
Process Discovery using Big Data Event Stream
Processing - A Scalable, Distributed

Implementation of the Flexible Heuristics Miner
on the Amazon Kinesis Cloud Infrastructure

Joerg Evermann1, Jana-Rebecca Rehse2,3, and Peter Fettke2,3

1 Memorial University of Newfoundland
2 Deutsches Forschungszentrum für Künstliche Intelligenz

3 Universität des Saarlandes

Abstract. An important characteristic of big data is high velocity. Data
is generated rapidly and must be processed quickly, preferably on-the-fly
rather than from persistent storage. Event stream processing has be-
come an important tool in managing big data. In this paper, we show
how process mining can benefit from stream processing to yield mining
methods that scale effortlessly to tens of millions of events per minute.
Specifically, we describe a distributed, streaming implementation of the
flexible heuristics miner on Amazon Kinesis, a cloud-based event stream
infrastructure.

Key words: Process mining, event stream processing, big data, cloud
computing, flexible heuristics miner, distributed processing

1 Introduction

Many information systems produce event logs that capture the actions of their
users. Examples of event logs are page requests of web-servers and business-
object method calls in ERP systems. Process discovery is that area of process
mining that deals with the identification of processes from event logs, for example
the process of ordering a product on an e-commerce web-site, or the process of
scheduling a manufacturing order in an ERP system [1].

The increasingly rapid creation and increased availability of such data has
been captured in the notion of ”Big Data”. Big data is frequently characterized
by a high velocity (volume per time) of data, which makes it impractial to store
the data for any length of time and requires that the data be processed on-the-fly.
A useful abstraction for this are event streams that connect a set of independent
data processors that implement a distributed data analysis algorithm.

Process mining of big data has only been a very recent research topic [2]
and only a few approaches have been presented [3, 4, 5, 6, 7]. The Flexible
Heuristics Miner (FHM) [9] is a simple yet useful and widely used [8] heuristic
for constructing process models from event traces. A streaming version of the
FHM has been presented recently [4]. However, this implements the FHM on a

2 Joerg Evermann et al.

sliding window of batches of event traces. Rather than operating on individual
events as they are generated, it operates on each batch as if it were a complete
log. Thus, it requires significant amount of event storage (the extent of the sliding
window), which limits its scalability. It is also not a distributed implementation,
further limiting its scalability. Finally, events are processed multiple times as
they are within the window during multiple sliding iterations, making it an
inefficient approach.

Our approach addresses these limitations. We build on [7] where it is shown
that the FHM can be separated into discrete processing stages operating in
parallel. We implement the FHM algorithm in a distributed way on indepedent
processing nodes that ingress event stream data and are also internally connected
by event streams. We use a cloud-based implementation of the event streaming
infrastructure, affording us scalability to hundreds of megabytes per minute.
The individual processing nodes consist of independent processing threads that
do not manage any information proportional in size to the volume of incoming
events. Scalability is therefore limited only by processing power and network
bandwidth; both limitations are addressed by the distributed implementation.
In summary, the goals of this research are to demonstrate that

– Process discovery algorithms can be designed or adapted for streaming event
data, operating on an event-by-event basis,

– The streaming event processing algorithm can be distributed across multiple
processing nodes, in turn connected by event streams,

– The distributed algorithms and the connecting network of event streams can
be readily implemented on commercial cloud infrastructure, and

– The implementation of the distributed algorithms scales effortlessly to tens of
millions of events per minute.

2 Event Stream Processing in the Cloud: The example of
Amazon Kinesis

Amazon Kinesis, part of Amazon Web Services (AWS), provides a scalable event
stream infrastructure for records of arbitary form. A stream is logically divided
into one or many shards. When writing to a stream, a producer provides a key
for each record; records with the same key are written to the same shard. Each
shard supports up to 1000 records per second for writing. Each shard can support
up to 5 transactions per second for reading, with up to 10000 records read in
each transaction. There is no limit to the number of shards per stream.

3 Distributed Event Stream FHM

Building on [7], we separate the FHM algorithm into individual processing stages
and distribute these stages to different computation nodes. The partitioning of
records by shards is used to separate the processing of events using multiple

Kinesis FHM 3

independent processing threads for each stage. Figure 1 presents an overview of
the entire architecture. For space reasons, we cannot describe the original FHM
algorithm in this paper, the reader is referred to [9] for details.

Event
Generator 1

Event
Generator 2 ... Event

Generator n

Event Consumer

Thread 1 Thread 2 ... Thread k

(One thread per Event Stream shard)

Event Stream
[multiple shards by case ID]

Relation Consumer

Thread 1 Thread 2 ... Thread n

(One thread per Relation Stream shard)

Relation Stream
[multiple shards by event pair]

Graph Consumer

Thread G1 Thread G2 ... Thread Gn

Thread T1 Thread T2 Thread Tm

One Graph Consumer thread per Graph Update Stream shard
One Trace Consumer thread per Trace Stream shard

Trace Stream
[multiple shards random]

Update Consumer

Thread 1 Thread 2 ... Thread n

(One thread per Update Stream shard

Update Stream
[multiple shards by event pair]

Graph Update Stream
[multiple shards by event pair]

Dependency Graph Augmented CNet

Fig. 1. Architecture of Distributed FHM on Amazon Kinesis Infrastructure

3.1 Event Generators

Event generators produce the raw events to be processed. Events are tuples
of the form (Event, T imeStamp,CaseId) and are written to the event stream
using CaseId as key, so that a consumer reading from an event stream shard
processes all events for a particular case.

4 Joerg Evermann et al.

3.2 Event Consumer

The event consumer ingests events from the event stream. Because cases are
independent of each other, processing is performed by independent processing
threads, each serving one shard. Each thread maintains a trace, mean interarrival
time, and the time of the last observed event for each active case. When an event
is received for an active case, the basic log relations (Def. 3 in [9]) are computed
for this new event.

Active cases are periodically retired to conserve memory. Assuming a Poisson
distributed interarrival time, a 99.99% confidence interval for the next event
arrival time is computed from the mean interarrival time for the case. When
the upper bound of this interval is in the past, the case is retired, its trace is
written to the trace stream and all information for the case is deleted. Late
events, arriving with less than 0.01% probability, are discarded. The size of the
confidence interval is configurable and represents a trade-off between being able
to process late events and conserving thread memory.

Basic log relation entries for each processed event are collected and emit-
ted into the relation stream as tuples ((Event1, Event2), RelationType, Count)
where RelationType indicates the type of basic relation (Def. 3 in [9]), and
Count indicates how many instances of each event pair (Event1, Event2) are
added to this log relation based on the currently processed event: Appending
an event to an active trace generates only one instance of >w and >>w but
can generate multiple instances of >>>w. These records are written to the
relation stream using (Event1, Event2) as key. Because the subsequent com-
putation of the dependency measures requires information not only about the
pair (Event1, Event2) but also about its ’inverse’ (Event2, Event1), these are
written with the same key and so to the same shard.

3.3 Relation Consumer

The relation consumer reads records from the relation stream. Because the de-
pendency measures (Def. 4 in [9]) for a pair of events are based only on the
basic log relations for that pair and its inverse pair, processing is performed by
independent threads, each serving a shard of the stream. Each thread maintains
a count of the instances of each relation type for each event pair, as well as
current values for each dependency measure. Counts and dependency measure
values are updated when a new record is read from the relation stream. Up-
dated dependency measure values are emitted to the update stream as a tuple
Event1, Event2, T ype, V alue) using the event pair as a key to ensure that tuples
for the same event pair are processed by the same subsequent consumer. To save
stream capacity, only values that meet a configurable lower threshold (0.5 by
default) are emitted.

3.4 Update Consumer

The update consumer reads records from the update stream, using independent
threads for each shard. Each thread maintains a partial dependency graph, and

Kinesis FHM 5

Data:
r, a set of retired cases
a : CaseId 7→ Trace, traces for active cases
i : CaseId 7→ Time, mean interarrival times for each case
l : CaseId 7→ Time, last arrival times for each case

Function EventConsumer()
while true do

e← EventStream.dequeue()
if e.CaseId 6∈ r then

if e.CaseId ∈ dom(a) then
t← a(e.CaseId)

i(e.CaseId)← i(e.CaseId)×t.length+(e.TimeStamp−l(e.CaseId)
t.length+1

l(e.caseID)← e.T imestamp

else
t = new Trace
a← a ∪ (e.CaseId, t)
i← i ∪ (e.caseID, 0)
l← l ∪ (e.CaseId, e.T imestamp)

end
t← t ∪ (e.T imestamp, e.Event)
relations← computeBasicLogRelations(t) // Def. 3 in [9]
RelationStream.enqueue(relations)

end
retireTraces()

end

Function retireTraces()
foreach c ∈ dom(a) do

if l(c) + qPoisson(i(c), 0.999) < now then
TraceStream.enqueue(a(c))
dom(a)← dom(a) \ c; dom(i)← dom(i) \ c; dom(l)← dom(l) \ c
r ← r ∪ c

end

end

Algorithm 1: Outline of the Event Consumer

a list of current values for each dependency measure for each event pair it pro-
cesses. When reading a record containing a new dependency measure value, the
processing thread considers each of the sets that form the FHM algorithm in
Def. 6 in [9] and determines whether the new dependency measure value yields
any changes to the different sets. The reconceptualization of the core FHM algo-
rithm in terms of updates to the different sets (Algorithms 3–5) is one of the core
features of our implementation. There are two notable considerations: First, the
loop-of-length-one and loop-of-length-two dependency measures can only grow,
not shrink: Updates to these can never cause edge removals from the dependency
graph. Second, edges can result from multiple, different types of dependencies.
Hence, edges can only be removed when not supported by any dependency. The
update consumer thread maintains a set of dependency types that support each
graph edge (Alg. 3) and removes edges only when the last supporting depen-
dency type is removed (Alg. 5). Changes to the graph are emitted as tuples
(Event1, Event2, UpdateOp) into the graph update stream where UpdateOp in-
dicates removal or addition of an edge. Records are keyed by event pair. The
thresholds for the algorithm (α, σ>, σ>>, σ>>>) are increased asymptotically to
one because higher thresholds reflect the increasing requirements for practical
significance in larger event volumes [9].

6 Joerg Evermann et al.

Data:
c : Event 7→ N, a map of counts (|t|) for each event type t
f : Event× Event 7→ N, a map of | >w | for each event type pair
l2 : Event× Event 7→ N, a map of | >>w | for each event type pair
ld : Event× Event 7→ N, a map of | >>>w | for each event type pair

Function RelationConsumer()
while true do

r ← RelationStream.dequeue()
ep← (r.Event1, r.Event2); pe← (r.Event2, r.Event1)
switch r.RelationType do

case >w do
f(ep.Event1, ep.Event2)← f(ep.Event1, ep.Event2) + r.Count

d1← f(ep)−f(pe)
f(ep)+f(pe)+1

; d2← f(pe)−f(ep)
f(pe)+f(ep)+1

DependencyStream.enque((ep.Event1, ep.Event2, >w, d1))
DependencyStream.enque((ep.Event2, ep.Event1, >w, d2))

case >>w do
l2(ep.Event1, Event2)← l2(ep.Event1, ep.Event2) + r.count

d1← l2(ep)−l2(pe)
l2(ep)+l2(pe)+1

; d2← l2(pe)−l2(ep)
l2(pe)+l2(ep)+1

DependencyStream.enque((ep.Event1, ep.Event2, >>w, d1))
DependencyStream.enque((ep.Event2, ep.Event1, >>w, d2))

case >>>w do
ld(ep.Event1, Event2)← ld(ep.Event1, ep.Event2) + r.count

d1← 2 ld(ep)− |c(ep.Event1)−c(ep.Event2)|
c(ep.Event1)+c(ep.Event2)+1

d2← 2 ld(pe)− |c(ep.Event2)−c(ep.Event1)|
c(ep.Event2)+c(ep.Event1)+1

DependencyStream.enqueue((ep.Event1, ep.Event2, >>>w, d1))
DependencyStream.enqueue((ep.Event2, ep.Event1, >>>w, d2))

otherwise do
c(ep.Event1)← c(ep.Event1) + r.count

end

end

end

Algorithm 2: Outline of the Relation Consumer

Data:
α, σ>, σ>>, σ>>> ← 0.9, initial dependency thresholds
ρ← 0.05, initial relative-to-best threshold for dependencies
d : Event× Event 7→ R, a map of direct dependencies for each event pair
l2 : Event× Event 7→ R, a map of loop-two dependencies for each event pair

dg : Event× Event 7→ 2{>w,>>w,>>>w}, a map of edges of the partial dependency graph to the
powerset of dependency relation types
Function UpdateConsumer()

while true do
u← UpdateStream.dequeue()
switch u.Type do

case >w do
ProcessDirectFollows(u)

case >>w do
o← l2(u.Event1, u.Event2)← u.V alue
if (u.V alue > o) ∧ (u.V alue ≥ σ>>) ∧ (o < σ>>) then

addEdge(u.Event1, u.Event2, >>w)
addEdge(u.Event2, uEvent1, >>w)

case >>>w do
if u.V alue > σ>>> then

addEdge(u.Event1, uEvent2, >>>w)
if u.V alue < σ>>> then

removeEdge(u.Event1, uEvent2, >>>w)
end
updateThresholds()

end

Algorithm 3: Outline of Update Consumer

Kinesis FHM 7

Function ProcessDirectFollows(u)
o← d(u.Event1, u.Event2)
d(u.Event1, u.Event2)← u.V alue
if u.Event1 = u.Event2 then

if (o < σl1) ∧ (u.V alue ≥ σl1) then
addEdge(u.Event1, u.Event2, >w)

else
cout← max(d(u.Event1, b)|b 6= u.Event2)
c← {b|d(u.Event1, b) = cout}
if cout = 0 then

addEdge(u.Event1, u.Event2, >w)
else if (u.V alue > cout) then

removeEdge(u.Event1, c, >w)
addEdge(u.Event1, u.Event2, >w)

cin← max(d(a, u.Event2)|a 6= u.Event1)
c← {a|d(a, u.Event2) = cin}
if cin = 0 then

addEdge(u.Event1, u.Event2, >w)
else if (u.V alue > cin) then

removeEdge(c, u.Event2, >w)
addEdge(u.Event1, u.Event2, >w)

foreach e ∈ {e|(u.Event1, e) ∈ dg ∧ (e, u.Event1) ∈ dg ∧ e 6= u.Event2} do
f ← max(d(e, b)|b 6= u.Event1)
if f − u.V alue > ρ then

removeEdge(u.Event1, u.Event2, >w)

end
foreach e ∈ {e|(e, u.Event2) ∈ dg ∧ (u.Event2, e) ∈ dg ∧ e 6= u.Event1} do

f ← max(d(a, e)|a 6= u.Event1)
if f − u.V alue > ρ then

removeEdge(u.Event1, u.Event2, >w)

end
if d > α then

addEdge(u.Event1, u.Event2, >w)
foreach e ∈ {e|(u.Event1, e) ∈ dg ∧ e 6= u.Event2 ∧ d(u.Event1, e)− u.V alue < ρ} do

addEdge(u.Event1, u.Event2, >w)
end

Algorithm 4: Update Consumer (part 2)

Function addEdge(event1, event2, dep.type)
if dg(event1, event2) = ∅ then

dg(event1, event2)← dg(event1, event2) ∪ {dep.type}
else

dg(event1, event2)← {dep.type}
GraphStream.enqeue(event1, event2, ADD)

Function removeEdge(event1, event2, dep.type)
if dg(event1, event2) 6= ∅ then

dg(event1, event2)← dg(event1, event2) \ {dep.type}
if dg(event1, event2) = ∅ then

dom(dg)← dom(dg) \ (event1, event2)
GraphStream.enqeue(event1, event2, REM)

Algorithm 5: Update Consumer (part 3)

3.5 Graph Consumer

The graph consumer processes the dependency graph updates from the graph
update stream. While multiple threads read graph updates from each shard, the
graph consumer maintains a single, complete dependency graph. At the same
time, trace consumer threads read the complete and retired traces from the
trace stream and run each trace forwards and backwards against the current

8 Joerg Evermann et al.

dependency graph, as described in [9], to update a single, complete augmented
CNet maintained by the graph consumer. Trace consumer threads can run traces
independently against the dependency graph, but to prevent updates to the
dependency graph while a trace being run, graph consumer threads and trace
consumer threads are run alternatingly. The result of this step is a complete
dependency graph and an augmented CNet, written to file output.

Data:
dg ⊆ Event× Event, the set of edges of the dependency graph
CNetsucc : (Event, Eventn) 7→ N, augmented CNet, successor counts
CNetpred : (Event, Eventn) 7→ N, augmented CNet, predecessor counts

Function TraceConsumer()
while true do

t = t1 . . . tn ← TraceStream.dequeue()
foreach i ∈ 1 . . . length(t)− 1 do

candsucc ← ∅
foreach s|(ti, s) ∈ dg do

if (∃tj ∈ t|i+ 1 ≤ j ≤ n) then
sind ← min(j|tj ∈ t ∧ j > i ∧ tj = s)
p← {a|(a, s) ∈ dg}
if p ∩ ti+1 . . . tsind

6= ∅ then
candsucc ← candsucc ∩ s

end
CNetsucc(ti, candsucc) + +

end
foreach i ∈ 2 . . . length(t) do

candpred ← ∅
foreach s|(s, ti) ∈ dg do

if (∃tj ∈ t|0 ≤ j ≤ i− 1) then
sind ← max(j|tj ∈ t ∧ j < i ∧ tj = s)
p← {a|(s, a) ∈ dg}
if p ∩ tsind

. . . ti−1 6= ∅ then
candpred ← candpred ∩ s

end
CNetpred(ti, candpred) + +

end

end

Algorithm 6: Trace Consumer

4 Implementation and Experiment

We implemented our method employing the Amazon Web Services (AWS) com-
mercial cloud infrastructure. Source code is available1. AWS Kinesis provides
the stream infrastructure, processors are distributed across different AWS EC2
instances, performance data is collected using AWS CloudWatch and visualized
in a CloudWatch dashboard (Figs. 2, 3). For our experiment, we provisioned an
event stream and a relation stream with 20 shards each, for a total capacity of
1,200,000 records per minute for each stream. Because the relation consumer
performs significant data reduction, the trace stream, update stream, and graph

1 http://joerg.evermann.ca/software.html

Kinesis FHM 9

update stream were provisioned with only 2 shards each for a capacity of 120,000
records per minute for each stream.

Each consumer runs one processing thread for each shard of its input stream,
as indicated in Fig. 1. AWS Kinesis provides consumers with information about
how far the current read transaction is behind the ”tip” of the shard, the latest
write time. The processing threads adapt their read and write rates to catch up to
the tip of the shard while remaining within the AWS Kinesis limits (Sec. 2), and
throttle their read rates once the tip has been reached to match the stream write
rate. For this, threads control the thread sleep time after each read transaction
and processing of the read records, and the number of records read per read
transaction. Each processing shard can persist its state information (reading
position in the shard, retired and active cases for the event consumer, current
dependency measure values for the relation consumer, partial dependency graph
for the update consumers, augmented CNet for the trace consumer) and be
restarted without loss of information.

Using the PLG process log generator [10], we produced an event log stored
on AWS S3. To simulate random event arrivals, a set of event generator threads
inserted events from this log into the event stream with a Poisson-distributed
interarrival rate.

We gradually increased the rate at which events are written to the event
stream, from ≈ 2, 000, 000 events per minute to ≈ 5, 500, 000 events per minute.
Fig. 2 shows the AWS CloudWatch dashboard with read and write rates for the
event and relation stream over the 3 hour period during which we conducted our
experiment. The figure shows that, as the event generators increase the rate at
which events arrive, the event consumer matches this rate in reading events from
the stream. It also shows that the read and write rates for the relation stream
are independent of the rate at which events are processed. The data volume
for the relation stream depends on the complexity of each trace (i.e. how many
instances of the basic log relations are generated for each event), and the number
of separate shards. In our experiment that rate was ≈ 3, 500, 000 records per
minutes. Figure 3 shows the AWS CloudWatch dashboard with read and write
rates for the trace stream, the update stream, and the graph update stream,
over the same 3 hour period. These are graphed in a separate diagram because
of their much lower data volumes. The volume for the trace stream mirrors that
of the event stream: As more events arrive (either faster, or for more cases), more
cases per minute will be retired and their traces emitted into the trace stream,
from a low of ≈ 57, 000 traces per minutes, to a high of ≈ 160, 000 traces per
minute. On the other hand, the update and graph update stream volumes mirror
that of the relation stream, but at significantly lower rates as more and more
data reduction is performed. The data rate for the update stream fluctuated
around ≈ 110, 000 update records per minute and that of the graph udpate
stream around ≈ 87, 000 graph update records per minute. Both figures show
that there is significant variation around the mean data rate for each stream,
especially as consumers adjust to variations in the inbound data rate, so that it
is important to provision sufficient stream capacity. The CPU load and memory

10 Joerg Evermann et al.

consumption for most processing nodes was negligible even at the highest data
volume; only the event consumer experienced a significant CPU load of ≈ 10%.

Fig. 2. Records per minute for event and relation streams, 5 minute averages

Kinesis FHM 11

Fig. 3. Records per minute for trace, update and graph update streams, 5 minutes
averages

5 Discussion and Conclusions

This research had four distinct goals (see Sec. 1). We have demonstrated that
a popular and widely used process discovery algorithm can be adapted to pro-
cess events on an event-by-event basis. For the FHM algorithm, this is primarily

12 Joerg Evermann et al.

the adaptation of the algorithm of Def. 6 in [9] in our algorithms 3–5. We have
demonstrated that the event processing algorithm can be distributed. Each of
the processors in our algorithm works independently on separate compute nodes,
connected only by the event stream infrastructure. We have provided an imple-
mentation on a commercially available compute cloud, which demonstrates the
practical utility of this work. Finally, we have demonstrated the scalability of
the solution. Figures 2 and 3 show that only the event stream requires significant
capacity. As the event consumer uses independent threads for each shard, there
is in practice no limit to the throughput capacity of our implementation: More
shards can be added to the stream as required, and more processing threads can
be added, even across multiple AWS EC2 instances. As the algorithms shown
in Section 3 show, only the event consumer maintains state information that
depends on the inbound event volume. However, only the set of case IDs for
retired traces grow continuously, whereas the remainder of the state information
concerns active cases and is not retained once those cases are retired. The other
algorithms maintain state information that grows with the number of different
event types in the traces, which is significantly smaller.

References

1. van der Aalst, W.M.P.: Process mining: Overview and opportunities. ACM Trans.
Manage. Inf. Syst. 3(2) (July 2012) 7:1–7:17

2. van der Aalst, W., Damiani, E.: Processes meet big data: Connecting data science
with process science. Services Computing, IEEE Transactions on 8(6) (Nov 2015)
810–819

3. Reguieg, H., Benatallah, B., Motahari Nezhad, H., Toumani, F.: Event correla-
tion analytics: Scaling process mining using mapreduce-aware event correlation
discovery techniques. Services Computing, IEEE Transactions on 8(6) (Nov 2015)
847–860

4. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics miners for streaming
event data. CoRR abs/1212.6383 (2012)

5. Burattin, A., Cimitile, M., Maggi, F., Sperduti, A.: Online discovery of declarative
process models from event streams. Services Computing, IEEE Transactions on
8(6) (Nov 2015) 833–846

6. Evermann, J., Assadipour, G.: Big data meets process mining: Implementing the
alpha algorithm with map-reduce. In: Proceedings of the ACM Symposium on
Applied Computing. (2014)

7. Evermann, J.: Scalable process discovery using map-reduce. Services Computing,
IEEE Transactions on PP(99) (2014) 1–1

8. Claes, J., Poels, G.: Process mining and the prom framework: An exploratory
survey. In: Business Process Management Workshops - BPM 2012. (2012) 187–198

9. Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining CIDM 2011,
Paris, France. (2011)

10. Burattin, A., Sperduti, A.: PLG: A framework for the generation of business pro-
cess models and their execution logs. In zur Muehlen, M., Su, J., eds.: Business
Process Management Workshops. Volume 66 of Lecture Notes in Business Infor-
mation Processing. Springer Berlin Heidelberg (2011) 214–219

