sometimes preceded by identity map
functions. However, while the Map-Reduce frame-
work provides options to have multiple mappers
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TABLE 9
Performance results for a single medium size Map-Reduce task node, total job execution time 22 hours 21

minutes

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:34:7.910 184,464,000 500 2
Phase 1, reduce 3:57:26.640 2,729,277,000 1 1
Phase 2, map 11:23:30.150 2,729,277,000 1112 2
Phase 2, combine 47,236,112
Phase 2, reduce 0:3:50.100 1,849 1 1
Phase 3, map 0:0:2.430 1,849 4 2
Phase 3, reduce 0:0:1.660 269 1 1
Phase 4, map 0:34:17.870 184,464,000 500 2
Phase 4, reduce 1:34:53.890 261,699,500 1 1
Phase 5, map 0:47:5.680 261,699,500 103 2
Phase 5, combine 238,793
Phase 5, reduce 0:0:18.350 390 1 1

TABLE 10
Performance results for a cluster of 10 medium size Map-Reduce task nodes, total job execution time 1 hour 34

minutes

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:31:21.910 184,464,000 500 20
Phase 1, reduce 4:06:30.560 2,729,277,000 21 10
Phase 2, map 7:45:19.820 2,729,277,000 1113 20
Phase 2, combine 47,314,036
Phase 2, reduce 0:5:3.490 1,849 21 10
Phase 3, map 0:0:19.860 1,849 36 20
Phase 3, reduce 0:0:1.770 269 1 10
Phase 4, map 0:32:48.590 184,464,000 500 20
Phase 4, reduce 1:35:7.310 261,699,500 21 10
Phase 5, map 0:49:06.440 261,699,500 105 20
Phase 5, combine 232,663
Phase 5, reduce 0:0:4.330 390 1 10

and a single reducer in a Map-Reduce job, there
is currently no option to provide a single mapper
and multiple reducers. The required identity mapper
for the second phase of the implemented algorithms
means that a large data volume has to be written to
and then read again from the file system, limiting per-
formance. While newer versions of Hadoop introduce
the ChainReducer class, this only allows mappers
to be added after the reducer, not to add further re-
ducers. Similarly, while Cascading4 allows the simple
definition of multi-phase Map-Reduce applications, it
is ultimately built on Map-Reduce and thus inserts
identity mappers between different phases. Other
computational approaches, like Pig5 and Hive6 are
abstractions that are also built on top of Map-Reduce
and therefore, similar to Cascading, possibly provide
an easier definition of the computations, but do not
address this challenge.

Second, as the design of the mapper and the num-
bers reported in Tables 2–4 and Tables 9–11 show,
the volume of data throughout the process does not
monotonically decrease. Instead, the output of the

4. www.cascading.org
5. pig.apache.org
6. hive.apache.org

first-phase reducer for both algorithms is much larger
than the input (both in terms of key-value pairs as
well as in terms of bytes written to the file system).
This characteristic of the algorithms compounds the
Map-Reduce limitation that we just discussed. Future
research in this area may focus on specifically design-
ing a process discovery algorithm with awareness of
the Map-Reduce limitations or identifying an alter-
native scalable, distributed computational approach
without the limitations of the Map-Reduce frame-
work.

Third, for the FHM algorithm in particular, the com-
putation of a single dependency graph as the middle
phase of the algorithm presents a ”bottleneck” in the
degree of parallelization that can be achieved. During
this phase, a single reducer is required, leaving signif-
icant compute resources idle (albeit for a short time,
as the construction of the graph is relatively quick).

7 RELATED WORK

While process mining and Map-Reduce are both ac-
tive research areas, we are only aware of one prior
study that has combined the two. Reguieg et al. [14]
were the first who applied Map-Reduce to process
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TABLE 11
Performance results for a cluster of 10 high-performance Map-Reduce task nodes, total job execution time 15

minutes

Phase CPU time Number of Number Number
(h:m:s.millis) output tuples of tasks of slots

Phase 1, map 0:54:39.110 184,464,000 500 480
Phase 1, reduce 3:0:33.690 2,729,277,000 108 120
Phase 2, map 6:26:1.400 2,729,277,000 1188 480
Phase 2, combine 47,441,548
Phase 2, reduce 0:9:50.180 1,849 108 120
Phase 3, map 0:0:36.970 1,849 108 480
Phase 3, reduce 0:0:2.330 269 1 120
Phase 4, map 0:56:21.420 184,464,000 500 480
Phase 4, reduce 1:9:2.620 261,699,500 108 120
Phase 5, map 1:22:16.260 261,699,500 540 480
Phase 5, combine 293,006
Phase 5, reduce 0:0:7.260 390 1 120

discovery. However, their approach aims at discov-
ering ”event correlations” in systems where events
are not explicitly associated with cases through a
case ID. Using Map-Reduce, event logs are mined to
identify events that satisfy ”correlation conditions”.
Once the correlation between events are identified, the
process model for each set of the recognized process
instances can be discovered. However, the actual pro-
cess discovery from correlated event logs is outside
the scope of their Map-Reduce based approach. Our
study differs from [14] in that the input event logs
in our study contain an explicit case identifier so that
event correlation is not needed. Their approach can
be viewed as a complement to ours to perform event
correlation if required, followed by our own approach
to mine workflow models, both using the scalable
Map-Reduce approach.

While the Map-Reduce based approaches presented
here are suitable for the discovery of a process model
at a single point in time, a related challenge is to
update the discovered process model based on ad-
ditional events in order to avoid having to repeatedly
perform computations over the entire log. An adap-
tation of the heuristics miner [7], [9] for ”Streaming
Process Discovery” (SPD) has been proposed in [15].
While that approach does not update the discovered
process model for each new event but instead updates
a finite queue of events that is used for the mining al-
gorithm to periodically re-discover the process model,
the streaming heuristics miner [15] could extend our
proposal in a complementary manner: Once the initial
process model has been discovered from the existing
large event logs, periodic updates could be performed
using the proposal in [15].

Strongly related to our approach is the work on log
decomposition to tackle the problem of big logs using
a divide and conquer strategy by van der Aalst [16],
[17], [18], [19]. The notion of passages is proposed in
[16] as a way to decompose logs. Passages are special
pairs of sets of event types whose log projections
may be analyzed separately and the resulting process

models be merged with correctness guarantees. A
drawback to passages is that prior knowledge about
the process model is required to identify passages.
This makes passages more suitable to distributed con-
formance checking (another branch of process min-
ing) rather than process discovery. Later work by
van der Aalst [17], [18] generalized the approach
to provide correctness guarantees when projecting
the logs on arbitrary but overlapping sets of event
types. In that work, the discovered partial models
are merged using a model merging approach. This
was also the approach that our own prior work [20]
used intuitively when first implementing the Alpha
algorithm on Map-Reduce. However, we based our
process on the specifics of the Alpha algorithm (and
the FHM algorithm in this work) whereas [17], [18]
generalize their correctness guarantees to any process
discovery algorithm. One can view this work as an
instantiation or implementation of van der Aalst’s
divide and conquer approach, as we distribute the
processing for different event pairs to different reduce
nodes and combining results later. In our case, we
do not require process model merging techniques as
the results for the Alpha and FHM algorithm can
simply be combined as the set union of individual
result tuples (after phase 2 of the Alpha algorithm, in
phases 3 and 5 of the FHM algorithm).

More generally situated within the application of
scalable ”Big Data” techniques to process mining,
instead of specifically focused on process discovery,
are two other studies. Munoz-Gama et al. [21] rec-
ognize the challenge posed by very large event logs.
However, they investigate the question of how best
to perform conformance checking of large event logs
against a given process model. Similarly, Ekanayake et
al. [22] also recognize the challenge of large event logs.
However, they tackle the problem that large logs tend
to produce ”spaghetti-like” process models. Their ap-
proach improves on the existing trace clustering by
splitting process models by model variants as well as
hierarchically in order to generate models of reduced
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complexity. Their approach is also complementary to
ours: Given event logs of sufficient size and with a
large number of activity types, the result of the Alpha
algorithm will also be ”spagehtti-like” and can be
transformed as proposed in [22].

8 CONCLUSION

Workflow mining collects runtime information to dis-
cover a process model from the recorded event log of
an information system. In this paper, we addressed
the process discovery problem for large event logs
by using the Map-Reduce framework. Map-Reduce
offers a scalable model for distributed computation
across multiple cluster nodes and is a natural fit with
the distributed nature of modern information systems
and their event logs. We presented a sequence of Map-
Reduce operations to derive the log-based ordering
relations that are the input for the Alpha algorithm
and a second sequence of Map-Reduce operations
to derive the dependency measures for the Flexible
Heuristics Miner (FHM). We presented the results of
experimental studies to demonstrate the performance
and scalability of our implementation.

While the challenge that large data sets pose to
process mining and process management in general
has been recognized, this is the first work that ap-
plies the widely-used Map-Reduce framework to the
problem of process discovery. Given the increasing
availability of data and the importance of ”Big Data”
management to organizations, our future work will
investigate how our Map-Reduce based implementa-
tion can be usefully combined with other techniques
to reduce the complexity that stems from large event
logs, such as log partitioning or trace clustering [1]
and how other mining algorithms can be paralellized
on Map-Reduce. For example, genetic algorithms are
inherently parallel in nature, and this might lend
itself to implementing genetic process mining [23],
[24] efficiently on Map-Reduce.
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